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Abstract

The displacement operator is related to the displaced parity operator through a two-

dimensional Fourier transform. Both operators are important operators in phase space

and the trace of both with respect to the density operator gives the Wigner functions

(displaced parity operator) and Weyl functions (displacement operator). The gen-

eralisation of the parity-displacement operator relationship considered here is called

the bi-fractional displacement operator, O(α,β; θα, θβ). Additionally, the bi-fractional

displacement operators lead to the novel concept of bi-fractional coherent states.

The generalisation from Fourier transform to fractional Fourier transform can be

applied to other phase space functions. The case of the Wigner-Weyl function is con-

sidered and a generalisation is given, which is called the bi-fractional Wigner functions,

H(α,β; θα, θβ). Furthermore, the Q−function and P−function are also generalised to

give the bi-fractional Q−functions and bi-fractional P−functions respectively. The

generalisation is likewise applied to the Moyal star product and Berezin formalism for

products of non-commutating operators. These are called the bi-fractional Moyal star

product and bi-fractional Berezin formalism.
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Finally, analysis, applications and implications of these bi-fractional transforms

to the Heisenberg uncertainty principle, photon statistics and future applications are

discussed.
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Ŵ (α,β∣Θ) Weyl function

W (α,β∣Θ) Wigner function

O(α,β; θα, θβ ∣Θ) Bi-fractional displacement operator

W (α,β; θα, θβ ∣Θ) Bi-fractional Wigner function

GS(α − α′, β − β′∣θα, θβ) Bi-fractional distance between bi-fractional coherent states

B(z,w∗; θα, θβ ∣Θ) Bi-fractional Berezin formalism

vi



List of abbreviations

HW Heisenberg Weyl Group

SU(1,1) Special Unitary Group (1,1)

SU(2) Special Unitary Group (2)

GRIN Graded Index Media

LCT Linear Canonical Transform

vii



Contents

Contents

Dedication iii

Declaration iv

Acknowledgements v

List of notations vi

List of abbreviations vii

Contents viii

List of Figures xii

List of Tables xiv

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Overview of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Quantum mechanics in Hilbert space 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

viii



Contents

2.2 Quantum harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 States of the harmonic oscillator . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Position and momentum states . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Number state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 The density operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Displacement and displaced parity operators . . . . . . . . . . . . . . . . 16

2.5.1 Displacement operators . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.2 Parity and displaced parity operators . . . . . . . . . . . . . . . . 20

2.6 The uncertainty relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Coherent states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7.1 Properties of coherent state . . . . . . . . . . . . . . . . . . . . . . 26

2.8 Squeezed states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.9 Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.9.1 Properties of Fourier transform . . . . . . . . . . . . . . . . . . . . 30

2.9.1.1 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.9.1.2 Conjugation . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.9.1.3 Shift and scaling . . . . . . . . . . . . . . . . . . . . . . . 30

2.9.1.4 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . 31

2.10 Phase-space distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.10.1 Weyl function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.10.2 Wigner function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.10.2.1 Examples of Wigner function . . . . . . . . . . . . . . . 34

2.10.3 Sudarshan-Glauber and Husimi functions . . . . . . . . . . . . . . 39

2.11 Moyal star formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Fractional Fourier transform in phase space 44

3.1 Introduction to fractional Fourier transform . . . . . . . . . . . . . . . . . 44

ix



Contents

3.2 Properties of the kernel of fractional Fourier transform . . . . . . . . . . 47

3.3 Examples of fractional Fourier transform of different waveforms . . . . . 49

3.4 Fractional Fourier operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Non-orthogonal plane in the (θα, θβ) axes . . . . . . . . . . . . . . . . . . 51

3.6 Bi-fractional displacement operators . . . . . . . . . . . . . . . . . . . . . 52

3.6.1 Properties of the bi-fractional operator . . . . . . . . . . . . . . . 54

3.6.1.1 Unitarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6.1.2 Interpolation between displacement and parity operators 56

3.6.1.3 Marginal properties for O(α,β; θα, θβ) . . . . . . . . . . 57

3.6.1.4 Bi-fractional operators as special elements of the group

G of squeezing and displacement transformations . . . 59

3.6.1.5 Bi-fractional displacement operators in different sets . 61

3.6.1.6 Groupoid of transformations from O(α,β; θα, θβ) . . . . 62

3.7 Bi-fractional coherent states . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7.1 Properties of the bi-fractional coherent states . . . . . . . . . . . 68

3.7.1.1 Bi-fractional coherent states in different sets . . . . . . 68

3.7.1.2 Analyticity property of bi-fractional coherent states . . 69

3.7.1.3 Bi-fractional resolution of identity . . . . . . . . . . . . 71

3.8 Bi-fractional distance in phase space . . . . . . . . . . . . . . . . . . . . . 75

3.9 Bargmann representation of bi-fractional coherent state ∣α,β; θα,0⟩ . . . 77

3.10 Statistical properties of the coherent states ∣α,β; θα,0⟩ . . . . . . . . . . 79

3.10.1 Uncertainty relation . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.10.2 Second order correlation . . . . . . . . . . . . . . . . . . . . . . . . 83

3.11 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4 Application to bi-fractional transforms 87

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

x



Contents

4.2 Interpolations between Wigner and Weyl functions . . . . . . . . . . . . 88

4.2.1 Bi-fractional Wigner functions . . . . . . . . . . . . . . . . . . . . 88

4.3 Marginal properties for bi-fractional Wigner function . . . . . . . . . . . 89

4.4 Numerical implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Bi-fractional Q-functions and bi-fractional P -functions . . . . . . . . . . 103

4.6 Bi-fractional Moyal star formalism . . . . . . . . . . . . . . . . . . . . . . 105

4.7 Bi-fractional Berezin formalism . . . . . . . . . . . . . . . . . . . . . . . . 110

4.8 Interpolating quantum noise and correlations . . . . . . . . . . . . . . . . 113

4.9 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 Conclusion and future work 118

5.1 Other properties of bi-fractional coherent states . . . . . . . . . . . . . . 119

5.2 Tomography of the bi-fractional Wigner function . . . . . . . . . . . . . . 120

5.3 Application to the extended phase space . . . . . . . . . . . . . . . . . . . 121

5.4 Application to the characteristic function . . . . . . . . . . . . . . . . . . 121

References 122

Appendix A Equations and proofs 132

xi



List of Figures

2.1 Examples of Wigner functions. (a),(b) Vacuum state ∣0⟩; (c),(d) Coher-

ent state ∣2 + 2i⟩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 W (α,β)(Wigner function) of number states for the state of Eq. (2.112),

n = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 W (α,β)(Wigner function) of number states for the state of Eq. (2.112),

n = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 W (α,β)(Wigner function) of number states for the state of Eq. (2.112),

n = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5 W (α,β)(Wigner function) of number states for the state of Eq. (2.112),

n = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Q(α,β)(Q-function) of number states for the state of Eq. (2.112) with

n = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 (a): Rectangular pulse wave rectpuls(x,1), (b): Triangular pulse wave

tripuls(x,2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 The orthogonal and non-orthogonal axes . . . . . . . . . . . . . . . . . . . 52

3.3 The uncertainty ∆pp, the g(2) and the average number of photons ⟨n⟩

as a function of θα (in rads), for the coherent states ∣2,2; θα,0⟩ . . . . . 86

xii



List of Figures

4.1 H(α,β; 0,0)(Weyl function) for the state of Eq. (4.2) with α = 2 and

β = 0. The arrows indicate the autoparts (A) and cross-parts (C) . . . 95

4.2 H(α,β; π
2 ,

π
2 )(Wigner function) for the state of Eq. (4.2) with α = 2

and β = 0. The arrows indicate the autoparts (A) and cross-parts (C) . 96

4.3 |H(α,β; π
4 ,

π
4 )| for the state of Eq. (4.2) with α = 1.8 and β = 0. . . . . 97

4.4 H(α,β; π
4 ,

π
4 ) for the state of Eq. (4.2) with α = 2 and β = 0. . . . . . . 98

4.5 H(α,β; π
2 ,

π
4 ) for the state of Eq. (4.2) with α = 2 and β = 0. . . . . . . 99

4.6 H(α,β; π
4 ,

π
2 ) for the state of Eq. (4.2) with α = 2 and β = 0. . . . . . . 100

4.7 H(α,β; 0, π
4 ) for the state of Eq. (4.2) with α = 2 and β = 0. . . . . . . 101

4.8 H(α,β; π
4 ,0) for the state of Eq. (4.2) with α = 2 and β = 0. . . . . . . 102

4.9 The Q-function Q (α,β; 0,0) for the state of Eq. (4.13) with α0 = 1.2

and β0 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.10 The bi-fractional Q-function Q (α,β; π
4 ,0) for the state of Eq. (4.13)

with α0 = 1.2 and β0 = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.11 The uncertainty product ∆α(π
2 , θβ)∆β(0,0) using the density matrix of

Eq. (4.50) for α0 = 2; β0 = 0 as a function of θβ . . . . . . . . . . . . . . 115

4.12 The uncertainty product ∆α(π
4 ,

π
4 )∆β(0,0) using the density matrix of

Eq. (4.51) for α0 = 2; β0 = 0 as a function of p . . . . . . . . . . . . . . . 116

xiii



List of Tables

2.1 Properties of density operator for pure states . . . . . . . . . . . . . . . . 15

2.2 Properties of displacement operator . . . . . . . . . . . . . . . . . . . . . . 17

xiv



Chapter 1

Introduction

1.1 Background

Quantum mechanics is one of the theories of nature; it explains nature at the micro-

scopic level. Theories governed by Newtonian physics are frequently termed classical

mechanics or theories, but theories based on quantum principles are referred to as

Quantum mechanics. While a classical system can be localised, quantum mechanics

considers the probability of localisation and obeys Heisenberg’s uncertainty principle.

There are two common perspectives with respect to quantum mechanics, Schrödinger

and Wigner-Weyl [22].

Schrödinger’s view of quantum mechanics is based on the probability of finding

a particle thus stating that it is impossible to locate a particle in both position and

momentum. The distribution of these probabilities is determined by wave-functions.

The Schrödinger equation is a linear partial differential equation that describes a

time evolution of the wave-function. A complementary approach is the Wigner-Weyl

perspective which helps in calculating the classical limit for h̵→ 0 in obtaining classical

mechanics. The classical limit is helpful in understanding the non-commutativity

property of quantum mechanics with applications to Moyal star product and Berezin
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1.1 Background

formalism for two non-commutating operators. The Wigner-Weyl perspective leads to

the Wigner function and Weyl function. The Wigner function also has its drawbacks

as it is not a proper probability distribution (quasi- or semi-probability distribution)

since it is not positive in every case. More notes and explanation on the Wigner-Weyl

formalism can be found in [27].

For the context of this thesis, the focus is on Wigner’s perspective to quantum

mechanics. Furthermore, the Wigner function and its generalisation will be widely

applied in phase space methods.

Two important operators in phase space methods, are the displacement operator

and the parity operator [18, 39, 73]. They are related to each other through a two-

dimensional Fourier transform. In this work, the two Fourier transforms are replaced

with two fractional Fourier transforms [10, 51, 57, 70], leading to new unitary op-

erators called the bi-fractional displacement operators O(α,β; θα, θβ) [5]. Both the

displacement operator and parity operator are special cases of these more general

operators, O(α,β; θα, θβ). The bi-fractional displacement operators, O(α,β; θα, θβ)

which are introduced with an interpolation motivation are elements of the group

G = HW ⋊ SU(1,1) and contains both displacements and squeezing transforma-

tions [6, 74]. However, the general element of G cannot always be written in the

form O(α,β; θα, θβ). The proof of this is rather complex, and is presented in section

(3.6.1.4).

The bi-fractional displacement operators can further be used to get new general-

isations called the bi-fractional coherent states, bi-fractional Wigner functions, and

bi-fractional Moyal star product.

The ordinary coherent states are well known as the eigenstates of the displacement

operator [6, 45, 62] and they play a central role in phase space methods [64, 80]. Var-

ious generalisations of these ordinary coherent states have been studied, especially in

2



1.2 Motivation

connection with groups like SU(2), SU(1,1), etc. These concepts (SU(2), SU(1,1))

are not considered in this work as the generalisation treated is in context of the bi-

fractional coherent states over (θα, θβ).

The new bi-fractional coherent states are different from the ordinary coherent state

and are derived by acting the bi-fractional displacement operators on the vacuum state.

This is an improvement on the previous method of deriving the Glauber coherent

state which is by acting the displacement operator on the vacuum state. In this new

formalism, these bi-fractional coherent states are different for each pair of (θα, θβ),

such that the Glauber coherent state is a special case of the bi-fractional coherent

states when (θα = θβ = π
2 ).

Using the bi-fractional displacement operators, the bi-fractional Wigner functions,

H(α,β; θα, θβ) are introduced. Both the Wigner and Weyl functions are special cases

of these more general functions for (θα, θβ) equals (0,0) and (π
2 ,

π
2 ) respectively. Ex-

amples of different functions for different angles of (θα, θβ) are calculated numeri-

cally. These interpolations between displaced parity-displacement operators for the

bi-fractional displacement operators and those between Wigner-Weyl for bi-fractional

Wigner function provide a deeper insight into the phase space formalism.

1.2 Motivation

There are quite a number of cases of generalisations in phase space methods. The char-

acteristic function, for example, generalises and interpolates between the P−function,

Q−function and Wigner functions [37]. Another form of generalisation is the Fourier

transform to fractional Fourier transform [53, 57]. Since many phase space formu-

lations are known to be related through Fourier transform, a generalisation to the

fractional Fourier transform will lead to novel quantities. Such generalisation can be

applied to different aspects of phase space methods which before now were limited to

3



1.2 Motivation

the confines of Fourier transform. Other areas where fractional Fourier generalisations

have been very efficient include signal analysis, image encryption and noise reduction

[8, 9, 29, 35, 42, 57, 57, 70, 79]. Thus, the impact of the fractional Fourier transform is

explored with respect to the Wigner and Weyl functions which are related through a

two-dimensional Fourier transform. This generalisation gives other functions in phase

space which are neither Wigner nor Weyl functions. These functions are referred to

as ‘bi-fractional Wigner functions’. It is to be noted that interpolation for charac-

teristic functions is due to a constant with values 0,1,−1; however in this case it is

based on two angles θα, θβ. The Wigner and Weyl functions are at (θα = θβ = π
2 ) and

(θα = θβ = 0) respectively. The bi-fractional Wigner functions give a wider spectrum of

possibilities, [0,2π] for both angles θα = θβ as compared to the characteristic function

which is limited to three possibilities.

Further consideration is given to the displacement operator and parity operator,

related through a Fourier transform and they are likewise generalised. The generalisa-

tion is extended to the Glauber coherent state to give the bi-fractional coherent states,

with each pair of θα, θβ creating a family of coherent states. Of great importance is

the fact that a new paradigm is introduced by the interpolation between phase space

quantities which can lead to in-between concepts or intermediary studies at fractional

levels of these phase space quantities. Thus, an introduction to these functions avail-

able at intermediaries of θα, θβ is formulated. For such intermediaries, these functions

are some sort of superposition of both Wigner and Weyl functions. And for the case

of operators, superpositions of displaced parity and displacement operators.

Also, this generalisation naturally extends to other phase space functions which are

studied in the Berezin formalism and Moyal star product. The study of the Berezin

formalism and Moyal star product helps in advancing the research in classical limits

which fuels better understanding of quantum theory. Other areas that could benefit

4



1.3 Aims and Objectives

from this research include quantum physics, quantum information theory, quantum

cryptography, quantum computing, quantum chemistry.

1.3 Aims and Objectives

The following details the novel aspects of the thesis:

1. Introduce the concept of bi-fractional transforms in phase space by generalising

the displaced parity operators and displacement operators to give a family of

operators called the bi-fractional displacement operators over (θα, θβ).

2. To extend this concept of bi-fractional transformations to phase space func-

tions and give new fractional Fourier transform generalisation of the Wigner,

Q− and P− functions over (θα, θβ). These each give a family of functions over

(θα, θβ), called the bi-fractional Wigner functions, bi-fractional Q−functions and

bi-fractional P−functions.

3. To give analysis of these functions in the context of Heisenberg’s uncertainty

principle and photon statistics (bunching and anti-bunching) which helps in

deeper understanding of the quantum nature of light.

4. Explain the physical implication of bi-fractional Wigner function with respect

to noise and correlation. Both noise and correlation are independent concepts

considered before now in terms of the Wigner and Weyl functions respectively.

However in the context of the bi-fractional Wigner function they are duals of

the same concept and interpolation between both is possible.

5. Take numerical examples of these interpolations especially the bi-fractional Wigner

functions and show the interpolation effect of intermediaries between Wigner

5



1.4 Overview of Thesis

functions at (θα = θβ = π
2 ) and Weyl functions at (θα = θβ = 0). Analysis is

carried out for special cases when θα = θβ and when both angles are not equal.

1.4 Overview of Thesis

In Chapter 2, a brief review of quantum mechanics in infinite Hilbert space is presented;

stating various background concepts such as Dirac delta functions, Fourier transform,

Weyl and Wigner functions, Q-function, P-function and Moyal star product.

Chapter 3 introduces the fractional Fourier transforms, bi-fractional displacement

operators and bi-fractional coherent states. The bi-fractional displacement operators

do not form a group, and the concept of groupoid is used in studying them. Key prop-

erties like the marginal property and other properties of the bi-fractional displacement

operator are analytically derived. For the bi-fractional coherent states, the analyticity

property is given and a new formulation for the bi-fractional distance between bi-

fractional coherent states is proved. The Bargmann function of special bi-fractional

coherent states are treated and numerical analysis is performed for these examples.

Further analysis shows the change in uncertainty and also the second correlation func-

tion for different angles of (θα, θβ)

In Chapter 4, the concepts of the bi-fractional displacement operators and bi-

fractional coherent states are extended to other state space functions to give the bi-

fractional Wigner functions, bi-fractional Q−functions and bi-fractional P−functions.

The bi-fractional Laplacian is stated as a new generalisation of the conventional Lapla-

cian and this is used to get the Berezin formalism for two operators in the context of

bi-fractional coherent states. Similarly, fractional generalisations to the bi-fractional

Moyal star product for two operators with respect to bi-fractional Wigner functions

is derived. The proof is given so that the bi-fractional Moyal star product reduces to

the ordinary Moyal star product of Chapter 2.

6



1.4 Overview of Thesis

In Chapter 5, possible applications of bi-fractional transformations to other phase

space functions are proposed as future work and a conclusion is presented.

7



Chapter 2

Quantum mechanics in Hilbert

space

2.1 Introduction

This chapter begins with a detailed introduction to basic formalism of quantum me-

chanics. Quantum mechanics is considered in terms of phase space formulation. There-

fore, considering the quantum harmonic oscillator on the basis of the position and

momentum states on a phase space R×R with states on the Hilbert space H. The

harmonic oscillator provides a good introduction to the concept of the creation and

annihilation operators. States in phase space formalism are considered including the

number state, coherent state and squeezed state. We also discuss the Wigner as a

quasi-probability distribution that contains information about the state of a system.

Weyl function and its relationship to the Wigner are also observed. Finally, the Husimi

Q- function and the Glauber-Sudarshan P-function are stated.

Various postulates [36, 38] have been developed for quantum mechanics and some

of them include:-

8



2.2 Quantum harmonic oscillator

• The state of a particle is represented by a ket vector in Hilbert space.

• Linear Hermitian operators are the equivalents of classical observables. Thus

x→ x̂

p→ p̂ (2.1)

where x and p represent position and momentum and x̂ and p̂ are the momentum

and position operators.

• Measurement of the observable with respect to an operator Ω̂ will result in values

Ω, such that

Ω̂ ∣ψ⟩ = Ω ∣ψ⟩ (2.2)

Ω representing the eigenvalue.

• If a system is described by the normalised function ∣ψ⟩ then the average value

of the observable corresponding to an operator Ω is

⟨Ω⟩ = ⟨ψ∣Ω̂∣ψ⟩ . (2.3)

We note that in quantum mechanics, the phase space formalism is described by the

position and momentum coordinates [37, 47].

2.2 Quantum harmonic oscillator

The position and momentum of a particle can be easily computed in classical mechan-

ics at any given time; however in quantum mechanics this is done through the wave

9



2.2 Quantum harmonic oscillator

function ψ(x, t). It has a statistical interpretation such that ∣ψ(x, t)∣2 gives the prob-

ability of finding the particle at position x at time t, such that ∫ dx∣ψ(x, t)∣2 = 1. The

vibration of the harmonic oscillator produces energy levels at equally spaced intervals

and these energy intervals can be shown using the solution of Schrödinger′s equation,

ih̵
∂ψ(x, t)
∂t

= p̂
2ψ(x, t)

2m + V̂ ψ(x, t) (2.4)

where h̵ and m are constants representing Planck’s constant and mass respectively.

