170 research outputs found

    Individualizing therapy – in search of approaches to maximize the benefit of drug treatment (II)

    Get PDF
    Adjusting drug therapy to the individual, a common approach in clinical practice, has evolved from 1) dose adjustments based on clinical effects to 2) dose adjustments made in response to drug levels and, more recently, to 3) dose adjustments based on deoxyribonucleic acid (DNA) sequencing of drug-metabolizing enzyme genes, suggesting a slow drug metabolism phenotype. This development dates back to the middle of the 20(th )century, when several different drugs were administered on the basis of individual plasma concentration measurements. Genetic control of drug metabolism was well established by the 1960s, and pharmakokinetic-based individualized therapy was in use by 1973

    The Target Silicon Detector for the FOCUS Spectrometer

    Full text link
    We describe a silicon microstrip detector interleaved with segments of a beryllium oxide target which was used in the FOCUS photoproduction experiment at Fermilab. The detector was designed to improve the vertex resolution and to enhance the reconstruction efficiency of short-lived charm particles.Comment: 18 pages, 14 figure

    Measurement of the relative branching ratio BR(\Xi_c^+ \to p^+ K^-\pi^+)\BR(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)

    Full text link
    We report the observation of the Cabibbo suppressed decay \Xi_c^+ \to p K^-\pi^+ using data collected with the FOCUS spectrometer during the 1996--97 Fermilab fixed target run. We find a \Xi_c^+ signal peak of 202\pm35 events. We have measured the relative branching ratios BR(\Xi^+_c\to p K^-\pi^+)/BR(\Xi^+_c\to\Xi^-\pi^+\pi^+)= 0.234 \pm 0.047 \pm 0.022 and BR(\Xi^+_c\to p \bar{K}^*(892)^0)/BR(\Xi^+_c\to p K^-\pi^+)= 0.54 \pm 0.09 \pm 0.05 .Comment: 9 pages, 4 figure

    Search for CP violation in D0 and D+ decays

    Full text link
    A high statistics sample of photoproduced charm particles from the FOCUS (E831) experiment at Fermilab has been used to search for CP violation in the Cabibbo suppressed decay modes D+ to K-K+pi+, D0 to K-K+ and D0 to pi-pi+. We have measured the following CP asymmetry parameters: A_CP(K-K+pi+) = +0.006 +/- 0.011 +/- 0.005, A_CP(K-K+) = -0.001 +/- 0.022 +/- 0.015 and A_CP(pi-pi+) = +0.048 +/- 0.039 +/- 0.025 where the first error is statistical and the second error is systematic. These asymmetries are consistent with zero with smaller errors than previous measurements.Comment: 12 pages, 4 figure

    A measurement of lifetime differences in the neutral D-meson system

    Full text link
    Using a high statistics sample of photoproduced charm particles from the FOCUS experiment at Fermilab, we compare the lifetimes of neutral D mesons decaying via D0 to K- pi+ and K- K+ to measure the lifetime differences between CP even and CP odd final states. These measurements bear on the phenomenology of D0 - D0bar mixing. If the D0 to K-pi+ is an equal mixture of CP even and CP odd eigenstates, we measure yCP = 0.0342 \pm 0.0139 \pm 0.0074.Comment: 15 pages, 5 figure

    Measurements of the Sigma_c^0 and Sigma_c^{++} Mass Splittings

    Full text link
    Using a high statistics sample of photoproduced charmed particles from the FOCUS experiment at Fermilab (FNAL-E831), we measure the mass splittings of the charmed baryons Sigma_c^0 and Sigma_c^{++}. We find M(Sigma_c^0 - Lambda_c^+) = 167.38 +/- 0.21 +/- 0.13 MeV/c^2 and M(Sigma_c^++ - Lambda_c^+) = 167.35 +/- 0.19 +/- 0.12 MeV/c^2 with samples of 362 +/- 36 and 461 +/- 39 events, respectively. We measure the isospin mass splitting M(Sigma_c^++ - Sigma_c^0) to be -0.03 +/- 0.28 +/- 0.11 Mev/c^2. The first errors are statistical and the second are systematic.Comment: 10 pages, 2 figure

    A prospective, double-blind, randomized, controlled clinical trial comparing standard wound care with adjunctive hyperbaric oxygen therapy (HBOT) to standard wound care only for the treatment of chronic, non-healing ulcers of the lower limb in patients with diabetes mellitus: a study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been suggested that the use of adjunctive hyperbaric oxygen therapy improves the healing of diabetic foot ulcers, and decreases the risk of lower extremity amputations. A limited number of studies have used a double blind approach to evaluate the efficacy of hyperbaric oxygen therapy in the treatment of diabetic ulcers. The primary aim of this study is to assess the efficacy of hyperbaric oxygen therapy plus standard wound care compared with standard wound care alone in preventing the need for major amputation in patients with diabetes mellitus and chronic ulcers of the lower limb.</p> <p>Methods/Design</p> <p>One hundred and eighteen (59 patients per arm) patients with non-healing diabetic ulcers of the lower limb, referred to the Judy Dan Research and Treatment Centre are being recruited if they are at least 18 years of age, have either Type 1 or 2 diabetes with a Wagner grading of foot lesions 2, 3 or 4 on lower limb not healing for at least 4 weeks. Patients receive hyperbaric oxygen therapy every day for 6 weeks during the treatment phase and are provided ongoing wound care and weekly assessments. Patients are required to return to the study centre every week for an additional 6 weeks of follow-up for wound evaluation and management. The primary outcome is freedom from having, or meeting the criteria for, a major amputation (below knee amputation, or metatarsal level) up to 12 weeks after randomization. The decision to amputate is made by a vascular surgeon. Other outcomes include wound healing, effectiveness, safety, healthcare resource utilization, quality of life, and cost-effectiveness. The study will run for a total of about 3 years.</p> <p>Discussion</p> <p>The results of this study will provide detailed information on the efficacy of hyperbaric oxygen therapy for the treatment of non-healing ulcers of the lower limb. This will be the first double-blind randomized controlled trial for this health technology which evaluates the efficacy of hyperbaric oxygen therapy in prevention of amputations in diabetic patients.</p> <p>Trial registration</p> <p>ClinicalTrials.gov Identifier: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00621608">NCT00621608</a></p

    Bi-fractional transforms in phase space

    Get PDF
    The displacement operator is related to the displaced parity operator through a two dimensional Fourier transform. Both operators are important operators in phase space and the trace of both with respect to the density operator gives the Wigner functions (displaced parity operator) and Weyl functions (displacement operator). The generalisation of the parity-displacement operator relationship considered here is called the bi-fractional displacement operator, O(α, β; θα, θβ). Additionally, the bi-fractional displacement operators lead to the novel concept of bi-fractional coherent states. The generalisation from Fourier transform to fractional Fourier transform can be applied to other phase space functions. The case of the Wigner-Weyl function is considered and a generalisation is given, which is called the bi-fractional Wigner functions, H(α, β; θα, θβ). Furthermore, the Q−function and P−function are also generalised to give the bi-fractional Q−functions and bi-fractional P−functions respectively. The generalisation is likewise applied to the Moyal star product and Berezin formalism for products of non-commutating operators. These are called the bi-fractional Moyal star product and bi-fractional Berezin formalism. Finally, analysis, applications and implications of these bi-fractional transforms to the Heisenberg uncertainty principle, photon statistics and future applications are discussed
    • …
    corecore