Also,

V̂ = 1
2kx

2,

x̂ = x, p̂ = −ih̵ ∂
∂x

(2.5)

are the potential energy, position operator and momentum operator respectively. In

addition, k is the constant force. We note that the position and momentum operators

do not commute. This is evident because quantum-mechanical operators do not in

general commute. The position and momentum operators satisfy the relation

[x̂, p̂] = ih̵ (2.6)

Upon separating the wave function in terms of position and time, the Schrödinger

equation can be resolved into the eigenvalue problem. This is given in terms of the

Hamiltonian and energy,

Ĥψ(x) = Eψ(x). (2.7)

10



2.2 Quantum harmonic oscillator

The Hamiltonian, Ĥ and its Energy, E can be given as,

Ĥ = 1
2mp̂2 + mω

2

2 x̂2; ω =
√

k

m

( 1
2mp̂2 + mω

2

2 x̂2)ψ(x) = Eψ(x) (2.8)

The Hamiltonian leads to the introduction of the creation (â) and annihilation(â†)

operators given as,

â =
√
mω

2h̵ x̂ +
ip̂√

2mh̵ω
â† =
√
mω

2h̵ x̂ −
ip̂√

2mh̵ω
, (2.9)

where,

â†â = mωx
2

2h̵ + p̂2

2h̵mω +
i

2h̵[x̂, p̂] =
Ĥ

h̵ω
− 1

2 (2.10)

Assuming m = ω = h̵ = 1, the simplified form is shown to be

â† = x̂ − ip̂√
2
, â = x̂ + ip̂√

2
(2.11)

The creation and annihilation operators lead to the number operator n̂ = â†a, and thus

the Hamiltonian written in terms of the number operator as,

Ĥ = h̵ω(n̂ + 1/2). (2.12)

The electromagnetic energy eigenstates are called the Fock or number states which

will be discussed later, and given as a ket representation, ∣n⟩. The ground state of

an electromagnetic system is defined as the state with the lowest energy. The ground

11



2.3 States of the harmonic oscillator

state can be defined as,

⟨x∣0⟩ = π−1/4e−
x2
2 , (2.13)

and the definition for a wave function with respect to position state and momentum

state is,

ψ(x) = ⟨x∣ψ⟩ . (2.14)

Also the annihilation operator acts on the vacuum state to give,

â ∣0⟩ = 0. (2.15)

A collection of properties of the ladder operators for various ordering is well doc-

umented in the literature [66]. One of these properties is the commutation relation,

[â, â†] = 1, [â, â†â] = â, [â†, â†â] = −â†, (2.16)

proving that the ladder operators do not commute.

2.3 States of the harmonic oscillator

2.3.1 Position and momentum states

In phase space methods the position and momentum operators can be defined through

their eigenstates

x̂ ∣x⟩ = x ∣x⟩ , p̂ ∣p⟩ = p ∣p⟩ , (2.17)
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2.3 States of the harmonic oscillator

where x and p represent the eigenvalues for each case. The eigenstate of the position

and momentum operator form a complete set such that,

∫ dx ∣x⟩ ⟨x∣ = ∫ dp ∣p⟩ ⟨p∣ = 1. (2.18)

With the following inner product resulting to,

⟨x∣x′⟩ = δ(x − x′),

⟨p∣p′⟩ = δ(p − p′),

⟨x∣p⟩ = (2π)−1/2
eixp. (2.19)

where δ denotes the Dirac delta function. Therefore using Eqs. (2.18, 2.19), any

arbitrary state ∣ψ⟩ can be represented in terms of the position or momentum state

∫ dx ∣x⟩ ⟨x∣ψ⟩ = ∫ dp ∣p⟩ ⟨p∣ψ⟩ . (2.20)

Thus, the wave function of the momentum state can be represented as the Fourier

transform of the position state. We will discuss the Fourier transform extensively

later on.

ψ̃(p) = ∫ dxψ(x) exp [−ixp]. (2.21)

This is true because of Eq. (2.19). The normalised position and momentum represen-

tation with respect to the vacuum state,

⟨x∣0⟩ = 1
π1/4 e

−x2
2 , ⟨p∣0⟩ = 1

π1/4 e
− p2

2 . (2.22)
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2.3 States of the harmonic oscillator

2.3.2 Number state

The creation operator is used to obtain the excited state also called the number state,

∣n⟩ = 1√
n!
(a†)n ∣0⟩ . (2.23)

It is easily proved from Eqs. (2.26, 2.16),

[â, (â†)n] = â(â†)n − (â†)nâ = n(â†)n−1

∣n⟩ = â
† ∣n − 1⟩√

n
= â†
√
n

â† ∣n − 2⟩√
n − 1

............... = (â
†)n√
n!
∣0⟩ . (2.24)

The solution to Eq. (2.7) is given by the Gauss-Hermite functions (Hn(x)), which is

a position representation of the number state,

⟨x∣n⟩ = ψn(x) =
π−

1
4

√
2nn!

Hn(x)e−
x2
2 , (2.25)

where Hn(x) is the Hermite polynomial. Using the Dirac notation, certain properties

of the a and a† can be shown, by acting on the number state,

â ∣n⟩ =
√
n ∣n − 1⟩ â† ∣n⟩ =

√
n + 1 ∣n + 1⟩ (2.26)

A full list of properties for different permutations of â and â acting on the number

state is given in [66]. Given that the wavefunction is orthogonal, then,

δn,m = ⟨n∣m⟩ =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0, n ≠m

1, n =m

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.
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2.4 The density operator

This leads to the closure relation of the wavefunction for the harmonic oscillator which

is complete

∞
∑
n=0
∣n⟩ ⟨n∣ = 1. (2.27)

2.4 The density operator

The density operator is used in describing microscopic systems [21], and in the context

of quantum mechanics, it conceptually describes the quantum state instead of using

the state vector. The density operator encodes all the information of a quantum

system. For a particle described by the state ψ, the probability density of locating the

particle at position x is given as,

P = ⟨x∣ψ⟩ ⟨ψ∣x⟩ = ∣ψ(x)∣2, (2.28)

where Θ̂ = ∣ψ⟩ ⟨ψ∣ and for pure state has the following properties,

1 Projection Θ̂2 = Θ
2 Hermiticity Θ̂† = Θ
3 Normalisation Tr[Θ̂] = 1
4 Positivity Θ̂ ≥ 0

Table 2.1 Properties of density operator for pure states

Properties 1 and 2 in the Table (2.1) are the projector and hermiticity of the density

operator. For a normalised density operator, property 3 is satisfied,

⟨Θ⟩ = Tr[Θ̂2] = Tr[Θ̂] = 1. (2.29)

Due to the fact that probability must range from 0 to 1, property 4 is proved because
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2.5 Displacement and displaced parity operators

the eigenvalues of Θ̂ must be greater than or equal to zero.

A system is said to be pure if there is complete knowledge about that system.

Consider an ensemble of objects where all the states are in the same state, then the

ensemble is said to be pure. A mixed state is the probabilistic combination of various

pure states, where all the objects in the ensemble are in the same state and thus can

be written as a weighted or convex sum,

Θ̂ =
N

∑
k=1

pk ∣ψk⟩ ⟨ψk∣ . (2.30)

with ∣ψk⟩ is the pure state and pk represents the weight which satisfies the condition,

0 < pk < 1
N

∑
k=1

pk = 1, (2.31)

indicating that a mixed state is far from a pure state. A pure state contains only

quantum noise while a mixed state has both quantum and classical noise. For more

discussion on pure and mixed state, refer to [63].

2.5 Displacement and displaced parity operators

2.5.1 Displacement operators

In phase-space formalism, the displacement operator moves a particle across the po-

sition and momentum axis. It is a unitary operator and is given by,

D̂(z) = exp(za† − z∗a). (2.32)
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2.5 Displacement and displaced parity operators

The displacement operator can also be written, using z = α + iβ

D̂(α,β) = exp(i
√

2βx̂ − i
√

2αp̂). (2.33)

The displacement operator is not hermitian,

D̂†(α,β) = [D̂(α,β)]∗ = D̂(−α,−β), (2.34)

and the product of two such operators becomes

D̂(α1, β1)D̂(α2, β2) = D̂(α1 + α2, β1 + β2) exp[i(β1α2 − α1β2)]. (2.35)

It can also show that with a phase factor such as D̂(α,β, γ) = D(α,β)eiγ, where

α,β, γ ϵ R, then D̂(α,β, γ) forms a representation of the Heisenberg Weyl group. This

is obvious by confirming the closure, identity, inverse and associative properties given

as

Properties of displacement operators
Identity D̂(0,0,0) = 1
Closure D̂(α1, β1, γ1)D̂(α2, β2, γ2) = D̂(α3, β3, γ3)
Inverse D̂†(α1, β1, γ1)D̂(α1, β1, γ1) = 1
Associative D̂(α1, β1, γ1)[D̂(α2, β2, γ2)D̂(α3, β3, γ3)] = [D̂(α1, β1, γ1)D̂(α2, β2, γ2)]D̂(α3, β3, γ3)

Table 2.2 Properties of displacement operator

The displacement operator has marginal properties so that integration with respect

to position (α) gives the momentum component (β),

1√
2π ∫

dα D̂(α,β) = ∣β/
√

2⟩⟨−β/
√

2∣ (2.36)
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2.5 Displacement and displaced parity operators

And with respect to momentum (β) gives the position component,

1√
2π ∫

dβ D̂(α,β) = ∣α/
√

2⟩ ⟨−α/
√

2∣ (2.37)

And with repect to both position and momentum we get the parity operator,

1
2π ∫ dαdβ D̂(α,β) = P̂ (0,0) = ∫ dα ∣α⟩ ⟨−α∣ (2.38)

where P̂ (0,0) is the parity operator which is introduce later in this work as a special

case of the fractional Fourier transform. The marginal properties in Eq. (2.36) are

proved using the following important relations,

e−iβx̂ ∣x⟩ = e−iβx ∣x⟩ , e−iβx̂ ∣p⟩ = ∣p − β⟩

e−iαp̂ ∣x⟩ = ∣x + α⟩ , e−iαp̂ ∣p⟩ = e−iαp ∣p⟩ (2.39)

The displacement operator helps provide structured matrices which have found use in

diverse fields to obtain computational improvements [67]. For instance in data approxi-

mation, Vandermonde matrices are used, Cauchy matrices are used for error-correction

in coding theory and Toeplitz matrices for image restoration in image processing. We

give the matrix elements of the displacement operator with respect to the position and

momentum states [18],

⟨x∣D̂(α,β)∣p⟩ =
√

2π exp [i(xp −
√

2αp +
√

2βx − αβ)]

⟨p∣D̂(α,β)∣x⟩ =
√

2π exp [i(−xp −
√

2αp +
√

2βx + αβ)]. (2.40)
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2.5 Displacement and displaced parity operators

With respect to single states,

⟨x∣D̂(α,β)∣x′⟩ = exp[iβ(x + x′)/
√

2] × δ(x − x′ −
√

2α)

⟨p∣D̂(α,β)∣p′⟩ = exp[−iβ(p + p′)/
√

2] × δ(p − p′ −
√

2β) (2.41)

Both Eqs. (2.40, 2.41) invariably lead to the relation for the trace of the displacement

operator [1]

Tr[D̂(α,β)] = πδ(α)δ(β); Tr[D̂(α,β)D̂†(α′, β′)] = πδ(α − α′)δ(β − β′). (2.42)

The displacement operator can also act on other operators. This is done using the

Baker-Campbell-Hausdorff operator relation for two operators given as,

eÂB̂eÂ = B̂ + [Â, B̂]1! + [Â, [Â, B̂]]2! + [Â, [Â, [Â, B̂]]]3! .......

e−ÂB̂eÂ = B̂ − [Â, B̂]1! + [Â, [Â, B̂]]2! − [Â, [Â, [Â, B̂]]]3! ........ (2.43)

Thus with respect to the creation and annihilation operators the relation is shown to

be,

D̂(α,β)â†D̂†(α,β) = â† − z∗, D̂†(α,β)â†D̂(α,β) = â† + z∗,

D̂(α,β)âD̂†(α,β) = â − z, D̂†(α,β)âD̂(α,β) = â + z, (2.44)

where z = α + iβ. Furthermore, the matrix elements of the displacement operator can

be given with respect to number states.

⟨m∣D̂(α,β)∣n⟩ = ( n!
m!)

1/2
(α + iβ)m−n exp(−∣α + β∣

2

2 )Lm−n
n (∣α2 + β2∣2) (2.45)

where Lm−n
n represents the Laguerre polynomial. The proof of the formula ⟨m∣D̂(α,β)∣n⟩
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2.5 Displacement and displaced parity operators

is shown in Appendix A.

2.5.2 Parity and displaced parity operators

The parity operation is a transformation about a point (commonly the origin) such

that P̂ (0,0) ∣z⟩ = ∣−z⟩ and is hermitian P̂ (0,0) = P̂ (0,0)† and P̂ (0,0)P̂ (0,0)† = 1. In

this light, the parity operator acts on the coherent state and is defined as,

P̂ (0,0) ∣z⟩ = ∣−z⟩ , P̂ (0,0) = eiπa†a = ∑
N

(−1)N ∣N⟩ ⟨N ∣ , (2.46)

from which it is easily proved that,

P̂ (0,0)âP̂ (0,0)† = −a, P̂ (0,0)†â†P̂ (0,0) = −a†. (2.47)

It also causes a rotation in the x − p plane [23] as shown,

P̂ (0,0) ∣x⟩ = ∣−x⟩ , P̂ (0,0) ∣p⟩ = ∣−p⟩

P̂ (0,0)x̂P̂ (0,0)† = −x̂, P̂ (0,0)p̂P̂ (0,0)† = −p̂ (2.48)

Furthermore, the displaced parity operator [18] which is a parity transformation

around the point z ∶= (α,β) is defined as

P̂ (α,β) =D(α,β)P̂ (0,0)D†(α,β)

=D[2(α,β)]P̂ (0,0)

= P̂ (0,0)D†[2(α,β)]. (2.49)
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2.5 Displacement and displaced parity operators

It will be shown later that the displaced parity operator can be used to derive the

Wigner function. The displaced parity operators also has the property that,

P̂ (α1, β1)P̂ (α2, β2) = D̂[2(α1 − α2),2(β1 − β2)] exp [4i(α2β1 − α1β2)], (2.50)

which combines with the displacement operator to form additional group multiplica-

tion properties such that,

D̂(α1, β1)P̂ (α2, β2) = P̂ [
1
2α1 + α2,

1
2β1 + β2] exp [i(α2β1 − α1β2)]

P̂ (α1, β1)D̂(α2, β2) = P̂ [α1 −
1
2α2, β1 −

1
2β2] exp [i(α2β1 − α1β2)] (2.51)

Also, the parity operator P̂ (α,β), can acts on the position and momentum operators

to give,

P̂ (α,β)x̂P̂ †(α,β) = −x̂ + 2
√

2α

P̂ (α,β)p̂P̂ †(α,β) = −p̂ + 2
√

2β (2.52)

The marginal properties of the parity operator are given as,

√
2
π ∫ dαP̂ (α,β) = ∣

√
2β⟩ ⟨

√
2β∣

√
2
π ∫ dβP̂ (α,β) = ∣

√
2α⟩ ⟨

√
2α∣

2
π ∫ dαdβP̂ (α,β) = 1 (2.53)
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2.6 The uncertainty relation

2.6 The uncertainty relation

Heisenberg in his paper [41] formulated the uncertainty principle for two non-commutating

operators. For two non-commutative operators given as,

[Â, B̂] = ÂB̂ − B̂Â, (2.54)

the uncertainty principle states that it is not possible to measure the corresponding

values of both operators with precise accuracy. The more accurate the measurement

of one observable, the less accurate the measurement of the other. The concept of

the uncertainty principle has contributed to the development of quantum mechanics.

Considering two symmetric operators Â and B̂, with mean or expectation values given

as,

⟨A⟩ = ⟨ψ∣Â∣ψ⟩

⟨B⟩ = ⟨ψ∣B̂∣ψ⟩ (2.55)

Then the standard deviation of both operators is given,

∆A∆B ≥
1
2 ∣ ⟨[A,B]⟩ ∣ (2.56)

where,

∆A = (⟨A2⟩ − ⟨A⟩2)1/2 ≥ 0, ∆B = (⟨B2⟩ − ⟨B⟩2)1/2 ≥ 0 (2.57)

Similarly, for two physical operators, position and momentum, they satisfy mini-
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2.7 Coherent states

mum uncertainty

∆x∆p ≥
1
2 ∣ ⟨[x, p]⟩ ∣ =

1
2 (2.58)

It can also be shown that the ground state, ∣0⟩, satisfies minimum uncertainty,

⟨x⟩0 = ⟨0∣x̂∣0⟩ =
1√
2
⟨0∣â + â†∣0⟩ = 0

⟨p⟩0 = ⟨0∣p̂∣0⟩ =
1√
2i
⟨0∣â − â†∣0⟩ = 0

⟨x2⟩0 = ⟨0∣x̂2∣0⟩ = 1
2 ⟨0∣(â + â

†)2∣0⟩ = 1
2

⟨p2⟩0 = ⟨0∣p̂2∣0⟩ = −1
2 ⟨0∣(â − â

†)2∣0⟩ = 1
2 (2.59)

where â ∣0⟩ = ⟨0∣ â† = 0 and Eq. (2.16) were used. It is trivial to see that the final result

gives minimum uncertainty of 1
2 . Thus,the position and momentum of a particle cannot

be accurately measured at the same time.

Another state that meets the minimum uncertainty is the coherent state which will

now be discussed in detail.

2.7 Coherent states

Coherent states are obtained by acting the displacement operator on the vacuum state,

D̂(z) ∣0⟩ = ∣z⟩ . (2.60)

Otherwise, they are defined as,

∣z⟩ = e− 1
2 ∣z∣

2
∞
∑
n=0

zn

√
n!
∣n⟩ . (2.61)
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2.7 Coherent states

The coherent states are normalised,

⟨z∣z⟩ = e−∣z∣2
∞
∑
n=0

∞
∑
m=0

znz∗m

√
n!m!

⟨m∣n⟩ = e−∣z∣2
∞
∑
n=0

∣z∣2n

n! = 1, (2.62)

where both n and m are number states. Using Eqs. (2.27,2.23), the coherent state is

shown to be,

∣z⟩ = ⟨0∣z⟩
∞
∑
n=0

zn

√
n!
∣n⟩ , ⟨0∣z⟩ = e− 1

2 ∣z∣
2
. (2.63)

The prove of Eq. (2.60) is obtained by substituting Eq. (2.23) into Eq. (2.61) to get,

∣z⟩ = e− 1
2 ∣z∣

2
∞
∑
n=0

zn

n! (a
†)n ∣0⟩ = e− 1

2 ∣z∣
2
eza† ∣0⟩ . (2.64)

Indeed, using the Baker-Campbell-Hausdorff relation for two non-commutating oper-

ators,

eÂ+B̂ = eÂeB̂e−
1
2 [Â,B̂]; eÂeB̂ = eB̂eÂe[Â,B̂] (2.65)

satisfied only when [Â, B̂] ≠ 0 and [Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0, then the coherent

state is further shown to be,

∣z⟩ = e− 1
2 ∣z∣

2
eza† ∣0⟩ = eza†−z∗a ∣0⟩ = D̂(z) ∣0⟩ . (2.66)

D̂(z) was earlier defined in Eq. (2.60) as the displacement operator.

Coherent states are eigenstates of the annihilation operators,

â ∣z⟩ = z ∣z⟩ (2.67)
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2.7 Coherent states

From Eq. (2.26), it is easily seen that, ⟨n∣â∣z⟩ =
√
n + 1 ⟨n + 1∣z⟩ and since it also acts

on the coherent states, prove the overlap of the number and coherent state as,

⟨n∣z⟩ = z√
n
⟨n − 1∣z⟩ ; ⟨n∣ = z√

n
⟨n − 1∣ = z√

n

z√
n − 1

⟨n − 2∣ ........... z
n

√
n!
⟨0∣

⟨n∣z⟩ = zn

√
n!
⟨0∣z⟩ (2.68)

More so, the matrix element of the displacement operator with respect to number

state ∣n⟩ and coherent state ∣w⟩ can be derived as,

⟨n∣D̂(z)∣w⟩ = (z +w)
n

√
n!

exp [12 [(zw
∗ − z∗w) − ∣z +w∣2]] (2.69)

Interestingly as mentioned earlier, the coherent state satisfies minimum uncertainty

and can be shown with respect to the position operators,

(∆x)2z = [⟨z∣x̂2∣z⟩ − (⟨z∣x̂∣z⟩)2]

= 1
2
[⟨z∣(â + â†)2∣z⟩ − (⟨z∣(â + â†)∣z⟩)2] (2.70)

By using the relations â ∣z⟩ = z ∣z⟩ and ⟨z∣ â† = ⟨z∣ z∗, the uncertainty for the coherent

states is,

(∆x)2z =
1
2 [(⟨z∣ââ∣z⟩ + ⟨z∣ââ

†∣z⟩ + ⟨z∣â†â∣z⟩ + ⟨z∣â†â†∣z⟩) − (⟨z∣(â + â†)∣z⟩)2]

= 1
2 [(⟨z∣ââ∣z⟩ + ⟨z∣[â, â

†]∣z⟩ + 2 ⟨z∣â†â∣z⟩ + ⟨z∣â†â†∣z⟩) − (⟨z∣(â + â†)∣z⟩)2]

= 1
2
[z2 + 1 + 2∣z∣2 + z∗2 − (z + z∗)2] = 1

2 (2.71)

Carrying out the standard deviation with respect to the momentum state, the uncer-
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2.7 Coherent states

tainty product can be found to be,

(∆x)2z(∆p)2z =
1
4 . (2.72)

This interesting property of the coherent state makes it very useful in quantum me-

chanics.

2.7.1 Properties of coherent state

Having established the fact that coherent states have minimum expectation values,

moreover, they are quantum states which are close to classical states because of their

expectation values. More details about the features and classical versus quantum

properties of coherent states are clearly defined in [37]. More properties of coherent

states are explored in this section. One key property is that the overlap of two coherent

states is not orthogonal,

⟨γ∣z⟩ = e− 1
2 ∣γ∣

2− 1
2 ∣z∣

2 ×
∞
∑
n=0

∞
∑
m=0

(γ∗)nzm

√
n!m!

⟨n∣m⟩

= e− 1
2 ∣γ∣

2− 1
2 ∣z∣

2
∞
∑
n=0

(γ∗z)n
n!

= exp [−1
2 ∣γ∣

2 − 1
2 ∣z∣

2 + zγ∗]

= exp [−1
2 ∣γ − z∣

2 + 1
2(zγ

∗ − z∗γ)] . (2.73)

This result can be used to state the distance between two coherent states,

Ds(γ, z) = ∣ ⟨γ∣z⟩ ∣2 = exp [−(∣γ∣2 + ∣z∣2) + zγ∗ + γz∗] = exp [−∣γ − z∣2] . (2.74)
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2.8 Squeezed states

This shows clearly that two coherent states are not orthogonal but can be almost so

if ∣γ − z∣ is extremely large. Another property is the completeness relation proved for

example in [37] and given as,

∫ d2z ∣z⟩ ⟨z∣ = 1, (2.75)

where z = zR + izI . Because of the completeness property, any state can be written in

terms of the coherent state. In particular, any coherent state can be expanded using

other coherent states,

∣z⟩ = ∫ d2γ ∣γ⟩ ⟨γ∣z⟩ = ∫ d2γ exp [−1
2 ∣γ∣

2 − 1
2 ∣z∣

2 + γ∗z] ∣γ⟩ . (2.76)

This makes the coherent state overcomplete. Furthermore, the position space and

momentum-space representation of the coherent state is given by [18],

⟨x∣z⟩ = ( 1
π
)

1/4
exp [−1

2 ∣z∣
2 − 1

2z
2 − 1

2x
2 +
√

2xz] ,

⟨p∣z⟩ = ( 1
π
)

1/4
exp [−1

2 ∣z∣
2 − 1

2z
2 − 1

2p
2 − i
√

2pz] . (2.77)

2.8 Squeezed states

A quantum state is squeezed if any of its quadratures has a standard deviation that

falls below the coherent state value of 1
2 [69]. The coherent and vacuum states are

not squeezed. The result according to Heisenberg’s uncertainty principle is that the

uncertainty in one quadrature if squeezed below 1
2 invariably leads to a stretch in

the other quadrature. It is known that squeezed quadrature states may not need be

minimum-uncertainty state [69].
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2.8 Squeezed states

The unitary squeezing operator is given as,

Ŝ(ζ) = exp [14ζâ
2 − 1

4ζ
∗â†2]

ζ = reiϕ, r > 0, −π < ϕ ≤ π (2.78)

The operator is unitary, Ŝ†(ζ) = Ŝ−1(ζ) = Ŝ(−ζ) and acts on the creation and annihi-

lation operators to give the transformation,

Ŝ(ζ)âŜ†(ζ) = cosh(1
2r) â + e

−iϕ sinh(1
2r) â

†,

Ŝ(ζ)â†Ŝ†(ζ) = eiϕ sinh(1
2r) â + cosh(1

2r) â
†. (2.79)

Similarly, from Eq. (2.79), the squeezing operators based on Eq. (2.43) can act on

the displacement operator,

Ŝ(ζ)D̂(z)Ŝ†(ζ) = D̂(zϕ) ⇐⇒ Ŝ(ζ)D̂(z) = D̂(zζ)Ŝ(ζ)

zϕ ≡ cosh(1
2r) z + e

−iϕ sinh(1
2r) z

∗. (2.80)

Two other interesting properties of the squeezing operator is that it can act on the

vacuum and number states respectively.

Ŝ(ζ) ∣0⟩ = ∣ζ⟩

Ŝ(ζ)D̂(z) ∣n⟩ = Ŝ(ζ) ∣n; z⟩ = ∣n; z, ζ⟩ (2.81)

The first relation in Eq. (2.81) gives the squeezed vacuum and the second is the

displaced and squeezed number states. From Eq. (2.80) it is obvious that the squeezing

operator and displacement operators do not commute and for special case where n = 0,

Eq. (2.81) becomes the squeezed coherent state, Ŝ(ζ)D̂(z) ∣0⟩.
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2.9 Fourier transform

2.9 Fourier transform

In quantum physics, the concept of wave-particle duality is well known [33, 65] with

waves delocalised and particles localised. Both concepts are necessary for quantum

mechanics to hold. This dual relationship is extended to other dual concepts such

energy-time, and position-momentum. The modality for this extension is the Fourier

transform based on the uncertainty principle. A Fourier transformation [64, 80] maps

a one-dimensional time signal into a one-dimensional frequency function of the signal

spectrum [7]. The transform of a function f(x) and its inverse are given as,

F̃ (p) =∫ dxf(x)e−ixp

f(x) = 1
2π ∫ dpF̃ (p)eixp. (2.82)

If the wave-function of a particle with respect to momentum states is ⟨p∣ψ⟩, then

following Eqs. (2.18,2.19), the Fourier transform can be shown as

⟨p∣ψ⟩ = ∫ dx ⟨p∣x⟩ ⟨x∣ψ⟩ = ψ̃(p) = ∫ dxψ(x)e−ixp (2.83)

Thus the wavefunction with respect to momentum is related to the wavefunction with

respect to position using the Fourier transform. The inverse relation of the Fourier

transform is possible using the Dirac delta function with the properties given in [57].
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2.9 Fourier transform

2.9.1 Properties of Fourier transform

2.9.1.1 Linearity

If a linear combination of functions g(x) = αf(x) + βh(x) is defined, where α and β

are constants, then the Fourier transform is given by,

G̃(p) = α∫ dx f(x)e−ipx + β∫ dx h(x)e−ipx

= αF̃ (p) + βH̃(p) (2.84)

2.9.1.2 Conjugation

Defining the Fourier transform as an operator, F , then the conjugation property can

be shown as,

F(f(x)) = F̃ (p); F(f∗(x)) = F̃ ∗(−p) (2.85)

The Fourier transform can also be viewed as a transform of rotation across the quad-

rants of the x − p (position-momentum) plane,

F[f(x)] = F̃ (p); F[F̃ (p)] = f(−x)

F[f(−x)] = F̃ (−p); F[F̃ (−p)] = f(x) (2.86)

2.9.1.3 Shift and scaling

For Fourier transform of a shifted function g(x) = f(x − α), is

G̃(p) =∫ dxf(x − α)e−ipx = e−ipαF̃ (p) (2.87)
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2.10 Phase-space distributions

Here we use the substitution x1 = x − α.

Likewise for a scaled function h(x) = f(x/α), then the Fourier transform is given using

b = x/α,

H̃(p) = α∫ dbf(b)e−ipαb = αF̃ (αp) (2.88)

2.9.1.4 Differentiation

For a differentiable function g(x) = f ′(x), the Fourier transform is computed using

integration by parts so that,

G̃(p) =∫ dxf
′(x)e−ipx = −ipF̃ (p). (2.89)

The differential property of the Fourier transform is used in solving differential equa-

tions with applications in electrical circuits.

2.10 Phase-space distributions

2.10.1 Weyl function

The Weyl function [18, 22] is a correlation function. The Weyl function is given with

respect to the displacement operator, D̂(α,β) and matrix elements of the operator in
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2.10 Phase-space distributions

position and momentum,

W̃ (α,β∣Θ̂) = Tr[Θ̂D̂(α,β)]

=∫ dx ⟨x − α√
2
∣ Θ̂ ∣x + α√

2
⟩ ei
√

2βx.

=∫ dp ⟨p − β√
2
∣ Θ̂ ∣p + β√

2
⟩ e−i

√
2αp. (2.90)

The Weyl transform converts an operator into a function of α and β. A key feature of

the Weyl function is the fact that the product of two Weyl functions gives the trace

of the operators,

∫ dαdβW̃ (α,β∣Θ̂1)W̃ (α,β∣Θ̂2) =∫ dαdβdxdx′ ⟨x − α√
2
∣ Θ̂1 ∣x +

α√
2
⟩

× ⟨x′ − α√
2
∣ Θ̂2 ∣x′ +

α√
2
⟩ ei
√

2β(x−x′)

=
√

2π∫ dαdx ⟨x − α√
2
∣ Θ̂1 ∣x +

α√
2
⟩

× ⟨−x − α√
2
∣ Θ̂2 ∣ −x +

α√
2
⟩ . (2.91)

Performing a change of variables, u = x + α/
√

2 and v = x − α/
√

2, leads to,

∫ dαdβW̃ (α,β∣Θ̂1)W̃ (α,β∣Θ̂2) = Tr[Θ̂1Θ̂2]. (2.92)

The Weyl function is a correlation function since its displacements are taken in both

position and momentum.
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2.10 Phase-space distributions

2.10.2 Wigner function

The uncertainty relation forbids the possibility of having a standard probability dis-

tribution; thus the use of a quasi-probability distribution such as the Wigner distri-

bution function [13, 22, 31, 50, 77]. From Eq. (2.83), ∣ψ̃(p)∣2 gives the probability

in the position variable. However it would be advantageous to have a function that

simultaneously shows the probability with respect to both position and momentum.

The Wigner distribution is also commonly used in quadratic time-frequency represen-

tations [7, 50].

The Wigner function for an operator Θ̂ is given as,

W (α,β∣Θ) = Tr[Θ̂P̂ (α,β)]

=∫ dx ⟨ α√
2
+ x ∣ Θ̂ ∣ α√

2
− x⟩ e−i

√
2βx.

=∫ dp ⟨ β√
2
+ p ∣ Θ̂ ∣ β√

2
− p⟩ e−i

√
2αp. (2.93)

Having used P̂ (α,β) = D(α,β)P̂ (0,0) as the definition for the parity operator to

derive the Wigner function above. From Eq. (2.93), it is easily proved that the

Wigner function is always real-valued but not necessarily positive and preserves both

position and momentum distributions. Most important is the fact that it satisfies the

marginal properties with respect to position

1√
2π ∫ dβW (α,β∣Θ) =∫ dx dβ ⟨ α√

2
+ x ∣ Θ̂ ∣ α√

2
− x⟩ e−i

√
2βx

= ⟨ α√
2
∣ Θ̂ ∣ α√

2
⟩ , (2.94)
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2.10 Phase-space distributions

and with respect to momentum

1√
2π ∫ dαW (α,β∣Θ) =∫ dp dα ⟨ β√

2
+ p ∣ Θ̂ ∣ β√

2
− p⟩ e−i

√
2αp

= ⟨ β√
2
∣ Θ̂ ∣ β√

2
⟩ , (2.95)

as well as with respect to both position and momentum,

1
π ∫ dαdβW (α,β∣Θ) = Tr[Θ̂]. (2.96)

The marginal properties show the projection in phase space, so that projection in

x−axis gives the probability distribution in p, and the projection on the p−axis gives

the distribution in x.

The Wigner distribution can roughly be considered as the spread of the position

and momentum of a particle and is useful because the uncertainty principle prohibits

the simultaneous position and momentum calculation of a particle’s position and mo-

mentum. Thus, with the Wigner function of a particle, the expectation value with

respect to position and momentum can be derived.

2.10.2.1 Examples of Wigner function

We give examples of the Wigner function of various states as shown in figure 2.1 The

Wigner functions for the vacuum state, ∣0⟩ and coherent states, ∣z⟩ are given as,

W (α,β; ∣0⟩) = exp [12(α
2 + β2)]

W (α,β; ∣z⟩) = exp
⎡⎢⎢⎢⎢⎣
−( α√

2
−
√

2zr)
2

− ( β√
2
−
√

2zi)
2⎤⎥⎥⎥⎥⎦

(2.97)
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2.10 Phase-space distributions

(a) (b)

(c) (d)

Fig. (2.1) Examples of Wigner functions. (a),(b) Vacuum state ∣0⟩; (c),(d) Coherent
state ∣2 + 2i⟩

Fig. (2.1) shows the Wigner function of a coherent state, ∣Z = 2 + 2i⟩ and also for a

vacuum state, ∣n = 0⟩ with minimum uncertainty. We can likewise derive the Wigner

function for number states. We begin with the relation by considering an arbitrary

operator, Θ,

Θ = ∑
n,m

Θnm ∣n⟩ ⟨m∣ (2.98)
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2.10 Phase-space distributions

Fig. (2.2) W (α,β)(Wigner function) of number states for the state of Eq. (2.112), n
= 1

Then the Wigner function from Eq. (2.93), can be written as,

W (α,β) = Tr[Θ̂P̂ (α,β)] =
∞
∑
n,m

ΘnmWmn(α,β) (2.99)

Then using Eqs. (2.49,2.98,2.45), the Wigner function for a number state is shown to

be

Wmn(α,β) = ⟨m∣P̂ (α,β)∣n⟩

= (−1)n ( n!
m!)

1/2
[2(α + iβ)]m−n exp (−2α2 − 2β2)Lm−n

n (4α2 + 4β2) (2.100)

The Wigner function for the number states above, for a special case, W (α,β∣n = 0)

is shown in Fig. (2.1a).

The Wigner and Weyl functions are related through a 2-dimensional Fourier trans-

form. It is evident from Eq. (2.93) and Eq. (2.90) that,

W (α,β) = ∫ dλdγW̃ (λ, γ) exp[i(βλ − γα)] (2.101)
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Fig. (2.3) W (α,β)(Wigner function) of number states for the state of Eq. (2.112), n
= 2

Fig. (2.4) W (α,β)(Wigner function) of number states for the state of Eq. (2.112), n
= 3
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2.10 Phase-space distributions

Fig. (2.5) W (α,β)(Wigner function) of number states for the state of Eq. (2.112), n
= 4

Marginal properties also exist for [W (α,β)]2 and ∣W̃ (α,β)∣2.

∫ [W (α,β∣Θ)]2dβ =
√

2π∫ dx ∣⟨ α√
2
+ x ∣ Θ̂ ∣ α√

2
− x⟩∣

2

∫ ∣W̃ (α,β∣Θ)∣2dβ =
√

2π∫ dx ∣⟨x − α√
2
∣ Θ̂ ∣x + α√

2
⟩∣

2

(2.102)

And thus,

1
π ∫ dαdβ[W (α,β∣Θ)]2 = 1

π ∫ dαdβ∣W̃ (α,β∣Θ)∣2 = Tr[Θ̂2] ≤ 1 (2.103)

However, for a pure state Θ̂ = ∣t⟩ ⟨t∣, both [W (α,β)]2 and ∣W̃ (α,β)∣2 can be viewed as

probability densities. Such that from Eq. (2.102),

∫ dβ[W (α,β)]2 =
√

2π∫ dx ∣t( α√
2
+ x)∣

2

∣t( α√
2
− x)∣

2

∫ dβ∣W̃ (α,β)∣2 =
√

2π∫ dx ∣t(x − α√
2
)∣

2

∣t(x + α√
2
)∣

2

(2.104)

For such a case Eq. (2.103) equals 1.
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2.10.3 Sudarshan-Glauber and Husimi functions

We can represent the density operator which describes a quantum state in terms of

the coherent state

Θ̂ =∫ dαdβdα′dβ′ ⟨α,β∣Θ̂∣α′, β′⟩ ∣α,β⟩ ⟨α′, β′∣ (2.105)

Having used z = α + iβ and Eq. (2.75).

Alternatively, writing Θ in terms of the Sudarshan-Glauber P−function as,

Θ̂ =∫ dαdβP (α,β∣Θ) ∣α,β⟩ ⟨α,β∣ (2.106)

The equation above is the diagonal form of the density operator [37], and the P−function

is a probability distribution [37]. The P−function is a quasi-probability distribution in

that for some quantum states which are non-classical, the P−function is more singular

than the Dirac delta function or negative. For states where the P (α,β) ≥ 0 or no

more singular than the Dirac delta function, such states are termed classical states.

The coherent states are quasi-mechanical with P−functions equal to the Dirac delta

function.

We can obtain the P−function [52] as,

⟨−α′,−β′∣Θ̂∣α′, β′⟩ =∫ dαdβP (α,β) ⟨−α′,−β′∣α,β⟩ ⟨α,β∣α′, β′⟩

P (α,β) = e
−(α2+β2)

π2 ∫ dα′dβ′ ⟨−α′,−β′∣Θ̂∣α′, β′⟩ exp[2i(βα′ − αβ′)] (2.107)

Another concept in phase-space probability distribution is the Q−function or Husimi

function [37],which is the expectation value of the density operator with respect to
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the coherent state,

Q(α,β∣Θ) = 1
π
⟨α,β∣Θ̂∣α,β⟩ (2.108)

The Q−function is positive for all quantum states and like the P−function is nor-

malised,

∫ dαdβQ(α,β) =∫ dαdβP (α,β) = 1 (2.109)

The Q−function, P−function and Wigner function are related through,

Q(α,β) = 1
π ∫ dα′dβ′P (α′, β′) ⟨α,β∣α′, β′⟩ ⟨α′, β′∣α,β⟩

= 1
π ∫ dα′dβ′P (α′, β′)DC(α,β∣α′, β′)

= 1
π ∫ dα′dβ′W (α′, β′)(⟨α,β∣α′, β′⟩ ⟨α′, β′∣α,β⟩)2

= 1
π ∫ dα′dβ′W (α′, β′)(DC(α,β∣α′, β′))2 (2.110)

We note that the overlap of two coherent states is shown in Eq. (2.73) and write the

distance between two coherent states,

DC(α,β∣α′, β′) = ⟨α,β∣α′, β′⟩ ⟨α′, β′∣α,β⟩ = ∣ ⟨α,β∣α′, β′⟩ ∣2

= exp[−∣(α + iβ) − (α′ + iβ′)∣2]

= exp[−(α2 + β2 + α′2 + β′2) + 2(αα′ + ββ′)] (2.111)
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Fig. (2.6) Q(α,β)(Q-function) of number states for the state of Eq. (2.112) with n =
5

The Q−function for the number state is given as,

Q(α,β∣n) = 1
π
⟨α,β∣n⟩ ⟨n∣α,β⟩ = z

nz∗n

n! exp [−∣z∣2]. (2.112)

The Q−function of the coherent state is the distance between two coherent states of

Eq. (2.74). An example of the Q−function for number state, n = 5 is given in figure

2.6.
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2.11 Moyal star formalism

2.11 Moyal star formalism

Moyal proved [12, 55] that for arbitrary states, ∣γ⟩ , ∣ζ⟩ , ∣ϵ⟩ , ∣δ⟩

1
π ∫ dαdβ ⟨γ∣ D̂†(α,β) ∣δ⟩ ⟨ϵ∣ D̂(α,β) ∣ζ⟩ = ⟨γ∣ζ⟩ ⟨ϵ∣δ⟩ (2.113)

The relation is easily proved using Eqs. (2.40,2.19). The detailed proof is given in

Appendix A. A similar relation has also been proved for the displaced parity operator

[18],

4
π ∫ dαdβ ⟨γ∣ P̂ (α,β) ∣δ⟩ ⟨ϵ∣ P̂ (α,β) ∣ζ⟩ = ⟨γ∣ζ⟩ ⟨ϵ∣δ⟩ . (2.114)

Moyal also proved that any operator can be written in terms of the displacement

operators so that,

Θ = 1
π ∫ dαdβ Tr[D̂†(α,β)Θ]D̂(α,β). (2.115)

This is easily proved using Eq. (2.113) above,

⟨N ∣Θ∣M⟩ = 1
π
∑
K

∑
T
∫ dαdβ ⟨K ∣D̂†(α,β)∣T ⟩ ⟨T ∣Θ∣K⟩

× ⟨N ∣D̂(α,β)∣M⟩

= ∑
K

∑
T

δ(K −M)δ(T −N) ⟨T ∣Θ∣K⟩

= ⟨N ∣Θ∣M⟩ . (2.116)
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Having shown from Eq. (2.115) that an operator can be written in terms of the Weyl

function, it can also be written in terms of the Wigner function [18] such that,

Θ = 2
π ∫ dαdβ W (α,β∣Θ)P̂ (α,β). (2.117)

It can be extended to two operators so that,

Θ1Θ2 =
4
π2 ∫ dα′dβ′dαdβ W (α,β∣Θ1)W (α′, β′∣Θ2)

× P̂ (α,β)P̂ (α′, β′). (2.118)

Using properties of Eq. (2.42), the trace of both operators leads to,

Tr(Θ1Θ2) =
1
π ∫ dαdβ W (α,β∣Θ1)W (α,β∣Θ2) (2.119)

The relation in Eq. (2.118) leads to the Moyal star formalism [12, 55] which gives the

Wigner function of two non-commuting operators in phase space,

W (α,β∣Θ1Θ2) =
4
π2 ∫ dα′dβ′dα′′dβ′′W (α + α′, β + β′∣Θ1)W (α + α′′, β + β′′∣Θ2)

× exp [2i(α′β′′ − β′α′′)] (2.120)

Further studies on the Moyal star product are given in [18].
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Chapter 3

Fractional Fourier transform in

phase space

3.1 Introduction to fractional Fourier transform

The fractional Fourier transform is defined as a generalisation of the normal Fourier

transform thus championing improvements and generalisations in areas where Fourier

transform was applied. Since its introduction [70], it has found applications in signal

processing [8, 57], quantum optics [57, 70], image analysis [9, 42], encryption [29, 35, 79]

and quantum cryptography [78]. In time frequency analysis it is interpreted as a

rotation in time-frequency plane and can show characteristics of the system from the

time and frequency domains [68].

The Fourier transform was introduced by Jean Baptiste Fourier in 1807 while solv-

ing a heat conduction problem. It has been known to have limitations like its inability

to obtain time-frequency characteristics for non-stationary signals. The fractional

Fourier transform is one of the proposed solutions for such problems [68]. Further in

this chapter, the fractional Fourier transform is extended to quantum mechanics in

generalising the coherent states and Wigner function. Also, it can be applied to optics
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3.1 Introduction to fractional Fourier transform

[59] and even recently to the squeezing operator [30].

The fractional Fourier transform can be defined as both a transform and as an

operator. As a transform it is shown by starting with the two dimensional non-

separable linear canonical transform (LCT) which is the 2-dimensional counterpart of

the 1-dimensional linear canonical transform (LCT) [34]

F (A,B,U,V )(α,β) = 1
2πdetB∫ dλdγ exp [i [(−b22α + b12β)λ + (b21α − b11β)γ]

detB
]

× exp [i(k1α2 + k2αβ + k3β2)
2detB + i(p1λ2 + p2λγ + p3γ2)

2detB ] f(λ, γ),

(3.1)

where detB ≠ 0 and A,B,U,V are matrices,

A =
⎡⎢⎢⎢⎢⎢⎢⎣

a11 a12

a21 a22

⎤⎥⎥⎥⎥⎥⎥⎦
,B =

⎡⎢⎢⎢⎢⎢⎢⎣

b11 b12

b21 b22

⎤⎥⎥⎥⎥⎥⎥⎦
,U =

⎡⎢⎢⎢⎢⎢⎢⎣

u11 u12

u21 u22

⎤⎥⎥⎥⎥⎥⎥⎦
,V =

⎡⎢⎢⎢⎢⎢⎢⎣

v11 v12

v21 v22

⎤⎥⎥⎥⎥⎥⎥⎦
.

The values of k1, k2, k3, p1, p2 and p3 are given as,

k1 = v11b22 − v12b21, k2 = 2(−v11b12 + v12b11), k3 = −v21b12 + v22b11

p1 = a11b22 − a21b12, p2 = 2(a12b22 − a22b12), p3 = −a12b21 + a22b11 (3.2)
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3.1 Introduction to fractional Fourier transform

With the following constraints to be satisfied,

ATU = UTA, BTV = V TB, ATV −UTB = I

a11v11 + a21v21 − (b11u11 + b21u21) = 1, a12v12 + a22v22 − (b12u12 + b22u22) = 1

a11u12 + a21u22 = a12u11 + a22u21, b11v12 + b21v22 = b12v11 + b22v21,

a11v12 + a21v22 = u11b12 + u21b22, a12v11 + a22v21 = u12b11 + u22b21. (3.3)

The reduction of the 2-dimensional linear canonical transform (LCT) to the 2-dimensional

fractional Fourier transform is shown

F̃ (α,β) =∫ dλdγK(α,λ; θα)K(β, γ; θβ)f(λ, γ), (3.4)

where,

a12 = a21 = b12 = b21 = u12 = u21 = v12 = v21 = 0,

a11 = v11 = − cos θα, b11 = u11 = − sin θα, a22 = v22 = cos θβ, b22 = −u22 = sin θβ

K(α,λ; θα) = [
(1 − i cot θα)

2π ]
1/2

exp [−i(α
2 + λ2) cot θα

2 + iαλ

sin θα

] ,

K(β, γ; θβ) = [
(1 − i cot θβ)

2π ]
1/2

exp [−i(β
2 + γ2) cot θβ

2 + iβγ

sin θβ

] . (3.5)

Likewise, it reduces to 2-dimensional Fourier transform, when b11 = b22 = 1, u11 = u22 =

−1, others = 0,

F̃ (α,β) = 1
2π ∫ dλdγ exp [−i(αλ + βγ)]f(λ, γ). (3.6)
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3.2 Properties of the kernel of fractional Fourier transform

In terms of an operator, the fractional Fourier operator in 1-dimension is given by

F(θ;α) = exp [iθ2 (α
2 − ∂2

α + 1)] ; 0 ≤ θ < 2π. (3.7)

Acting with a function f(α) leads to

F(θ;α)[f(α)] =∫ dγK(α, γ; θ)f(γ),

K(α, γ; θ) = [1 + i cot θ
2π ]

1/2
exp [−i(α

2 + γ2) cot θ
2 + iαγsin θ] . (3.8)

The proof of Eq. (3.8) is well known and included in Appendix A. It is called the

kernel of the fractional Fourier transform.

3.2 Properties of the kernel of fractional Fourier

transform

Of note is that the kernel of the fractional Fourier transform, K(−α,λ; θα) is symmetric

along the axis (α and λ) so that,

K(−α,λ; θα) =K(α,−λ; θα); K(−α,−λ; θα) =K(α,λ; θα). (3.9)

However, it is not symmetric with respect to the angle

K(α,λ;−θα) ≠K(−α,−λ; θα); K(α,λ;−θα) ≠K(−α,λ; θα). (3.10)
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3.2 Properties of the kernel of fractional Fourier transform

For special cases of different rotations of the angle in 1-diemnsion

K(α, γ; θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

[1+i cot θ
2π
] exp [−i(α2+γ2) cot θ

2 + iαγ
sin θ] ,∀θ ∶ θ ≠ nπ

δ(α − γ), if θ = 2nπ

δ(α + γ), if θ = (2n + 1)π

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.11)

and in the case θ = π/2, the kernel becomes the Fourier transform K (α, γ; π
2 ) =

exp(iαγ)/(2π)1/2. Therefore F(π/2;α) is the Fourier operator and

F(π2 ;α) [f(α)] = 1
(2π)1/2 ∫ dγ exp(iαγ)f(γ). (3.12)

In addition, F(π;α) is the parity operator. In this case K(α, γ;π) = δ(α + γ). For a

detailed description of the properties of the fractional Fourier transform as well as its

transform with respect to different signals, is given in [54, 56, 57].

An important property of the fractional Fourier transform kernel which is widely used

in this work is the index additivity given as,

∫ dγK(α, γ; θα)K(γ, β; θβ) =K(α,β; θα + θβ). (3.13)

The proof of this property is given in Appendix A. The kernel also has the obvious

inverse property that,

[K(α, γ; θα)]† =K(−α,−γ;−θα) =K(γ,α;−θα). (3.14)

The Kernel has two optical interpretations, one as a propagation through GRIN

(Graded Index media) medium [48, 53, 54] and the second as the rotation in the

position-momentum plane [75].
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3.3 Examples of fractional Fourier transform of different waveforms

3.3 Examples of fractional Fourier transform of dif-

ferent waveforms

The fractional Fourier transform of different waveforms is known [58] and in the Figs.

(3.1a, 3.1b) below some examples are given. Two numerical examples for the triangular

and square functions (tripuls(x,1) and rectpuls(x,3)). Each case shows the gradual

transform of the angle between 0 and 1 with the angle defined as θ = aπ
2 . At a = 0,

there is no transformation, and then there is a gradual transformation towards a sinc-

function as the angle approaches π
2 when a = 1.

3.4 Fractional Fourier operator

The 1-dimensional fractional Fourier transform can also be given as an operator in

terms of the number operator [23],

K(θ) = exp (iθn); n = â†â,

K(θ) ∣x⟩ = ∣x; θ⟩ ; K(θ) ∣p⟩ = ∣p; θ⟩ . (3.15)

This operator can also show that it creates a rotation as earlier mentioned rotating

both position (x̂) and momentum (p̂) operators as,

x̂
θ
≡ K(θ)x̂K†(θ) = x̂ cos θ + p̂ sin θ,

p̂
θ
≡ K(θ)p̂K†(θ) = −x̂ sin θ + p̂ cos θ. (3.16)

Acting the fractional Fourier operator on both sides of the displacement operator gives,

K(θ)D̂(α,β)K†(θ) = D̂(α cos θ − β sin θ, β cos θ + α sin θ). (3.17)
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3.4 Fractional Fourier operator

(a)

(b)

Fig. (3.1) (a): Rectangular pulse wave rectpuls(x,1), (b): Triangular pulse wave
tripuls(x,2) 50



3.5 Non-orthogonal plane in the (θα, θβ) axes

Of particular interest is the equivalence shown between the operator and the con-

tinuous kernel of the fractional Fourier transform [23]

⟨p∣x; θ⟩ =K(x, p; θ) = ( 1
π
)

1/2 ∞
∑
N=0

eiNθHN(x)HN(p)
2NN ! exp [12(x

2 + p2)]

= [1 − i cot θ
2π ]

1/2
exp [−i(x

2 + p2) cot θ
2 + ixp

sin θ] . (3.18)

3.5 Non-orthogonal plane in the (θα, θβ) axes

In many formulas throughout this thesis the factor cos(θα−θβ) appears. The following

arguments show the Jacobian nature of this factor, and also gives some quantities used

in this thesis in terms of coordinates in a non-orthogonal frame. This is shown by

considering an orthogonal frame α − β, and a non-orthogonal frame α′ − β′ as shown

in Fig. (3.2).

The ‘bi-fractional transform’ in the present context is to rotate the x-axis by an

angle θα, and the y-axis by an angle θβ, and change variables from α,β to α′, β′. Let

(α0, β0) and (α′0, β′0) be the coordinates of a point in these two frames, correspondingly.

With elementary trigonometry, the (α′0, β′0) in terms of (α0, β0) can be expressed as

follows

α′0 = G1α0 +G2β0; β′0 = G3α0 +G4β0

G1 =
1

cos θα

− tan θα sin θβ

cos(θα − θβ)
; G2 =

sin θβ

cos(θα − θβ)

G3 = −
sin θα

cos(θα − θβ)
; G4 =

cos θα

cos(θα − θβ)
. (3.19)

Therefore the Jacobian corresponding to this change of variables is

∂(α′0, β′0)
∂(α0, β0)

= G1G4 −G2G3 =
1

cos(θα − θβ)
. (3.20)
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3.6 Bi-fractional displacement operators

α

β’

)

β

β
0

α
0

β’
0

α’

α’
0o

o

o

⁀ θα

θβ

Fig. (3.2) The orthogonal and non-orthogonal axes

The distance of the point (α′, β′) from the origin is given in terms of the coordinates

in the non-orthogonal frame is given by

[Ds(α′, β′∣θα, θβ)]2 = (α′)2 + (β′)2 + 2α′β′ sin(θα − θβ). (3.21)

3.6 Bi-fractional displacement operators

The displaced parity operator is given as,

P̂ (α,β) = D̂ (α2 ,
β

2 ) P̂ (0,0)D̂
† (α2 ,

β

2 ) = D̂(α,β)P̂ (0,0). (3.22)
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3.6 Bi-fractional displacement operators

It is related to the displacement operator through a two-dimensional Fourier transform

[18] written in this case as an interpolation along angles (π
2 ,

π
2 )

P̂ (α,β) = 1
2π ∫ dα′dβ′D̂(α′, β′) exp [i(βα′ − β′α)]

=∫ dα′dβ′K (β,α′; π2)K (α,−β
′; π2) D̂(α

′, β′). (3.23)

Since the displaced parity operator can be given in terms of the kernel of the

Fourier transform, then it can be generalised to the fractional Fourier transform. The

generalisation of the displaced parity operator is the following unitary operator which

is called bi-fractional displacement operator [5] given as,

O(α,β; θα, θβ) = ∣ cos(θα − θβ)∣1/2∫ dα′dβ′ K (β,α′; θβ)K (α,−β′; θα) D̂(α′, β′).

(3.24)

Furthermore, the inverse function derived by taking the fractional Fourier transform

of both sides is given as,

D̂(α′, β′) = ∣ cos(θα − θβ)∣−1/2∫ dαdβK (β,α′;−θβ)K (α,−β′;−θα)O(α,β; θα, θβ).

(3.25)

Eq. (3.24) is derived by replacing the two Fourier transforms in Eq. (3.23) with two

fractional Fourier transforms. The two fractional Fourier transforms use the variables

α′, β′ which are related to position and momentum and are dual to each other. The

two-dimensional fractional Fourier transform is not a direct generalisation of a one-

dimensional fractional Fourier transform. It is therefore not a trivial generalisation.
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3.6 Bi-fractional displacement operators

This is further evident from the crucial role of the pre-factor ∣ cos(θα − θβ)∣
1
2 in the

proof of unitarity in section (3.6.1.1). Since K(x, y; θ +π) =K(x,−y; θ) it follows that

O(α,β; θα + π, θβ) = O(−α,β; θα, θβ),

O(α,β; θα, θβ + π) = O(α,−β; θα, θβ). (3.26)

Therefore taking (θα, θβ) ∈ Θ = [0, π) × [0, π) − L, where L is the lines θα − θβ = ±π
2 .

The pre-factor in Eq. (3.24) is zero for such a case and thus we avoid such cases in

numerical work.

3.6.1 Properties of the bi-fractional operator

3.6.1.1 Unitarity

The bi-fractional displacement operator is unitary. Because the integral is not a

straight forward generalisation of a 1-dimensional case, a pre-factor is present which

is necessary for unitarity. In order to prove unitarity, the following relation is used

D̂(α′, β′)D̂(α′′, β′′) = D̂(α′ + α′′, β′ + β′′) exp[i(β′α′′ − α′β′′)],

[O(α,β; θα, θβ)]† = O(−α,−β;−θα,−θβ). (3.27)

Performing a change of variables and evaluating the integral below,

O(α,β; θα, θβ)O(−α,−β;−θα,−θβ) = cos(θα − θβ)∫ dα′dβ′dα′′dβ′′K (β,α′; θβ)K (α,−β′; θα)

×K (−α,−β′′;−θα)K (−β,α′′;−θβ)D(α′, β′)D(α′′, β′′)

= 1 (3.28)
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3.6 Bi-fractional displacement operators

This unitarity is proved below as,

O(α,β; θα, θβ)O(α,β; θα, θβ)]† =∫ dα′dβ′dα′′dβ′′K (β,α′; θβ)K (α,−β′; θα)

×K (−β,α′′;−θβ)K (−α,−β′′;−θα)D(α′, β′)D(α′′, β′′),

(3.29)

where each of the kernels of the fractional Fourier transform can be given,

K (β,α′; θβ) = [
1 + i cot θβ

2π ]
1/2

exp [−i(α
′2 + β2) cot θβ

2 + iα′β

sin θβ

] ,

K (α,−β′; θα) = [
1 + i cot θα

2π ]
1/2

exp [−i(α
2 + β′2) cot θα

2 − iαβ′

sin θα

] ,

K (−β,α′′;−θβ) = [
1 − i cot θβ

2π ]
1/2

exp [i(α
′′2 + β2) cot θβ

2 + iα
′′β

sin θβ

] ,

K (−α,−β′′;−θα) = [
1 − i cot θα

2π ]
1/2

exp [i(α
2 + β′′2) cot θα

2 − iαβ
′′

sin θα

] . (3.30)

Substituting each of the kernels yields,

O(α,β; θα, θβ)O(α,β; θα, θβ)]†

= 1
4π2 sin θα sin θβ

∫ dα′dα′′dβ′dβ′′ exp [i(α
′′2 − α′2) cot θβ + i(β′′2 − β′2) cot θα

2 ]

× exp [iβ(α
′′ + α′)

sin θβ

− iα(β
′′ + β′)

sin θα

]D(α′ + α′′, β′ + β′′) exp [i(β′α′′ − α′β′′)] (3.31)

The next step is to change variables by making the following substitutions,

αs = α′′ + α′, αd = α′′ − α′, βs = β′′ + β′, βd = β′′ − β′,

and use the Jacobian such that,

dα′dα′′ = ∣∂(α
′, α′′)

∂(αs, αd)
∣dαsdαd =

1
4dαsdαd. (3.32)
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3.6 Bi-fractional displacement operators

By using the relation in Eq. (3.27), Eq. (3.31) is resolved to,

O(α,β; θα, θβ)O(α,β; θα, θβ)]†

= 1
16π2 sin θα sin θβ

∫ dαsdαddβsdβd D(αs, βs)

× exp [i(αsαd cot θβ + βsβd cot θα)
2 + iαsβ

sin θβ

− iαβs

sin θα

+ i(αdβs − αsβd

2 )]

= 1
16π2 sin θα sin θβ

∫ dαsdβsdβd D(αs, βs)

× exp [iβsβd cot θα

2 + iαsβ

sin θβ

− iαβs

sin θα

− iαsβd

2 ]4πδ(βs + αs cot θβ)

= 1
4π sin θα sin θβ

∫ dαs D(αs,−αs cot θβ)

× exp [ iαsβ

sin θβ

+ iααs cot θβ

sin θα

] 4πδ(αs)
1 + cot θα cot θβ

= 1
sin θα sin θβ(1 + cot θα cot θβ)

= 1
cos(θα − θβ)

(3.33)

Since this pre-factor cannot be factorised as a function of θα times a function of

θβ, proves the fact that the variables α′, β′ are dual quantum variables. In the case

θα − θβ = π
2 the integral of Eq. (3.24) diverges, and in numerical work this is avoided.

3.6.1.2 Interpolation between displacement and parity operators

The following are special cases of the interpolation of the bi-fractional operator sweep-

ing between both the displacement operators and parity operator for special cases of

θα = θβ,
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3.6 Bi-fractional displacement operators

O(α,β; θα, θβ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D̂(β,−α), if θα = θβ = 0

P̂ (α,β), if θα = θβ = π
2

D̂(−β,α), if θα = θβ = π

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (3.34)

For the scope of this work, only special cases are considered. For θα ≠ θβ, the bi-

fractional operator gives us some other operators which are still open to research.

3.6.1.3 Marginal properties for O(α,β; θα, θβ)

The bi-fractional displacement operator, O(α,β; θα, θβ) also has marginal properties

which for special cases of (θα = θβ = π
2 ), these properties reduce to the marginal

properties of the displaced parity operator.

Integration of O(α,β; θα, θβ) with respect to α gives

∫ dα O(α,β; θα, θβ)

= ∣ cos(θα − θβ)∣
1
2 ∫ dα′dβ′K (β,α′; θβ)K (0, β′;

π

2 − θα) D̂(α′, β′). (3.35)
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3.6 Bi-fractional displacement operators

The proof is given below,

∫ dα O(α,β; θα, θβ)

= ∣ cos(θα − θβ)∣
1
2 [1 + i cot θα

2π ]
1
2

∫ dα′dβ′K (β,α′; θβ)

× exp [−iβ
′2 cot θα

2 ]D(α′, β′)∫ dα exp [−α2 (i cot θα

2 ) − α( iβ′

sin θα

)]

= ∣ cos(θα − θβ)∣
1
2 [1 − i tan θα]

1
2 ∫ dα′dβ′K (β,α′; θβ) exp [iβ

′2 tan θα

2 ]D(α′, β′)

= ∣ cos(θα − θβ)∣
1
2 ∫ dα′dβ′K (β,α′; θβ)K (0, β′;

π

2 − θα)D(α′, β′) (3.36)

Having used the relation

K (0, β′; π2 − θ) = [1 − i tan θ] 1
2 exp [iβ

′2 tan θ
2 ] (3.37)

The result shows that the integration affects only the kernel with respect to α. Inte-

gration of O(α,β; θα, θβ) with respect to β gives a similar result following very similar

steps as that with respect to α,

∫ dβ O(α,β; θα, θβ)

= ∣ cos(θα − θβ)∣
1
2 ∫ dα′dβ′K (0, α′; π2 − θβ)K (α,−β′; θα) D̂(α′, β′) (3.38)

Finally, with respect to both α and β gives

∫ dαdβO(α,β; θα, θβ) = ∣ cos(θα − θβ)∣
1
2 ∫ dα′dβ′K (0, α′; π2 − θβ)K (0, β′;

π

2 − θα)

× D̂(α′, β′) (3.39)
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3.6 Bi-fractional displacement operators

The effect is a combination of results from Eqs. (3.35, 3.38).

3.6.1.4 Bi-fractional operators as special elements of the group G of squeez-

ing and displacement transformations

Another form of the bi-fractional displacement operator given in Eq. (3.24) using the

Baker-Campbell-Hausdorff operator relation of Eq. (2.65) as,

O(α,β; θα, θβ) = exp(iϕ) exp [iτ(p̂ − tan θαx̂ + σ)2] exp(i x̂2

cot θα

− i
√

2αx̂
cos θα

) ,

τ = cos θα sin θβ

cos(θα − θβ)
; σ = α√

2 cos θα

− β√
2 sin θβ

,

ϕ = −1
2(θα + θβ) −

1
2(α

2 cot θα + β2 cot θβ) +
α2

sin 2θα

. (3.40)

The proof is given by performing integration in Eq. (3.24) as follows.

O(α,β; θα, θβ) = ∣ cos(θα − θβ)∣1/2∫ dα′dβ′K (β,α′; θβ)K (α,−β′; θα)D(α′, β′)

= R1∫ dα′dβ′ exp [−i cot θβ

2 α′2 − i cot θα

2 β′2 + iβα′

sin θβ

− iαβ′

sin θα

+ i
√

2β′x̂ − i
√

2α′p̂]

= R1∫ dα′L(α′) (3.41)

where

L(α′) = exp [−i cot θβ

2 α′2 + iβα′

sin θβ

− i
√

2α′p̂]∫ dβ′ exp [−i cot θα

2 β′2 − iαβ′

sin θα

+ i
√

2β′x̂ + iα′β′]

R1 = ∣ cos(θα − θβ)∣1/2 [
1 + i cot θα

2π ]
1/2
[1 + i cot θβ

2π ]
1/2

exp [− i2(α
2 cot θα + β2 cot θβ)] .

(3.42)

The relation for two operators in Eq. (2.65) was used for these calculations.
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3.6 Bi-fractional displacement operators

Gaussian integration produces,

O(α,β; θα, θβ) = R2

⎧⎪⎪⎨⎪⎪⎩
∫ dα′ exp [−i cot θβ

2 α′2 + iβα′

sin θβ

− i
√

2α′p̂] exp(i2
3/2x̂α′ + α′2

2 cot θα

− i αα
′

cos θα

)
⎫⎪⎪⎬⎪⎪⎭

× exp(i x̂2

cot θα

− i
√

2αx̂
cos θα

)

= R2

⎧⎪⎪⎨⎪⎪⎩
∫ dα′ exp [−i cot θβ

2 α′2 + iβα′

sin θβ

− i
√

2α′p̂ + i2
3/2x̂α′ + α′2

2 cot θα

− i αα
′

cos θα

− i α′2

cot θα

]
⎫⎪⎪⎬⎪⎪⎭

× exp(i x̂2

cot θα

− i
√

2αx̂
cos θα

) , (3.43)

where

R2 = R1 (
2π

i cot θα

)
1/2

exp(i α2

sin 2θα

) . (3.44)

From this follows Eq. (3.40).

Here we note that the operators x̂2, p̂2, x̂p̂ + p̂x̂, x̂, p̂, 1, form a closed structure

under commutation, and therefore

Y (a1, a2, a3, a4, a5, a6) = exp[a1x̂
2 + a2p̂

2 + a3(x̂p̂ + p̂x̂) + a4x̂ + a5p̂ + a61], (3.45)

form a group G. The displacement transformations

Yd(a4, a5, a6) = exp(a4x̂ + a5p̂ + a61), (3.46)

form a representation of the Heisenberg Weyl group HW , which is a normal subgroup

of G. Also the squeezing transformations

Ys(a1, a2, a3) = exp[a1x̂
2 + a2p̂

2 + a3(x̂p̂ + p̂x̂)] (3.47)
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3.6 Bi-fractional displacement operators

form a representation of the SU(1,1) group, which is a subgroup of G. Every element

of G can be written as a product of an element of HW and an element of SU(1,1).

The intersection of these two subgroups of G, contains only the unit operator. G is

the semidirect product of the Heisenberg Weyl group HW of displacements, by the

SU(1,1) group of squeezing transformations:

G =HW ⋊ SU(1,1). (3.48)

The operators O(α,β; θα, θβ) depend on four parameters, and they are special cases

of the operators Y (a1, a2, a3, a4, a5, a6). But clearly the general element

Y (a1, a2, a3, a4, a5, a6) which depends on six parameters cannot always be written as

O(α,β; θα, θβ) which depends on four parameters.

3.6.1.5 Bi-fractional displacement operators in different sets

The bi-fractional displacement operator can be generalised for special cases of (θα +

ϕα, θβ + ϕβ) using Eq. (3.13). The bi-fractional displacement operators in different

sets, SO(θα, θβ) and SO(θα + ϕα, θβ + ϕβ) are related by fractional Fourier transform,

O(α,β; θα + ϕα, θβ + ϕβ) =
∣ cos(θα + ϕα − θβ − ϕβ)∣1/2

∣ cos(θα − θβ)∣1/2

×∫ dα′dβ′K (β, β′;ϕβ)K (α,α′;ϕα)O(α′, β′; θα, θβ).

(3.49)
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3.6 Bi-fractional displacement operators

The proof is given by taking two special cases of bi-fractional displacement operators.

Each case is a phase shift in the angles, so that θα → (θα + ϕα),

O(α,β; θα + ϕα, θβ) =
∣ cos(θα + ϕα − θβ)∣1/2
∣ cos(θα − θβ)∣1/2 ∫ dα′K (α,α′;ϕα)O(α′, β; θα, θβ),

(3.50)

and for θβ → (θβ + ϕβ), it leads to

O(α,β; θα, θβ + ϕβ) =
∣ cos(θα + ϕβ − θβ)∣1/2
∣ cos(θα − θβ)∣1/2 ∫ dβ′K (β, β′;ϕβ)O(α,β′; θα, θβ).

(3.51)

Combining both of them gives Eq. (3.49).

3.6.1.6 Groupoid of transformations from O(α,β; θα, θβ)

The bi-fractional displacement operators show squeezing properties and do not form a

group and so the groupoids are proposed to describe their mathematical structure. The

groupoid is an algebraic structure with partial function. Alternatively, a groupoid is a

small category in which every morphism is an isomorphism [44]. The groupoid [19, 76]

is a weaker structure, designed for ‘variable symmetries’. Groups are special cases

of groupoids [19, 76]. Applications of groupoids include non-commutative geometry

[28, 46] and quantum tomography [43].

Unlike a group, the groupoid does not have the closure property. Consider two

base (B) sets, t1, t2 being the start and target of a map, then a groupoid with two

maps is defined,

T1(x) = t1 T2(x) = t2 t1, t2 ∈B (3.52)
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3.6 Bi-fractional displacement operators

where t1 and t2 represent source and target of x. We can consider x as an ’arrow’ which

starts at t1 and ends at t2. It does however have a partial associative multiplication

x1x2, defined only in the case that T2(x1) = T1(x2). It also has an involution (‘inverse’)

property, x→ x−1; [x−1]−1 = x, and has Lx = xx−1 and Rx = x−1x called left and right

identities which are in general different. The identities are such that, Lxx = xRx = x

with a base set B, is isomorphic to the set of all left identities and to the set of all

right identities.

Considering the set of transformations with the base set, B defined as,

B = {O(α,β; θα, θβ) ∣α,β ∈ R, θα, θβ ∈ [0,2π], θα ≠ θβ ± π
2}, (3.53)

and also the map

M(α,β; θα, θβ ∣γ, λ;ϕα, ϕβ) ∶ O(α,β; θα, θβ) Ð→ O(γ, λ;ϕα, ϕβ), (3.54)

where

O(γ, λ;ϕα, ϕβ) =
∣ cos(ϕα − ϕβ)∣

1
2

∣ cos(θα − θβ)∣
1
2
∫ dαdβK (β,λ;ϕβ − θβ)K (α, γ;ϕα − θα)O(α,β; θα, θβ).

(3.55)

Eq. (3.55) is a generalised version of Eq. (3.24), which in the present notation is the

map

M(α′, β′; 0,0∣α,β; θα, θβ) ∶ O(α′, β′; 0,0) Ð→ O(α,β; θα, θβ). (3.56)

The compatibility between the two, is shown in the first part of the proof below.

In the special case that ϕα = θα and ϕβ = θβ, the K (β,λ; 0) and K (α, γ; 0) are
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3.6 Bi-fractional displacement operators

Dirac delta functions and

M(α,β; θα, θβ ∣γ, λ; θα, θβ) ∶ O(α,β; θα, θβ) Ð→ O(γ, λ; θα, θβ). (3.57)

Next, considering the following notation for the composition

[M(α,β; θα, θβ ∣γ, λ;ϕαϕβ) ○M(γ, λ;ϕα, ϕβ ∣ϵ, ζ;ψα, ψβ)][O(α,β; θα, θβ)]

=M(γ, λ;ϕα, ϕβ ∣ϵ, ζ;ψα, ψβ)[M(α,β; θα, θβ ∣γ, λ;ϕα, ϕβ)O(α,β; θα, θβ)] (3.58)

The set {M(α,β; θα, θβ ∣γ, λ;ϕα, ϕβ)} is a connected groupoid with base set B (in

Eq. (3.58), and with composition as multiplication. The inverse ofM(α,β; θα, θ2∣γ, λ;ϕ1, ϕ2)

is

[M(α,β; θα, θβ ∣γ, λ;ϕα, ϕβ)]−1 =M(γ, λ;ϕα, ϕβ ∣α,β; θα, θβ). (3.59)

The left and right identities areM(α,β; θα, θβ ∣α,β; θα, θβ) andM(γ, λ;ϕα, ϕβ ∣γ, λ;ϕα, ϕβ)].

The proof consists of the following three parts:

(1) The first part shows that the following compatibility relation holds

M(α,β; θα, θβ ∣γ, λ;ϕα, ϕβ) ○M(γ, λ;ϕα, ϕβ ∣ϵ, ζ;ψα, ψβ) =M(α,β; θα, θβ ∣ϵ, ζ;ψα, ψβ),

(3.60)
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3.6 Bi-fractional displacement operators

and start with the relations

M(α,β; θα, θβ ∣γ, λ;ϕα, ϕβ)[O(α,β; θα, θβ)] = O(γ, λ;ϕα, ϕβ)

= ∣ cos (ϕα − ϕβ)∣
1
2

∣ cos (θα − θβ)∣
1
2
∫ dαdβK(β,λ;ϕβ − θβ)K(α, γ;ϕα − θα)O(α,β; θα, θβ),

(3.61)

and

M(γ, λ;ϕα, ϕβ ∣ϵ, ζ;ψα, ψβ)[O(γ, λ;ϕα, ϕβ)] = O(ϵ, ζ;ψα, ψβ)

= ∣ cos (ψα − ψβ)∣
1
2

∣ cos (ϕα − ϕβ)∣
1
2
∫ dγdλK(λ, ζ;ψβ − ϕβ)K(γ, ϵ;ψα − ϕα)O(γ, λ;ϕα, ϕβ).

(3.62)

Inserting Eq. (3.61) into Eq. (3.62) produces

M(γ, λ;ϕα, ϕβ ∣ϵ, ζ;ψα, ψβ)[M(α,β; θα, θβ ∣γ, λ;ϕα, ϕβ)[O(α,β; θα, θβ)]]

= ∣ cos (ψα − ψβ)∣
1
2

∣ cos (θα − θβ)∣
1
2
∫ dγdλK(λ, ζ;ψβ − ϕβ)K(γ, ϵ;ψα − ϕα)

× dαdβK(β,λ;ϕβ − θβ)K(α, γ;ϕα − θα)O(α,β; θα, θβ). (3.63)

The compatibility relation of Eq. (3.60) holds because using Eq. (3.13) shows
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3.7 Bi-fractional coherent states

that Eq. (3.63) reduces to

M(γ, λ;ϕα, ϕβ ∣ϵ, ζ;ψα, ψβ)[M(α,β; θα, θβ ∣γ, λ;ϕα, ϕβ)[O(α,β; θα, θβ)]]

= ∣ cos (ψα − ψβ)∣
1
2

∣ cos (θα − θβ)∣
1
2
∫ dαdβK(β, ζ;ψβ − θβ)K(α, ϵ;ψα − θα)O(α,β; θα, θβ)

=M(α,β; θα, θβ ∣ϵ, ζ;ψα, ψβ)[O(α,β; θα, θβ)]. (3.64)

(2) For the inverse, it is easily seen that it is an involution:

{[M(α,β; θα, θβ ∣γ, λ;ϕα, ϕβ)]−1}−1 =M(α,β; θα, θβ ∣γ, λ;ϕα, ϕβ). (3.65)

The left and right identities are shown to be

M(α,β; θα, θβ ∣γ, λ;ϕα, ϕβ) ○M(γ, λ;ϕα, ϕβ ∣α,β; θα, θβ) =M(α,β; θα, θβ ∣α,β; θα, θβ)

M(γ, λ;ϕα, ϕβ ∣α,β; θα, θβ) ○M(α,β; θα, θβ ∣γ, λ;ϕα, ϕβ) =M(γ, λ;ϕ1, ϕ2∣γ, λ;ϕα, ϕβ).

(3.66)

(3) The above two parts show that M is a groupoid. In fact it is a connected

groupoid because any two elements O(γ, λ;ϕα, ϕβ), O(α,β; θα, θβ) in a set, are

related through Eq. (3.55).

3.7 Bi-fractional coherent states

Coherent states have been studied extensively in the literature for a long time [6, 45,

62], and they play a central role in phase space methods in quantum mechanics [64, 80].

Various generalisations of coherent states have also been studied, especially in connec-

tion with groups like SU(2), SU(1,1), etc. Acting with the bi-fractional displacement
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3.7 Bi-fractional coherent states

operators on the vacuum creates various classes of generalised coherent states (one for

each pair (θα, θβ)), called the bi-fractional coherent states. They are squeezed states,

and were studied briefly [5] as a topic because of their role in interpolations of different

quantities in phase space methods.

Given a pair (θα, θβ) the set of ‘bi-fractional coherent states’ is given as:

SC(θα, θβ) ≡ {∣α,β; θα, θβ⟩ = O(α,β; θα, θβ) ∣0⟩ ;α,β ∈ R}

= ∣ cos(θα − θβ)∣1/2∫ dα′dβ′ K (β,α′; θβ)K (α,−β′; θα) ∣α′, β′⟩ . (3.67)

Also in the special case of θα = θβ = 0 one has

∣α,β; 0,0⟩ = O(α,β; 0,0) ∣0⟩ = D̂(β,−α) ∣0⟩ , (3.68)

and for θα = θβ = π
2

∣α,β; π2 ,
π

2 ⟩ = O (α,β; π2 ,
π

2) ∣0⟩ = D̂(α,β) ∣0⟩ . (3.69)

Therefore in these special one obtains the standard Glauber coherent states,

∣−β,α; 0,0⟩ = ∣α,β; π2 ,
π

2 ⟩ = ∣α,β⟩ . (3.70)

Since the bi-fractional operator is unitary, the coherent states in the set SC(θα, θβ)

are Glauber coherent states with respect to the operators

d(θα, θβ) = O(0,0; θα, θβ)â[O(0,0; θα, θβ)]†; d†(θα, θβ) = O(0,0; θα, θβ)â†[O(0,0; θα, θβ)]†.

(3.71)

67



3.7 Bi-fractional coherent states

Yet they have novel non-trivial properties with respect to â, â†. The coherent states

in the set SC(θα, θβ) satisfy the resolution of the identity

1
2π cos(θα − θβ)∫ dαdβ ∣α,β; θα, θβ⟩ ⟨α,β; θα, θβ ∣ = 1, (3.72)

which in later sections will be elaborated. From this follows that an arbitrary state

∣g⟩ can be written as

∣g⟩ =∫ dαdβ ∣α,β; θα, θβ⟩ g(α,β; θα, θβ); g(α,β; θα, θβ) =
1

2π ⟨α,β; θα, θβ ∣ g⟩.

(3.73)

3.7.1 Properties of the bi-fractional coherent states

In this section, some of the properties of the bi-fractional coherent states are stated.

3.7.1.1 Bi-fractional coherent states in different sets

Having considered the property of bi-fractional displacement operators in Eq. (3.49),

this can also be extended to the coherent states. The coherent states can be described

in different sets SC(θα +ϕα, θβ +ϕβ) which are related to the coherent states in the set

SC(θα, θβ) by fractional Fourier transform through the fractional Fourier transform

∣α,β; θα + ϕα, θβ + ϕβ⟩ =
∣ cos(θα + ϕα − θβ − ϕβ)∣1/2

∣ cos(θα − θβ)∣1/2

×∫ dα′dβ′K (β, β′;ϕβ)K (α,α′;ϕα) ∣α′, β′; θα, θβ⟩ . (3.74)
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Special cases of this relation with respect to each of the angles is given as

∣α,β; θα +
π

2 , θβ⟩ =
∣ cos(θα + π

2 − θβ)∣1/2√
2π∣ cos(θα − θβ)∣1/2 ∫ dα′ exp (iαα′) ∣α′, β; θα, θβ⟩

∣α,β; θα, θβ +
π

2 ⟩ =
∣ cos(θα − θβ − π

2 )∣1/2√
2π∣ cos(θα − θβ)∣1/2 ∫ dβ′ exp (iββ′) ∣α,β′; θα, θβ⟩ . (3.75)

As explained earlier, in order to avoid divergencies it is required that θα − θβ ≠ ±π
2 .

3.7.1.2 Analyticity property of bi-fractional coherent states

The coherent states discussed in Eq. (3.67) can be represented as,

D̂(α,β) ∣0⟩ = exp [−1
2(α

2 + β2)]
∞
∑
n=0
(α + iβ)n(n!)−1/2 ∣n⟩n (3.76)

The coherent state is obviously analytic with respect to z∗ = α − iβ. The bi-

fractional coherent state on the other hand cannot be written exclusively in terms of

z = α+ iβ, because it interpolates between both z and z∗. For the sake of convenience,

the bi-fractional coherent state is given in complex notation, w so that,

∣α,β; θα, θβ⟩ ≡ ∣w(θα, θβ)⟩ ; w(θα, θβ) =
αEα + iβEβ

cos(θα − θβ)

Eα = i exp(−iθα); Eβ = i exp(−iθβ) (3.77)

We show that w((θα, θβ) is a linear combination of z and z∗. We write the bi-fractional

displacement operator in complex notation and show that,

∣ cos(θα − θβ)∣
1
2 ∫ d2ζ

2 A(w, ζ) ∂
∂ζ∗
[exp(ζâ† − ζ∗â) ∣0⟩] = 0, (3.78)
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and integration by parts gives

∣ cos(θα − θβ)∣
1
2 ∫ d2ζ

2 [
∂

∂ζ∗
A(w, ζ)] exp(ζa† − ζ∗â) ∣0⟩ = 0. (3.79)

The necessary proof which will lead to the proof of analyticity will be shown to be,

∂

∂w∗
A(w, ζ) = ∂

∂ζ∗
A(w, ζ). (3.80)

The analyticity of Glauber coherent states is proved by taking ∂z∗ [exp (1
2 ∣z∣2)] and in

this case the bi-fractional coherent can be written as a combination of w and w∗,

exp(−1
2[B(w

∗)2 + Γ∣w∣2]) ∣w; θα, θβ⟩ =H(w,w∗) ∣w; θα, θβ⟩

H(w,w∗) = exp(1
2
[∣w(θα, θβ)∣2 −Bw∗(θα, θβ)2]) (3.81)

where B and Γ are constants that need to be determined for obtaining analyticity.

The analyticity in this case is that it depends only on w, and does not depend on w∗.

The proof begins with,

exp(−1
2[B(w

∗(θα, θβ)2 + Γ∣w(θα, θβ)∣2]) ∣w(θα, θβ)⟩

= ∣ cos(θα − θβ)∣
1
2 ∫ d2ζA(w, ζ) exp(ζa† − ζ∗â) ∣0⟩ ,

A(w, ζ) =K (ν, ζR; θβ)K (µ,−ζI ; θα) exp [−1
2Bw(θα, θβ) ∗2 +1

2 ∣w(θα, θβ)∣2 −
1
2 ∣ζ ∣

2] ,

µ = 1
2(E

∗
αw(θα, θβ) +Eαw(θα, θβ)∗); ν = 1

i2(E
∗
βw(θα, θβ) −Eβw(θα, θβ)∗), (3.82)
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And further perform,

∂

∂w∗
A(w, ζ) = A(w, ζ) [−i cot θβ

4 (∣Eβ ∣2w(θα, θβ) −E2
βw
∗(θα, θβ)) −

EβζR

2 sin θβ

]

+A(w, ζ) [−i cot θα

4 (∣Eα∣2w(θα, θβ) −E2
αw
∗(θα, θβ)) − i

EαζI

2 sin θα

]

+A(w, ζ) [−Bw(θα, θβ)∗ +
1
2w(θα, θβ)] (3.83)

And also,

∂

∂ζ∗
A(w, ζ) = A(w, ζ) [− iEβζR

2 sin θβ

+ 1
4 sin θβ

(E∗βw(θα, θβ) −Eβw
∗(θα, θβ))]

+A(w, ζ) [− iEαζI

2 sin θα

+ 1
4 sin θα

(E∗αw(θα, θβ) −Eαw
∗(θα, θβ))] . (3.84)

Comparing coefficients in Eqs. (3.83, 3.84) gives the values for Eα and Eβ given

in Eq. (3.77). B and Γ can also be solved as

Γ = 1
2; B = 1

4[exp(−i2θα) − exp(−i2θβ)] (3.85)

Inserting Eq. (3.80) into Eq. (3.79) leads to the important relation,

∂

∂w∗
[exp(−1

2[B(w
∗(θα, θβ))2 + Γ∣w(θα, θβ)∣2]) ∣w; θα, θβ⟩] = 0 (3.86)

This proves the analyticity of bi-fractional coherent states.

3.7.1.3 Bi-fractional resolution of identity

Due to the interpolation of the bi-fractional displacement operator, two different co-

herent states can be defined. The ordinary Glauber coherent state are special cases

where θα = θβ = 0. However for a special case, α = β = 0, another type of bi-fractional
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coherent states which is referred to as, ‘O-coherent states’,

∣α,β; θα, θβ⟩O = O(0,0; θα, θβ) ∣α,β⟩ (3.87)

These ‘O-coherent states’ are eigenstates of the annihilation operator,

E(θα, θβ) = O(0,0; θα, θβ)â[O(0,0; θα, θβ)]†,

[E(θα, θβ)]† = O(0,0; θα, θβ)â†[O(0,0; θα, θβ)]†. (3.88)

And they obey the resolution of identity,

1
2π ∫ ∣α,β; θα, θβ⟩O O ⟨α,β; θα, θβ ∣ = 1. (3.89)

For the bi-fractional coherent state of Eq. (3.67), these states are not the eigenstate

of the annihilation operator, but still obey the resolution of identity,

1
2π cos(θα − θβ)∫ ∣α,β; θα, θβ⟩ ⟨α,β; θα, θβ ∣ = 1. (3.90)

It can also be written in the complex form as,

∫ d2w

2π ∣w(θα, θβ)⟩ ⟨w(θα, θβ)∣ = 1. (3.91)
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A special case of the bi-fractional displacement operators, when α = β = 0, acting on

the displacement operator is given as,

∣α,β; θα, θβ⟩O = ∣−β cos θα − α sin θα, α cos θβ − β sin θβ; θα, θβ⟩ exp (iX)

X = 1
4(β

2 − α2)[sin 2θβ − sin 2θα] + αβ(cos2 θα − cos2 θβ)

O(0,0; θα, θβ)D̂(α,β) = O(−β cos θα − α sin θα, α cos θβ − β sin θβ; θα, θβ). (3.92)

It is easily proved by first taking O(0,0; θα, θβ)D̂(α,β), so that,

O(0,0; θα, θβ)D̂(α,β) = O(−β cos θα − α sin θα, α cos θβ − β sin θβ; θα, θβ) exp (iX)

= ∣ cos(θα − θβ)∣1/2∫ dα′dβ′ exp [− i2(α
′2 cot θβ + β′2 cot θα)]

× D̂(α + α′, β + β′) exp[iαβ′ − iα′β]. (3.93)

Changing variables and acting on a vacuum state results in,

O(0,0; θα, θβ) ∣α,β⟩ = ∣ cos(θα − θβ)∣1/2 exp (iX)∫ dγdλK(γ,α cos θβ − β cos θβ; θβ)

×K(−λ,−β cos θα − α sin θα; θα) ∣γ, λ⟩ , (3.94)

thus proving Eq. (3.92). Similarly, the effect of acting the displacement operator on

both sides of the bi-fractional parity operator [4] is studied.

D̂(γ, ξ)O(α,β; θα, θβ)D̂†(γ, ξ) = O(α + 2γ sin θα, β + 2ξ sin θβ; θα, θβ)

× exp[i(2αγ cos θα + γ2 sin 2θα)]

× exp[i(2βξ cos θβ + ξ2 sin 2θβ)] (3.95)
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The proof is given as follows,

D̂(γ, ξ)O(α,β; θα, θβ)D̂(−γ,−ξ) = ∣ cos(θα − θβ)∣1/2∫ dα′dβ′ K (β,α′; θβ)K (α,−β′; θα)

× D̂(γ, ξ)D̂(α′, β′)D̂(−γ,−ξ). (3.96)

Using Eq. (2.35), the relation for three displacement operators,

D̂(γ, ξ)D̂(α′, β′)D̂(−γ,−ξ) = D̂(α′, β′) exp[2iξα′ − 2iγβ′]. (3.97)

Expanding each of the kernels of the fractional Fourier transform,

D̂(γ, ξ)O(α,β; θα, θβ)D̂(−γ,−ξ)

= [1 + i cot θα

2π ]
1/2
[1 + i cot θβ

2π ]
1/2
∣ cos(θα − θβ)∣1/2∫ dα′dβ′D̂(α,β′)

× exp [−i(β + 2ξ sin θβ)2 cot θβ

2 − iα
′2 cot θβ

2 + iα
′(β + 2ξ sin θβ)

sin θβ

+ 2iβξ cos θβ + iξ2 sin 2θβ]

× exp [i(α + 2γ sin θα)2 cot θα

2 − iβ
′2 cot θα

2 − iβ
′(α + 2γ sin θα)

sin θα

+ 2iαγ cos θα + iγ2 sin 2θα] .

(3.98)
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Then using Eq. (3.24) gives,

D̂(γ, ξ)O(α,β; θα, θβ)D̂(−γ,−ξ) = ∣ cos(θα − θβ)∣1/2∫ dα′dβ′D̂(α,β′)K(J1, α
′; θβ)

×K(J2,−β′; θα) exp[2iβξ cos θβ + iξ2 sin 2θβ + 2iαγ cos θα + iγ2 sin 2θα]

= O(J1, J2; θα, θβ) exp[2iβξ cos θβ + iξ2 sin 2θβ + 2iαγ cos θα + iγ2 sin 2θα]

J1 = β + 2ξ sin θβ; J2 = α + 2γ sin θα (3.99)

This proves Eq. (3.95).

3.8 Bi-fractional distance in phase space

The overlap of two Glauber coherent states has already been given in Eq. (2.73). The

equivalent is given in terms of bi-fractional coherent states,

⟨α,β; θα, θβ ∣α′, β′; θα, θβ⟩ = exp{−1
2
DS(α − α′, β − β′∣θα, θβ)

cos2(θα − θβ)
}

× exp [ i2(α
′2 − β′2 − α2 + β2) tan(θα − θβ) +

i(αβ′ − α′β)
cos(θα − θβ)

]

DS(α − α′, β − β′∣θα, θβ) = (α − α′)2 + 2(α − α′)(β − β′) sin(θα − θβ) + (β − β′)2,

(3.100)

where DS(α − α′, β − β′∣θα, θβ) is the distance between two points, in terms of coordi-

nates in a non-orthogonal frame, given in Eq. (3.21). The denominator cos2(θα − θβ)

can be understood as a Jacobian as variables are changed from an orthogonal frame

to variables in a non-orthogonal frame (see section 3.5). Eq. (3.100) is proved using
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3.8 Bi-fractional distance in phase space

Eq. (3.24) for the two bi-fractional coherent states:

⟨α,β; θα, θβ ∣α′, β′; θα, θβ⟩ = R∫ dγdλdγ′dλ′ exp [− i2(γ
′2 − γ2) cot θβ + i(βγ + β′γ′) csc θβ]

× exp [− i2(λ
′2 − λ2) cot θα − i(αλ + α′λ′) csc θα] ⟨0∣D̂(γ, λ)D̂(γ′, λ′)∣0⟩ (3.101)

where,

R = [4π2 sin θα sin θβ]−1 exp [ i2(α
2 cot θα + β2 cot θβ − α′2 cot θα − β′2 cot θβ)]. (3.102)

Then variables are changed, perform integrating that gives Dirac delta functions and

reduce Eq. (3.101) to Eq. (3.100).

Consequently, the overlap can be written in complex states ∣w(θα, θβ)⟩ and ∣v(θα, θβ)⟩

so that,

⟨w(θα, θβ)∣v(θα, θβ)⟩ = exp [−1
2 ∣w(θα, θβ)∣2 −

1
2 ∣v(θα, θβ)∣2 +w∗(θα, θβ)v(θα, θβ)]

× exp [ i2[C
∗w(θα, θβ)2 +Cw∗(θα, θβ)2] tan(θα − θβ)]

× exp [ i2[C
∗v(θα, θβ)2 +Cv∗(θα, θβ)2] tan(θα − θβ)] (3.103)

where,

C = 1
4[exp(−i2θα) + exp(−i2θβ)], v =

α′Eα + iβ′Eβ

cos(θα − θβ)
(3.104)

The overlap of the two bi-fractional coherent states (Eqs. (3.100, 3.103)) easily leads

to the bi-fractional distance GS(α − α′, β − β′∣θα, θβ),

GS(α − α′, β − β′∣θα, θβ) = exp [−DS(α − α′, β − β′∣θα, θβ)
cos2(θα − θβ)

] (3.105)
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3.9 Bargmann representation of bi-fractional coherent state ∣α,β; θα,0⟩

And can also be given in the complex notation as,

GS(w, v∣θα, θβ) = exp(−∣w(θα, θβ) − v(θα, θβ)∣2) (3.106)

The first form of the bi-fractional distance is given in complex notation of w(θα, θβ)

and v(θα, θβ) and the second is derived by using Eqs. (3.77, 3.104). As shown above,

the proof is easier if done in the non-complex notations of α,β.

3.9 Bargmann representation of bi-fractional co-

herent state ∣α,β; θα, 0⟩

The Bargmann representation [11, 73] for a normalised state ∣g⟩

B(α,β) = g (α,β; π2 ,
π

2) exp [12(α
2 + β2)] . (3.107)

is a Bargmann function with respect to the Glauber coherent states ∣α,β; π
2 ,

π
2 ⟩.

We define the bargmann function for a generalised coherent state as,

B(γ, ζ; θα, θβ) = ⟨γ, ζ;
π

2 ,
π

2 ∣α,β; θα, θβ⟩ exp [12(γ
2 + ζ2)] (3.108)

Taking an example, we calculate the Bargmann functions B(γ, ζ; θα,0) for the coherent

states by taking a special case with only θβ = 0. The special case considered is for

convenience of calculating the overlap of bi-fractional coherent states with one state

being the ordinary coherent states (θα = π
2 , θβ = π

2 ). Previously, the general case of the

overlap of the bi-fractional coherent states was introduced and here a special case of
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3.9 Bargmann representation of bi-fractional coherent state ∣α,β; θα,0⟩

the bi-fractional coherent state is taken,

∣α,β; θα,0⟩ = ∣ cos θα∣1/2∫ dα′dβ′δ (β − α′)K (α,−β′; θα) ∣α′, β′;
π

2 ,
π

2 ⟩

= ∣ cos θα∣1/2∫ dβ′K (α,−β′; θα) ∣β, β′;
π

2 ,
π

2 ⟩ , (3.109)

and give the overlap as,

⟨γ, ζ; π2 ,
π

2 ∣α,β; θα,0⟩ = ∣ cos θα∣1/2∫ dβ′K (α,−β′; θα) ⟨γ, ζ;
π

2 ,
π

2 ∣β, β
′; π2 ,

π

2 ⟩

= ∣ cos θα∣1/2∫ dβ′K (α,−β′; θα)

× exp [−1
2(γ

2 + ζ2 + β′2 + β2) + (γ − iζ)(β + iβ′)] . (3.110)

From this follows that the Bargmann function B(γ, ζ; θα,0) for the coherent state

∣α,β; θα,0⟩ is

B(γ, ζ; θα,0) = ∣ cos θα∣1/2∫ dβ′K (α,−β′; θα) ⟨γ, ζ;
π

2 ,
π

2 ∣β, β
′; π2 ,

π

2 ⟩ exp [12(γ
2 + ζ2)]

= ∣ cos θα∣1/2∫ dβ′K (α,−β′; θα)

× exp [−1
2(β

′2 + β2) + (γ − iζ)(β + iβ′)] . (3.111)
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The result is a Gaussian integral and taking Γ = γ − iζ is

B(Γ; θα,0) = ∣ cos θα∣1/2 exp(AΓ2 +BΓ +Σ)

A = − 1
2(1 + i cot θα)

B = β + α

sin θα(1 + i cot θα)

Σ = −1
2(β

2 + α2). (3.112)

This result should be compared and contrasted with the Bargmann function for

squeezed coherent state, Ŝ(Γ)D̂(z) ∣0⟩. which is,

B(Γ) = (1 − ∣a∣2)1/4 exp(1
2aΓ2 + bΓ + c)

a = − tanh(r2) e
−iϕ

b = z(1 − ∣a∣2)1/2

c = −1
2a
∗z2 − 1

2 ∣z∣
2. (3.113)

If in Eq. (3.113), a is replaced with 2A, b with B, and c with Σ, Eq. (3.112) is

obtained. This shows the squeezing property of the bi-fractional coherent state.

3.10 Statistical properties of the coherent states

∣α,β; θα, 0⟩

Given the Bargmann representation of the coherent state ∣α,β; θ,0⟩, the wavefunc-

tion [73] for such a state can be calculated. For the coherent states ∣α,β; θα,0⟩ the
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3.10 Statistical properties of the coherent states ∣α,β; θα,0⟩

wavefunction F (x) is calculated using the relations

F (x) = π−3/4 exp(−x
2

2 )∫ dpB((x + ip)
√

2; θα,0) exp(−p2), (3.114)

and the Bargmann function of Eq. (3.112). Analytical computation results in,

F (x) = ∣ cos θα∣1/2π−1/4 ( 1
1 + 2A)

1/2
exp(κx

2 + 23/2Bx + λ
2 + 4A )

κ = 2A − 1; λ = 2Σ + 4AΣ −B2, (3.115)

where A,B,Σ have been given in Eq. (3.112).

3.10.1 Uncertainty relation

Having already defined the uncertainty principle in section (2.6), it is also known that

Heisenberg’s uncertainty can be calculated with the Wigner function [24, 72]. The

position and momentum operators with respect to α and β are denoted as, α̂ and β̂

and show that,

⟨αT ⟩ = Tr[α̂x
T Θ] = 2∫ dα αT ⟨α∣Θ ∣α⟩ = ∫ dαdβ αT W (α,β),

⟨βT ⟩ = Tr[β̂x

T
Θ] = 2∫ dβ αT ⟨β∣Θ ∣β⟩ = ∫ dαdβ βT W (α,β), (3.116)

where ∣α⟩ and ∣β⟩ are eigenstates for position and momentum.

Eq. (3.116) above, can easily be derived using Eqs. (2.94,2.95) with the position and

momentum operators acting as in Eq. (2.17). However, since the wavefunction has
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3.10 Statistical properties of the coherent states ∣α,β; θα,0⟩

been defined in Eq. (3.114), then the uncertainty is given as,

∆xx = ⟨x2⟩ − ⟨x⟩2 ; ⟨xn⟩ =∫ dx xn∣F (x)∣2

∆pp = ⟨p2⟩ − ⟨p⟩2 ; ⟨pn⟩ =∫ dx [F (x)]∗p̂nF (x)

∆xp = ⟨
1
2(xp + px)⟩ − ⟨x⟩ ⟨p⟩

⟨12(xp + px)⟩ = −
i

2 +∫ dx[F (x)]∗x(−i∂x)F (x), (3.117)

and similarly for ∆p. The Robertson-Schrödinger form of the uncertainty relation is

given as,

∆xx∆pp − [⟨
xp + px

2 ⟩ − ⟨x⟩ ⟨p⟩]
2
≥ 1

4 . (3.118)

Similarly, F (p) can be calculated from F (x) shown in Eq. (3.115),

⟨p⟩ = ∫ dx F ∗(x)(−iδx)F (x) =∫ −i(kx +
√

2β
1 + 2A )F ∗(x)F (x)dx

⟨p2⟩ = ∫ dx F ∗(x)(−iδx)2F (x) =∫ −
⎡⎢⎢⎢⎢⎣
(kx +

√
2β

1 + 2A )
2

+ k

1 + 2A

⎤⎥⎥⎥⎥⎦
F ∗(x)F (x)dx

⟨xp + px2 ⟩ =∫ dx F ∗(x) [x(−iδx) + (−iδxx)
2 F (x)dx] =∫ F ∗(x)[2x̂p̂ − i]F (x)dx

(3.119)

As expected for squeezed states, numerical calculations showed that for all angles
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3.10 Statistical properties of the coherent states ∣α,β; θα,0⟩

θα, the Robertson-Schrödinger relation gives

∆xx∆pp −∆2
xp =

1
4 (3.120)

The result shows the diversity in the interaction between (θα, θβ). Considering a

special case where θβ = 0 and yet the uncertainty relation depends only on β and not

on α or θα. This result is shown in Fig. (3.3), ∆pp is plotted as a function of θα.

Similarly, it is worth noting that,

∆2
xp =

1
2∆pp −

1
4 . (3.121)

The result is confirmed analytically by simplifying Eq. (3.114),

F (x) = 2− 1
2π−

3
4 [2π(1 + i cot θα)

i cot θα

]
1
2

exp(Rx2 + 2 3
2Sx + T ),

R = 2i − cot θα; S = β cot θα − i(β +
α

sin θα

) ; T = −2β2 cot θα + i(α2 + β2 + 2αβ
sin θα

) ,

and calculating ∣F (x)∣2 and results to,

∣F (x)∣2 = π− 1
2 sec θα exp (−x2 + 2

√
2βx − 2β2) . (3.122)

From this the following is derived:

∫ ∣F (x)∣2dx = 1
cos θα

⟨x⟩ = β
√

2; ⟨x2⟩ = 2β2 + 1
2; ∆xx =

1
2 . (3.123)
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3.11 Discussion

3.10.2 Second order correlation

Using a Taylor expansion the Bargmann function B(Γ; θα,0) of Eq. (3.112), with

α = β = 2, can be expressed as,

B(Γ; θα,0) =
∞
∑
n=0

anΓn

√
n!
. (3.124)

Numerically the series is truncated at 30 and can be shown that in this case ∑∣an∣2 =

0.999. The number of photons and second order correlation can be calculated using

the formulas

⟨nν⟩ =
30
∑
n=0

nν ∣an∣2; g(2) = ⟨n
2⟩ − ⟨n⟩
⟨n⟩2

. (3.125)

In Fig. (3.3), ⟨n⟩ and g(2) are shown as a functions of θα. It is seen that for θα < 0.8

there is antibunching (g(2) < 1).

3.11 Discussion

This chapter provides a deeper insight into the phase space method, by considering

parity and displacement operators, which are all important tools in phase space meth-

ods. The parity operators are a two-dimensional Fourier transform of the displacement

operators (Eq. (2.101)). Replacing the two Fourier transforms, with two fractional

Fourier transforms, results in the bi-fractional displacement operators O(α,β; θα, θβ).

The importance of the pre-factor ∣ cos(θα−θβ)∣1/2 in these operators was highlighted and

shown that the O(α,β; θα, θβ) are special cases of the squeezing operators in section

(3.6.1.4). Nevertheless, it was stated that these bi-fractional displacement operators

in the context of this thesis are used for interpolation in phase space.

Acting with the bi-fractional displacement operators on the vacuum state gives the
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3.11 Discussion

bi-fractional coherent states, which are special cases of squeezed states. Furthermore,

the uncertainties and statistical properties of these states were calculated. Coherent

states are all known to be analytic [73], and the analyticity property and resolution

of identity were studied detailing that although the coherent states are analytic with

respect to z, the bi-fractional coherent states (due to its bi-fractional nature) is analytic

with respect to a combination of z and z∗ symbolised as the term w. This non-intuitive

property of the bi-fractional coherent state adds novelty to this work and gives a new

perspective to the study of coherent states.

The distance between two Glauber coherent states is well known [73] and the bi-

fractional distance introduced in section (3.8) is the generalised form of that between

two Glauber coherent states [73]. In section (3.5), the relevance of the pre-factor,

cos(θα − θβ)1/2 of Eqs. (3.24, 3.74) was explored; this pre-factor will be also seen later

in the bi-fractional Wigner function of Chapter 4.

In explaining the analysis in Fig. (3.3), the concepts of bunching and anti-bunching

need to be considered. In thermal light field for example, photon distribution is

not completely random [61], instead there is a time distribution between photons,

this concept is known as bunching. On the other hand, photon anti-bunching is

characteristic when photons are more equally spaced [81]. Anti-bunching exibits sub-

Poisson photon statistics; that is a photon number distribution for which the variance

is less than the mean [81]. Bunching in thermal light is a classical property with super-

Poisson characteristics while anti-bunching is non-classical [71]. Coherent states for

instance have Poisson characteristics which is obvious from the details in Fig. (2.1)

and yields random photon spacing.

One other way of detecting bunching or anti-bunching is by using the second order

correlation, which is defined as the probability of detecting two simultaneous photons,

normalised by the probability of detecting two photons [49]. The relation for second
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3.11 Discussion

order correlation, g(2), in Eq. (3.125), for bunching g(2) ≥ 1 and for anti-bunching

g(2) < 1 [49]. In Fig. (3.3), it can be seen that for certain values of θα, there is

anti-bunching but predominantly for most values of θα there is bunching.
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Fig. (3.3) The uncertainty ∆pp, the g(2) and the average number of photons ⟨n⟩ as a
function of θα (in rads), for the coherent states ∣2,2; θα,0⟩
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Chapter 4

Application to bi-fractional

transforms

4.1 Introduction

In Chapter 3, the concept of fractional Fourier transforms in phase space methods

was pointed out and its importance in quantum mechanics. The generalisation of

both the displacement operator into the bi-fractional displacement operator and the

bi-fractional coherent states were explained. In this chapter, the same principle will

be applied by generalising the Wigner function into the bi-fractional Wigner function

and give the marginal properties of the bi-fractional Wigner functions. Other phase

space quantities will be reviewed and the concept of the fractional Fourier transform

will be applied to them, including the Moyal star formalism [12, 55] for two non-

commutating operators and the Berezin formalism [14–17] which as explained earlier

helps in giving a deeper understanding of the nature of a quantum particle. In each

case the novelty of the work is stressed in terms of the interpolation of these quantities

beyond the conventional cases of Fourier transforms. The new formalisms are called

the bi-fractional Berezin formalism and bi-fractional Moyal star product over angles
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4.2 Interpolations between Wigner and Weyl functions

(θα, θβ). Previously known concepts of the Berezin formalism and Moyal star product

are special cases of their bi-fractional counterparts at (θα = θβ = π
2 ).

An important aspect which is not pursued in detail is the bi-fractional P− function,

however the building block deriving the bi-fractional P−function by introducing the

bi-fractional distance between two bi-fractional coherent states. Furthermore, the bi-

fractional Q−function is introduced in Eq. (4.19).

4.2 Interpolations between Wigner and Weyl func-

tions

Taking the trace of the bi-fractional displacement operators with an operator gives

the bi-fractional Wigner functions. Wigner and Weyl functions are special cases of the

bi-fractional Wigner functions, and this is followed by introducing the bi-fractional

Q-functions, and possible extensions to bi-fractional P−functions.

4.2.1 Bi-fractional Wigner functions

The Weyl and Wigner functions have been defined earlier in Eqs. (2.90, 2.93). From

Eq. (2.102) it follows that the Wigner and Weyl functions are related through the

two-dimensional Fourier transform [24, 25], discussed previously in Eq. (2.101),

W (α,β∣Θ) = 1
2π ∫ dα′dβ′W̃ (α′, β′∣Θ) exp [i(βα′ − β′α)] . (4.1)
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4.3 Marginal properties for bi-fractional Wigner function

In analogy with Eq. (3.24) the bi-fractional Wigner function is defined from Eq.

(3.24),

H(α,β; θα, θβ ∣Θ) = Tr[ΘO(α,β; θα, θβ)]

= ∣ cos(θα − θβ)∣1/2∫ dα′dβ′K (β,α′; θβ)K (α,−β′; θα) W̃ (α′, β′∣Θ).

(4.2)

H(α,β; θα, θβ ∣Θ) includes both the Wigner and Weyl functions as special cases:

H(α,β; 0,0∣Θ) = W̃ (β,−α∣Θ)

H(α,β; π2 ,
π

2 ∣Θ) =W (α,β∣Θ)

H (α,β;π,π∣Θ) = W̃ (−β,α∣Θ). (4.3)

In previous work, a single fractional Fourier transform concept was derived between

Wigner and Weyl functions [23] and this gives generalised Wigner functions that de-

pend on one angle. The new formalism described here for the Wigner function uses a

double fractional Fourier transform (bi-fractional Wigner functions) that depends on

two angles, (θα, θβ).

4.3 Marginal properties for bi-fractional Wigner

function

The bi-fractional Wigner function, H(α,β; θα, θβ ∣Θ) discussed in section (4.2.1) has ob-

vious marginal properties which are similar to those given in section (3.6.1.3). Marginal

properties also hold for H(α,β; θα, θβ ∣Θ)∣2, so that integration of ∣H(α,β; θα, θβ ∣Θ)∣2
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4.3 Marginal properties for bi-fractional Wigner function

with respect to α gives,

∫ dα∣H(α,β; θα, θβ ∣Θ)∣2 =
√

2π∣ cos(θα − θβ)∣∫ dx

×
RRRRRRRRRRR
∫ dα′ ⟨x − α′√

2
∣Θ ∣x + α′√

2
⟩K (β,α′; θβ)

RRRRRRRRRRR

2

. (4.4)

The proof is derived by using Eq. (4.2) which gives,

∫ dα∣H(α,β; θα, θβ ∣Θ)∣2 = ∣ cos(θα − θβ)∣∫ dα′dβ′K (β,α′; θβ)K (α,−β′; θα) W̃ (α′, β′∣Θ)

×∫ dα′′dβ′′dαK (−β,α′′;−θβ)K (−α,−β′′;−θα) W̃ (α′′, β′′∣Θ)

(4.5)

Using Eq. (3.13), integration with respect to α gives a delta function, and then

integration with respect β′′ gives

∫ dα ∣H(α,β; θα, θβ ∣Θ)∣2 = ∣ cos(θα − θβ)∣∫ dα′dα′′dβ′K (β,α′; θβ)K (−β,α′′;−θβ)

× W̃ (α′, β′∣Θ)W̃ (α′′,−β′∣Θ) (4.6)

Substituting the Weyl function of Eq. (2.90),

∫ dα ∣H(α,β; θα, θβ ∣Θ)∣2 = ∣ cos(θα − θβ)∣∫ dα′dα′′dβ′K (β,α′; θβ)K (−β,α′′;−θβ)

×∫ dx ⟨x − α′√
2
∣Θ ∣x + α′√

2
⟩ exp(i

√
2β′x)

∫ dy ⟨y − α
′′
√

2
∣Θ ∣y + α

′′
√

2
⟩ exp(−i

√
2β′y) (4.7)
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4.3 Marginal properties for bi-fractional Wigner function

Further integration with respect to β′ gives a Dirac delta function, and changing

variables, x→ x − α′√
2 and y → y − α′′√

2 , produces,

∫ dα∣H(α,β; θα, θβ)∣2 =
√

2π∣ cos(θα − θβ)∣∫ dα′dx ⟨x − α′√
2
∣Θ ∣x + α′√

2
⟩

×K (β,α′; θβ)∫ dα′′ ⟨x − α
′′
√

2
∣Θ ∣x + α

′′
√

2
⟩K (−β,α′′;−θβ)

=
√

2π∣ cos(θα − θβ)∣∫ dx
RRRRRRRRRRR
∫ dα′ ⟨x − α′√

2
∣Θ ∣x + α′√

2
⟩K (β,α′; θβ)

RRRRRRRRRRR

2

(4.8)

The second marginal property is derived by integration of ∣H(α,β; θα, θβ ∣Θ)∣2 with

respect to β, this gives

∫ dβ∣H(α,β; θα, θβ ∣Θ)∣2 =
√

2π∣ cos(θα − θβ)∣∫ dp

×
RRRRRRRRRRR
∫ dβ′ ⟨p − β′√

2
∣Θ ∣p + β′√

2
⟩K (α,−β′; θα)

RRRRRRRRRRR

2

(4.9)

The proof of Eq. (4.9) is similar to that above with respect of α.

Integration of ∣H(α,β; θα, θβ ∣Θ)∣2 with respect to both α and β gives

∫ dαdβ∣H(α,β; θα, θβ ∣Θ)∣2 = π∣ cos(θα − θβ)∣Tr(Θ2) (4.10)
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4.4 Numerical implementations

The proof is derived by using Eqs. (4.4, 4.9) so that,

∫ dαdβ∣H(α,β; θα, θβ ∣Θ)∣2 = λ∫ dαdβdα′dβ′dα′′dβ′′

× exp [ i2(α
′′2 − α′2) cot θβ +

i

2(β
′′2 − β′2) cot θα]

× exp [iβ(α
′ + α′′)

sin θβ

− iα(β
′ + β′′)

sin θα

]

×Tr[ΘD(α′, β′)]Tr[ΘD(α′′, β′′)] (4.11)

where

λ = ∣ cos(θα − θβ)∣ [
1 + i cot θα

2π ]
1/2
[1 − i cot θα

2π ]
1/2
[1 + i cot θβ

2π ]
1/2
[1 − i cot θβ

2π ]
1/2

= ∣ cos(θα − θβ)∣
4π2 sin θα sin θβ

(4.12)

Integration over α,β gives δ-functions, and results in Eq. (4.10).

4.4 Numerical implementations

As an example, consider Θ = ∣s⟩ ⟨s∣ where ∣s⟩ is the following superposition of two

Glauber coherent states:

∣s⟩ = N[∣α0, β0⟩ + ∣−α0,−β0⟩] (4.13)
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4.4 Numerical implementations

where N is a normalisation factor. In this case

ΘA = N 2[∣α0, β0⟩ ⟨α0, β0∣ + ∣−α0,−β0⟩ ⟨−α0,−β0∣]

ΘC = N 2[∣α0, β0⟩ ⟨−α0,−β0∣ + ∣−α0,−β0⟩ ⟨α0, β0∣]

Θ = ΘA +ΘC (4.14)

where ΘA and ΘC are the ‘auto-part’ and the ‘cross-part’ of the density matrix, and

the normalisation constant is N= 1
2+2e−2∣α0+β0 ∣2 . Inserting this in Eq. (4.2) produces

the ‘auto-part’ and the ‘cross-part’ of the H(α,β; θα, θβ), shown with A and C in the

figures.

For the Wigner function, the auto-terms are implemented as,

ΘA = ∫ dx ⟨x∣α0, β0⟩ ⟨α0, β0∣ − x +
√

2α⟩ e−i
√

2βx+iαβ

+∫ ⟨x∣ − α0,−β0⟩ ⟨−α0,−β0∣ − x +
√

2α⟩ e−i
√

2βx+iαβdx

= N 2 [exp(−β
2

2 −
α2

2 + 2αα0 − 2α0) + exp(−β
2

2 −
α2

2 − 2αα0 − 2α2
0)] (4.15)

and the cross terms,

ΘC = ∫ dx ⟨x∣α0, β0⟩ ⟨−α0,−β0∣ − x +
√

2α⟩ e−i
√

2βx+iαβ

+∫ dx ⟨x∣ − α0,−β0⟩ ⟨α0, β0∣ − x +
√

2α⟩ e−i
√

2βx+iαβ

= N 2 [exp(−β
2

2 −
α2

2 − 2iβα0) + exp(−β
2

2 −
α2

2 + 2iβα0)]

= N 2 [exp [−β
2

2 −
α2

2 ] cos (2βα0)] (4.16)
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4.4 Numerical implementations

The Weyl function is calculated,

ΘA = N 2 [(∣Z⟩ ⟨Z ∣) + (∣−Z⟩ ⟨−Z ∣)]

= ∫ ⟨x∣α0, β0⟩ ⟨α0, β0∣x +
√

2α⟩ ei
√

2βx+iαβdx

+∫ ⟨x∣ − α0,−β0⟩ ⟨−α0,−β0∣x +
√

2α⟩ ei
√

2βx+iαβdx

= N2 [exp(−β
2

2 −
α2

2 + i2α0β) + exp(−β
2

2 −
α2

2 − i2α0β)] (4.17)

and the cross terms,

ΘC = N 2(∣α0, β0⟩ ⟨−α0,−β0∣ + ∣−α0,−β0⟩ ⟨α0, β0∣)

= ∫ ⟨x∣α0, β0⟩ ⟨−α0,−β0∣x +
√

2α⟩ ei
√

2βx+iαβ +∫ ⟨x∣ − α0,−β0⟩ ⟨α0, β0∣x +
√

2α⟩ ei
√

2βx+iαβdx

= exp [−β
2

2 −
α2

2 + 2αα0 − 2α2] + exp [−β
2

2 −
α2

2 − 2αα0 − 2α2]

The plots given in Figs. (4.1, 4.2, 4.4, 4.5, 4.6, 4.7, 4.8) include, the real Weyl

function H(α,β; 0,0), real Wigner function H(α,β; π
2 ,

π
2 ) and other bi-fractional com-

binations of varying angles across the continuum of (θα, θβ) given in H(α,β; π
4 ,

π
4 ),

H(α,β; π
2 ,

π
4 ), H(α,β; π

4 ,
π
2 ), H(α,β; 0, π

4 ) and H(α,β; π
4 ,0) correspondingly, for α0 =

2 and β0 = 0.

In the Weyl function of Fig. (4.1) the auto-terms are in the middle and the cross-

terms are in the ‘wings’, while in the Wigner function of Fig. (4.2), the cross-terms

are in the middle and the auto-terms are in the wings. Moving from the Wigner

function to the Weyl function, the auto-terms move from the wings to the centre. The

movement of the auto-terms and cross terms is quite undefined in the intermediate

functions as shown in the figures with both terms in the middle and the wings. It is
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4.4 Numerical implementations

Fig. (4.1) H(α,β; 0,0)(Weyl function) for the state of Eq. (4.2) with α = 2 and β =
0. The arrows indicate the autoparts (A) and cross-parts (C)

also worth noting that the effect of θα and θβ are different as indicated by Fig. (4.7)

and Fig. (4.8). Therefore for special cases where either θα or θβ equals zero and the

other angle is between 0 and π
2 , varying results were observed. More questions can

also be considered on analysis of the uncertainty relation where it is not a function of

α but of β when θβ = 0. Arrows are used in the figures indicate the auto-terms (A)

and the cross-terms (C).

Another consideration is that for all cases where θα = θβ, the graphs are symmetric.
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Fig. (4.2) H(α,β; π
2 ,

π
2 )(Wigner function) for the state of Eq. (4.2) with α = 2 and β

= 0. The arrows indicate the autoparts (A) and cross-parts (C)
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4.4 Numerical implementations

Fig. (4.3) |H(α,β; π
4 ,

π
4 )| for the state of Eq. (4.2) with α = 1.8 and β = 0.
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4.4 Numerical implementations

Fig. (4.4) H(α,β; π
4 ,

π
4 ) for the state of Eq. (4.2) with α = 2 and β = 0.
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Fig. (4.5) H(α,β; π
2 ,

π
4 ) for the state of Eq. (4.2) with α = 2 and β = 0.
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Fig. (4.6) H(α,β; π
4 ,

π
2 ) for the state of Eq. (4.2) with α = 2 and β = 0.
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Fig. (4.7) H(α,β; 0, π
4 ) for the state of Eq. (4.2) with α = 2 and β = 0.
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Fig. (4.8) H(α,β; π
4 ,0) for the state of Eq. (4.2) with α = 2 and β = 0.
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4.5 Bi-fractional Q-functions and bi-fractional P -

functions

Q-function (or Husimi function) for a trace class operator Θ, is defined as

Q(α,β∣Θ) = ⟨α,β∣Θ ∣α,β⟩ , (4.18)

and define bi-fractional Q-functions with respect to the bi-fractional coherent states

as follows:

Q(α,β; θα, θβ ∣Θ) = ⟨α,β; θα, θβ ∣Θ ∣α,β; θα, θβ⟩ . (4.19)

Using the resolution of the identity in Eq. (3.72) gives the relation,

1
2π ∫ dαdβ Q(α,β; θα, θβ ∣Θ) = TrΘ. (4.20)

Clearly

Q(α,β; 0,0∣Θ) = Q(β,−α∣Θ); Q(α,β; π2 ,
π

2 ∣Θ) = Q(α,β∣Θ). (4.21)

The bi-fractional Q-functions are generalisations of the Q-functions.

The bi-fractional P -function P (α,β; θα, θβ ∣Θ) is also introduced with respect to

the bi-fractional coherent states, as

Θ = 1
π ∫ dα dβP (α,β; θα, θβ ∣Θ) ∣α,β; θα, θβ⟩ ⟨α,β; θα, θβ ∣ . (4.22)

In the case θα = θβ = π
2 , it reduces to the ordinary P -function P (α,β).

Using Eq. (3.110), Q (α,β; θα,0∣Θ) is calculated and various instances are shown
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Q(α, β; 0, 0)

Fig. (4.9) The Q-function Q (α,β; 0,0) for the state of Eq. (4.13) with α0 = 1.2 and
β0 = 0

in Fig. (4.9, 4.10), presenting Q (α,β; 0,0∣Θ) and Q (α,β; π
4 ,0∣Θ) respectively for

the state of Eq. (4.13) with α0 = 1.2 and β0 = 0. The result show the rotation of

Q (α,β; θα,0∣Θ), as θα changes.
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Fig. (4.10) The bi-fractional Q-function Q (α,β; π
4 ,0) for the state of Eq. (4.13) with

α0 = 1.2 and β0 = 0

4.6 Bi-fractional Moyal star formalism

The Moyal star formalism in phase space has already been explained in section (2.11).

An extension is given by defining the bi-fractional equivalent which is called, the ’bi-

fractional Moyal formalism’. The starting point is by giving the generalised form of

the Moyal equation given for arbitrary states ∣γ⟩ , ∣ζ⟩ , ∣ϵ⟩ , ∣δ⟩,

1
π cos(θα − θβ)∫ dαdβ ⟨γ∣O†(α,β; θα, θβ)∣δ⟩ ⟨ϵ∣O(α,β; θα, θβ)∣ζ⟩ = ⟨γ∣ζ⟩ ⟨ϵ∣δ⟩ . (4.23)
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4.6 Bi-fractional Moyal star formalism

The proof is relatively obvious using the matrix properties of the displacement

operators (Eq. (2.40)) and resolution of identity property (Eq. (2.18)),

1
π cos(θα − θβ)∫ dαdβ ⟨γ∣O†(α,β; θα, θβ)∣δ⟩ ⟨ϵ∣O(α,β; θα, θβ)∣ζ⟩

= 1
π ∫ dαdβdα′dβ′dα′′dβ′′ ⟨γ∣ D̂(α′, β′) ∣δ⟩ ⟨ϵ∣ D̂(α′′, β′′) ∣ζ⟩

×K(−β,α′;−θβ)K(−α,−β′;−θα)K(β,α′′; θβ)K(α,−β′′; θα)

= 1
π ∫ dα′′dβ′′ ⟨γ∣D†(α′′, β′′) ∣δ⟩ ⟨ϵ∣D(α′′, β′′) ∣ζ⟩ = ⟨γ∣ζ⟩ ⟨ϵ∣δ⟩ . (4.24)

The last part of Eq. (4.24) above has already been proved in Eq. (2.113). Furthermore,

the operator, Θ which was previously given in terms of the displacement operator is

now replaced with the bi-fractional displacement operators,

Θ = 1
π cos(θα − θβ) ∫ dαdβ Tr[O†(α,β; θα, θβ ∣Θ)]O(α,β; θα, θβ)

= 1
π cos(θα − θβ) ∫ dαdβ H∗(α,β; θα, θβ ∣Θ)O(α,β; θα, θβ). (4.25)

The proof is similar to that of Eq. (4.24) shown above and is given by,

1
π cos(θα − θβ) ∫ dαdβ H∗(α,β; θα, θβ ∣Θ)O(α,β; θα, θβ)

= 1
π cos(θα − θβ) ∫ dαdβ Tr[O†(α,β; θα, θβ ∣Θ)]O(α,β; θα, θβ)

= 1
π ∫ dαdβdα′dβ′dα′′dβ′′ Tr[D̂†(α′, β′)Θ]D̂(α′′, β′′)K(−β,α′;−θβ)K(−α,−β′;−θα)

×K(β,α′′; θβ)K(α,−β′′; θα) =
1
π ∫ dαdβ Tr[D̂†(α,β)Θ]D̂(α,β) = Θ. (4.26)

The last equality is already known as shown in Eq. (2.115). The proof can also be
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4.6 Bi-fractional Moyal star formalism

shown using Eq. (4.23) and taking the matrix elements on both sides of the operator,

⟨z∣Θ∣w⟩ = 1
π cos(θα − θβ) ∫ dαdβ H∗(α,β; θα, θβ ∣Θ) ⟨z∣O(α,β; θα, θβ)∣w⟩ , (4.27)

and using the resolution of identity it can also be shown that,

H∗(α,β; θα, θβ ∣Θ) = Tr [ΘO†(α,β; θα, θβ)] =
1
π2 ∫ d2z d2u ⟨z∣Θ∣u⟩ ⟨u∣O†(α,β; θα, θβ)∣z⟩ .

(4.28)

Thus combining Eqs. (4.28, 4.27, 4.23) proves Eq. (4.25). It further leads to the case

of two operators, Θ1Θ2,

Θ1Θ2 =
1

[π cos(θα − θβ)]2 ∫ dα′dβ′dαdβ Tr[O†(α,β; θα, θβ ∣Θ1]

×Tr[O†(α′, β′; θα, θβ ∣Θ2] O(α,β; θα, θβ) O(α′, β′; θα, θβ)

= 1
[π cos(θα − θβ)]2 ∫ dα′dβ′dαdβ H∗(α,β; θα, θβ ∣Θ1) H∗(α′, β′; θα, θβ ∣Θ2)

× O(α,β; θα, θβ) O(α′, β′; θα, θβ). (4.29)

Correspondingly, the trace of a product of two operators can be given as,

Tr(Θ1Θ2) =
1

π cos(θα − θβ) ∫ dαdβ H(α,β; θα, θβ ∣Θ1)H∗(α,β; θα, θβ ∣Θ2). (4.30)
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4.6 Bi-fractional Moyal star formalism

The proof is by using Eq. (4.2),

1
π cos(θα − θβ) ∫

dαdβH(α,β; θα, θβ ∣Θ1)H∗(α,β; θα, θβ ∣Θ2)

= 1
π cos(θα − θβ) ∫ dα′dβ′dα′′dβ′′W̃ (α′, β′∣Θ1)W̃ (α′′, β′′∣Θ2)

×K(−β,α′;−θβ)K(−α,−β′;−θα)K(β,α′′; θβ)K(α,−β′′; θα). (4.31)

Using Eq. (3.13) gives Dirac delta functions, which give

= 1
π ∫ dα′′dβ′′ W̃ (−α′′,−β′′∣Θ1)W̃ (α′′, β′′∣Θ2)

= 1
π ∫ dα′′dβ′′ ⟨x + α

′′
√

2
∣Θ1 ∣x −

α′′√
2
⟩ ⟨y − α

′′
√

2
∣Θ2 ∣x +

α′′√
2
⟩ ei
√

2β′′(y−x). (4.32)

Integrating with respect to β′′, and changing variables, reduces to,

=
√

2∫ dα′′dx ⟨x + α
′′
√

2
∣Θ1 ∣x −

α′′√
2
⟩ ⟨x − α

′′
√

2
∣Θ2 ∣x +

α′′√
2
⟩

= ∫ dk ⟨k∣Θ1Θ2∣k⟩ = Tr[Θ1Θ2]. (4.33)

Given the H(α,β; θα, θβ ∣Θ1) and H(α,β; θα, θβ ∣Θ2) of two operators Θ1,Θ2, the

following proposition gives the H(α,β; θα, θβ ∣Θ1Θ2) of their product which is the bi-

fractional Moyal star product,

H(ϵ, ζ; θα, θβ ∣Θ1Θ2)

= 1
π[cos(θα − θβ)]2 ∫ dα′dβ′dα dβ dγ dλ dγ′ dλ′ H∗(α,β; θα, θβ ∣Θ1) H∗(α′, β′; θα, θβ ∣Θ2)

×K(β, γ; θβ)K(α,−λ; θα)K(β′, γ′; θβ)K(α′,−λ′; θα)K(ζ,−(γ + γ′); θβ)K(ϵ, λ + λ′; θα)

× exp[iλγ′ − iγλ′]. (4.34)
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The bi-fractional Wigner function of Eq. (4.2) can be applied to the product of

two operators,

H(ϵ, ζ; θα, θβ ∣Θ1Θ2) = ∣ cos(θα − θβ)∣1/2∫ dϵ′ dζ ′ K(ζ, ϵ′; θβ)K(ϵ,−ζ ′; θα)

×Tr[D̂(ϵ′, ζ ′)Θ1Θ2] (4.35)

The main aim of the preceeding proofs for bi-fractional Moyal star formalism is to

show that Eq. (4.34) equals Eq. (4.35). For a case of two operators, from Eq. (4.25)

it is obvious that

Θ1Θ2 =
1

[π cos(θα − θβ)]2 ∫ dα′dβ′dαdβ H∗(α,β; θα, θβ ∣Θ1) H∗(α′, β′; θα, θβ ∣Θ2)

× O(α,β; θα, θβ) O(α′, β′; θα, θβ). (4.36)

Therefore,

H(ϵ, ζ; θα, θβ ∣Θ1Θ2) =
[cos(θα − θβ)]−3/2

2π3 ∫ dα′dβ′dαdβ dϵ′dζ ′H∗(α,β; θα, θβ ∣Θ1)

×H∗(α′, β′; θα, θβ ∣Θ2)Tr[O(α,β; θα, θβ)O(α′, β′; θα, θβ)D̂(ϵ′, ζ ′)]

×K(ζ, ϵ′; θβ)K(ϵ,−ζ ′; θα)

= [cos(θα − θβ)]−3/2

2π3 ∫ dα′dβ′dαdβ dϵ′dζ ′H∗(α,β; θα, θβ ∣Θ1)

×H∗(α′, β′; θα, θβ ∣Θ2)K(β, γ; θβ)K(α,−λ; θα)K(β′, γ′; θβ)K(α′,−λ′; θα)

×Tr[D̂(γ, λ)D̂(γ′, λ′)D̂(ϵ′, ζ ′)]K(ζ, ϵ′; θβ)K(ϵ,−ζ ′; θα). (4.37)
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Using a generalised form of Eq. (2.42) for three displacement operators gives

Tr[D̂(γ, λ)D̂(γ′, λ′)D̂(ϵ′, ζ ′)] = πδ(ϵ′ + γ + γ′)δ(ζ ′ + λ + λ′) exp[i(λγ′ − γλ′). (4.38)

Inserting this in Eq. (4.37) proves Eq. (4.35).

4.7 Bi-fractional Berezin formalism

The Berezin formalism is well known [11, 14–17, 40, 73] and quite similar to the Moyal

star product in that it analytically represents an operator. It can further be shown

that the Berezin product of two operators can be expanded as a Taylor series to give

classical terms and quantum corrections.

The proof begins by giving the relation of the bi-fractional Laplacian relevant for

deriving the Berezin formalism,

1
2π cos(θα − θβ)∫ dα′dβ′F (α′, β′)K exp [−K[Ds(α − α′, β − β′∣θα, θβ)]

cos2(θα − θβ)
]

= 1
2 [exp(

∆(α,β∣θα,θβ)

4K )F (α,β)] , (4.39)

which reduces for a special case of θα = θβ = π
2 to,

1
2π ∫ dα′dβ′F (α′, β′)K exp [−K [GS (α − α′, β − β′∣

π

2 ,
π

2)]]

= 1
2 [exp(

∆(α,β∣π2 , π
2 )

4K )F (α,β)] . (4.40)

The relation GS (α − α′, β − β′∣π2 , π
2) is a special case of the distance between two bi-

fractional coherent states given in Eq. (3.100). The bi-fractional Laplacian ∆(α,β∣θα,θβ)
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is given as,

∆(α,β∣θα,θβ) =
∂2

∂2α
+ ∂2

∂2β
− 2 ∂2

∂α∂β
sin(θα − θβ). (4.41)

The bi-fractional Laplacian reduces to the normal Laplacian for special cases of θα =

θβ = π
2 . The relation of Eq. (4.39), can also be given in complex terms, w,w∗,

with respect to the complex bi-fractional distance and equivalently the bi-fractional

Laplacian as,

1
2π ∫ d2wF (w,w∗)K exp [−K ∣w(θ1, θ2) − z(θ1, θ2)∣2] =

1
2 [exp(

∆(z,z∗∣θ1,θ2)

4K )F (z, z∗)] ,

∆(z,z∗∣θ1,θ2) = 4 ∂2

∂z∂z∗
− 2i [ ∂

2

∂2z
− ∂2

∂2z∗
] sin(θ1 − θ2). (4.42)

The relation given in Eq. (4.39) and Eq. (4.40) is easily proved by taking the

fractional Fourier transform and Fourier transforms respectively. The full proof is

given in Appendix A. Thus, the bi-fractional Berezin function is defined as,

B(z,w∗; θα, θβ ∣Θ) = exp [12 ∣z∣
2 + 1

2 ∣w∣
2 − zw∗] ⟨z∗(θα, θβ)∣Θ∣w∗(θα, θβ)⟩ . (4.43)

It is a generalisation of the Berezin formalism [73] and is analytic with respect to

w∗(θα, θβ) and z(θα, θβ). Previous work on the Berezin formalism showed the analyt-

icity with respect to the special cases of w∗(θα, θβ) and z(θα, θβ) for θα = θβ = π
2 and

in this sense this formalism is generalised.

Furthermore, the Berezin function for the product of two operators can be shown
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4.7 Bi-fractional Berezin formalism

to be

B(z, z∗; θα, θβ ∣Θ1Θ2) = ∫ d2w GS (z,w∣θα, θβ)B(z,w∗; θα, θβ ∣Θ1)B(w, z∗; θα, θβ ∣Θ2)

GS (z,w∣θα, θβ) = ∣ ⟨z(θα, θβ)∣w(θα, θβ)⟩ ∣2. (4.44)

Furthermore, using Eq. (4.42) it can be shown that,

B(z, z∗; θα, θβ ∣Θ1Θ2) =
1
2 [exp(∆ (ζ,ζ∗∣θα,θβ)

4
)B(z, ζ∗; θα, θβ ∣Θ1)B(ζ, z∗; θα, θβ ∣Θ1)]

ζ=z

(4.45)

Then using Taylor’s expansion it can be shown that,

B(z, z∗; θα, θβ ∣Θ1Θ2) =B(z, z∗; θα, θβ ∣Θ1)B(z, z∗; θα, θβ ∣Θ2)

+ ∂B(z, z
∗; θα, θβ ∣Θ1)
2∂z∗

∂B(z, z∗; θα, θβ ∣Θ2)
∂z

+ [i sin(θα − θβ)
∂2B(z, z∗; θα, θβ ∣Θ1)B(z, z∗; θα, θβ ∣Θ2)

4∂z2∗ ]

− [i sin(θα − θβ)
∂2B(z, z∗; θα, θβ ∣Θ1)B(z, z∗; θα, θβ ∣Θ2)

4∂z2 ] + ....

(4.46)

It is to be noted that for semi-classical studies, h̵1/2 is attached to each of the derivatives

and in the limit where h̵→ 0

B(z, z∗; θα, θβ ∣Θ1Θ2) ≈ B(z, z∗; θα, θβ ∣Θ1)B(z, z∗; θα, θβ ∣Θ2) (4.47)

This means that commutativity is achieved when all quantum corrections are removed

and a classical result is obtained.
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4.8 Interpolating quantum noise and correlations

For a density matrix Θ, the Wigner functionW (α,β∣Θ) and the Weyl function W̃ (α,β∣Θ)

were defined in Eqs. (2.93, 2.90). The Wigner function quantifies noise, and the Weyl

function quantifies correlations in a quantum system. In depicting correlation, the

Weyl function integrates a wavefunction with its displacement in phase space. The

Wigner function based on its width describes quantum noise and classical noise in both

the position and momentum. The α,β in the Wigner function are position and mo-

mentum, while the α,β in the Weyl function are position and momentum increments,

related to correlations.

The bi-fractional Wigner function H(α,β; θα, θβ ∣Θ) becomes relevant because it

interpolates between correlations and noise. Therefore, just as the Wigner function of

Eq. (2.93) gives a position-momentum duality, the bi-fractional Wigner function also

gives a ‘correlation-noise duality’. For special cases of θα, θβ approaching zero, the bi-

fractional Wigner function approaches the Weyl function which is correlations-related.

For a case of (θα, θβ) approaching π/2, it approaches the Wigner function which leads

to uncertainties.

For general cases of θα, θβ the H(α,β; θα, θβ ∣Θ) interpolates between both the Wigner

and Weyl functions, and quantifies noise-correlations duality.

For special cases of Eq. (4.2) for θα = θβ = 0 and θα = θβ = π
2 which gives the Wigner

and Weyl functions respectively, from Eq. (2.103) it was shown that,

1
π ∫ dαdβ∣H(α,β; π2 ,

π

2 ∣Θ)∣
2

= 1
π ∫ dαdβ∣H(α,β; 0,0∣Θ)∣2dαdβ = Tr(Θ2). (4.48)

Uncertainty quantities can be introduced with respect to the bi-fractional Wigner
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function as follows,

⟨⟨αn⟩⟩ = 1
πTr(Θ2) ∫ αn∣H(α,β; θα, θβ ∣Θ)∣2dαdβ; ∆α(θα, θβ) = [⟨⟨αn⟩⟩ − (⟨⟨α⟩⟩)2]1/2 ,

⟨⟨βn⟩⟩ = 1
πTr(Θ2) ∫ dαdβ βn∣H(α,β; θα, θβ ∣Θ)∣2; ∆β(θα, θβ) = [⟨⟨βn⟩⟩ − (⟨⟨β⟩⟩)2]1/2 .

(4.49)

For the special case of Wigner and Weyl functions of Eqs. (2.90, 2.93) these quan-

tities are known [72]. It has been shown [72] that for pure states they are the usual

uncertainties, but for mixed states they are different. For (θα, θβ) approaching zero,

∆α(θα, θβ) and ∆β(θα, θβ) quantify correlations in position and momentum, and if

(θα, θβ) are close to π/2, they quantify noise.

A general case of ∆α(θα, θβ)∆β(θα, θβ) is given in [72] and proved that ∆α(π
2 ,

π
2 )∆β(0,0) ≥

1
2 . In the case of arbitrary angles considered here, the inequality falls apart, these spe-

cial cases will be considered. As an example, considering a special case of ∆α(π
2 , θβ)∆β(0,0)

as a function of θβ in Fig. (4.11), for the quantum state described with the density

matrix

Θ = 1
2[∣α0, β0⟩ ⟨α0, β0∣ + ∣−α0,−β0⟩ ⟨−α0,−β0∣]; ∣α0, β0⟩ = D̂(α0, β0) ∣0⟩ ; α0 = 2; β0 = 0.

(4.50)

More so, the plot of ∆α(π
4 ,

π
4 )∆β(0,0) as a function of p is given in Fig. (4.12), for

the quantum state described with the density matrix

Θ = p ∣α0, β0⟩ ⟨α0, β0∣ + (1 − p) ∣−α0,−β0⟩ ⟨−α0,−β0∣ ; 0 ≤ p ≤ 1; α0 = 2; β0 = 0.

(4.51)
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0 0.5 1 1.5 2
0.5

1

1.5

θβ

∆α(π/2,θβ)∆β(0,0)

Fig. (4.11) The uncertainty product ∆α(π
2 , θβ)∆β(0,0) using the density matrix of Eq.

(4.50) for α0 = 2; β0 = 0 as a function of θβ
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∆α(π/4,π/4)∆β(0,0)

Fig. (4.12) The uncertainty product ∆α(π
4 ,

π
4 )∆β(0,0) using the density matrix of Eq.

(4.51) for α0 = 2; β0 = 0 as a function of p

4.9 Discussion

In this chapter the bi-fractional displacement operators were applied to define differ-

ent phase space functions like the Wigner functions, Q−function and P−function by

deriving generalisations of these functions for different (θα, θβ). Using the bi-fractional

displacement operators the bi-fractional Wigner functions was introduced in Eq. (4.2).

Both the Wigner and Weyl functions are special cases of this more general function.

Examples of these functions have been given in Figs. (4.1, 4.2, 4.5, 4.6, 4.7, 4.8).

Examples of the bi-fractional Q-functions were also given in Figs. (4.9, 4.10).

The Wigner function for a single coherent gives a non-negative gaussian which is

classical as seen in Fig. (2.1). However for bi-fractional Wigner function, H(α,β; π
2 ,

π
2 )
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of Eq. (4.2) in Fig. (4.2) the auto terms which are non-negative and the superposition

cross terms which have negative values meaning they cannot be understood in classical

terms. The opposite is the case in the Weyl function in Fig. (4.1) where the auto terms

become negatives in the middle and the cross terms go to the wings. Of special interest

is the bi-fractional Wigner function, H(α,β; π
4 ,

π
4 ), where the two cross and auto terms

all have negative values. For this case the whole Wigner function is quantum with no

classicality to it. This new function could be useful in quantum analysis as it gives a

full quantum picture.
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Chapter 5

Conclusion and future work

Quantum mechanics rules have been conventionally used to study the microscopic

world [21]. Quantum mechanics laws like superposition, entanglement and teleporta-

tion are counter-intuitive. One of those rules commonly considered in many texts and

also in this thesis is Heisenberg’s uncertainty principle [20, 60] that has been directly

related to position-momentum and energy-time.

In this thesis phase space methods [31, 37] were considered, with position and

momentum variables in a way that fully respects Heisenberg’s principle of ∆x∆p ≥ π
2

[32]. Furthermore, obeying the minimum uncertainty principle are the coherent states

[6, 45, 62] derived by acting the displacement operator on a vacuum state.

The displacement operator was considered as well as parity operator and shown

that they are related through a two dimensional Fourier transform. It was also

stated that the Wigner functions and Weyl functions are also related through a two-

dimensional Fourier transform. Wigner functions are relevant because Heisenberg’s

uncertainty principle forbids the possibility of a standard probability distribution since

one cannot exactly measure with accuracy the position and momenta of a particle.

Wigner functions which are semi probability distributions with negative values are

used in quantum mechanics. The bi-fractional equivalent of these functions were given
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and we also included the bi-fractional Moyal star product and bi-fractional Berezin

formalism for the product of two operators.

For further work, other relations which were not mentioned in this work can be

considered and generalised. Of particular interest for future work is a special case of

the bi-fractional Wigner function, H(α,β; π
4 ,

π
4 ∣Θ) which is intermediate between the

Wigner and the Weyl because of the angles (θα = θβ = π
4 ). Any formulation of this

function and possible properties could give interesting results which have not been

covered in this work. Some other concepts to be considered for future work are listed

below.

5.1 Other properties of bi-fractional coherent states

Conventionally, the coherent states overlap with the position and momentum states

as given in Eq. (2.77); a further generalisation would be giving instances and impli-

cations of such with respect to the bi-fractional coherent states. The overlap of the

bi-fractional coherent states with position and momentum states are given,

⟨x∣α,β; θα, θβ⟩ = ∣ cos(θα − θβ)∣1/2∫ dα′dβ′ K (β,α′; θβ)K (α,−β′; θα) ⟨x∣α′, β′⟩ ,

⟨p∣α,β; θα, θβ⟩ = ∣ cos(θα − θβ)∣1/2∫ dα′dβ′ K (β,α′; θβ)K (α,−β′; θα) ⟨x∣α′, β′⟩ .

(5.1)

It would be interesting to further investigate the implications of these overlap, give

possible applications and show their physical meaning.
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5.2 Tomography of the bi-fractional Wigner func-

tion

Quantum tomography of the Wigner function has earlier been studied in the literature

[23] using the Radon transform along a line of a single angle given as,

T (q, θ) = ∫ dxdp H(α,β; π2 ,
π

2) δ(x sin θ − p cos θ − q)

= ∫ duW (q sin θ + u cos θ,−q cos θ + u sin θ). (5.2)

A proposed work would be to derive the Radon transform for the bi-fractional Wigner

function this time along two different angles, (θα, θβ). This would generalise the Radon

transform of Eq. (5.2) given above to produce the bi-fractional radon transform. It

is a known fact that by substituting the Wigner function for a function f(x), and

changing variables, the radon transform is related to the fractional Fourier transform

so that

T (q, θ) = ∫ dxdp H(α,β; π2 ,
π

2) δ(x sin θ − p cos θ − q)

= 2
π sin θ ∫ dydy′f(y) exp [ iλysin θ −

i(λ2 + y2)
2 tan θ ] f

∗(y) exp [− iλy
′

sin θ +
i(λ2 + y′2)

2 tan θ ]

= 4∫ f(y)K(λ, y; θ)f∗(y′)K†(λ, y′; θ). (5.3)

A formalism that considers the bi-fractional Wigner function, H(α,β; θα, θβ) could

give more insight into the concept of the bi-fractional Wigner function.

120



5.3 Application to the extended phase space

5.3 Application to the extended phase space

The extended phase space formalism of x − p −X − P , was introduced in [26] and the

Wigner function to that respect was given as,

We(x, p,X,P ) = (2π)2∫ dx′dp′W (x + 1
2x
′, p + p′)W (x − 1

2x
′, p − p′) exp[i(Xp′ − Px′)]

= ∫ dX ′dP ′Ŵ ∗ (X + 1
2X

′, P + P ′) Ŵ (X − 1
2X

′, P − P ′) exp[i(X ′p − P ′x)],

(5.4)

where W (x + 1
2x
′, p + p′) is the Wigner function and Ŵ ∗ (X + 1

2X
′, P + P ′) the Weyl

function. Similarly, all the Fourier transforms can be changed to fractional Fourier

transforms as made possible in Eq. (4.2) and extend to the bi-fractional extended

Wigner function. Extra relations such as the marginal properties can be derived.

Another proposition will be to carry out the Radon transform on both the extended

Wigner function and the bi-fractional extended Wigner functions.

5.4 Application to the characteristic function

The characteristic function gives a generalisation of P−function, Q−function and

Wigner functions [2, 3] in terms of a Fourier transform,

R(α′, β′; s) =∫ dαdβ W (α,β) exp[iβ′α − iα′β] exp [s(α
2 + β2)
2 ] . (5.5)

Of note is that the generalisation from Fourier transform in this case to fractional

Fourier transform is not straight-forward.
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[50] Matz, G. and Hlawatsch, F. (2003). Wigner distributions (nearly) everywhere:

time-frequency analysis of signals, systems, random processes, signal spaces, and

frames. Signal Processing, 83(7):1355 – 1378.

[51] McBride, A. C. and Kerr, F. H. (1987). On Namias’s fractional Fourier trans-

forms. IMA Journal of Applied Mathematics, 39(2):159–175.

[52] Mehta, C. L. (1967). Diagonal coherent-state representation of quantum opera-

tors. Phys. Rev. Lett., 18:752–754.

[53] Mendlovic, D., Lohmann, A. W., Ozaktas, H., Zalevsky, Z., Dorsch, R. G., and

Bitran, Y. (1995). New signal representation based on the fractional Fourier trans-

form: definitions. J. Opt. Soc. Am. A, 12(11):2424–2431.

[54] Mendlovic, D. and Ozaktas, H. M. (1993). Fractional Fourier transforms and

their optical implementation: I. J. Opt. Soc. Am. A, 10(9):1875–1881.

[55] Moyal, J. E. (1949). Quantum mechanics as a statistical theory. Proc. Cambridge

Phil. Soc., 45:99–124.

128



References

[56] Narayanan, V. A. and Prabhu, K. (2003). The fractional Fourier transform:

theory, implementation and error analysis. Microprocessors and Microsystems,

27(10):511 – 521.

[57] Ozaktas, H., Kutay, M., and Zalevsky, Z. (2001). The Fractional Fourier Trans-

form: With Applications in Optics and Signal Processing. Wiley Series in Pure and

Applied Optics. Wiley.

[58] Ozaktas, H. M., Kutay, M. A., and Mendlovic, D. (1999). Introduction to the

fractional Fourier transform and its applications. Advances in imaging and electron

physics, 106:239–292.

[59] Ozaktas, H. M. and Mendlovic, D. (1993). Fractional Fourier transforms and

their optical implementation. II. JOSA A, 10(12):2522–2531.

[60] Ozawa, M. (2015). Heisenberg’s original derivation of the uncertainty principle

and its universally valid reformulations. ArXiv:1507.02010 e-prints.

[61] Paul, H. (1982). Photon antibunching. Rev. Mod. Phys., 54:1061–1102.

[62] Perelomov, A. (2012). Generalized Coherent States and Their Applications. The-

oretical and Mathematical Physics. Springer Berlin Heidelberg.

[63] Porter, F. (2011). Density matrix formalism. Physics 125c Course Notes, Caltech,.

[64] Schleich, W. P. (2011). Quantum optics in phase space. John Wiley & Sons.

[65] Selleri, F. (2012). Wave-Particle Duality. Springer US.

129



References

[66] Simpson, D. (2007). Quantum harmonic oscillator ladder operators. Technical

report, NASA Goddard Space Center.

[67] Takahashi, R. (2013). Structured matrices and the algebra of displacement oper-

ators. [Online]. http ∶ //scholarship.claremont.edu/hmc_theses/45. (Accessed 10

May 2016).

[68] Tao, R., Deng, B., and Wang, Y. (2006). Research progress of the fractional

Fourier transform in signal processing. Science in China Series F, 49(1):1–25.

[69] Teich, M. C. and Saleh, B. E. A. (1989). Squeezed state of light. Quantum Optics:

Journal of the European Optical Society Part B, 1(2):153.

[70] Victor, N. (1980). The fractional order Fourier transform and its application to

quantum mechanics. IMA Journal of Applied Mathematics, 25(3):241–265.

[71] Volovich, I. V. (2011). Photon Antibunching, Sub-Poisson Statistics and Cauchy-

Bunyakovsky and Bell’s Inequalities. ArXiv:1106.1892 e-prints.

[72] Vourdas, A. (2004). Local correlations and uncertainties in one-mode systems.

Phys. Rev. A, 69:022108.

[73] Vourdas, A. (2006). Analytic representations in quantum mechanics. Journal of

Physics A: Mathematical and General, 39(7):R65.

[74] Walls, D. and Milburn, G. J. (2008). Quantum Optics. Springer-Verlag Berlin

Heidelberg, 2nd edition.

130



References

[75] Wang, Y. and Zhou, S. (2011). A novel image encryption algorithm based on

fractional Fourier transform. In 2011 International Conference on Computer Science

and Service System (CSSS), pages 72–75.

[76] Weinstein, A. (1996). Groupoids: Unifying internal and external symmetry - a

tour through some examples. Notices of the AMS, 43:744–752.

[77] Wigner, E. (1932). On the quantum correction for thermodynamic equilibrium.

Phys. Rev., 40:749–759.

[78] Yang, Y.-G., Jia, X., Sun, S.-J., and Pan, Q.-X. (2014). Quantum cryptographic

algorithm for color images using quantum Fourier transform and double random-

phase encoding. Information Sciences, 277:445 – 457.

[79] Yang, Y.-G., Xia, J., Jia, X., and Zhang, H. (2013). Novel image encryp-

tion/decryption based on quantum Fourier transform and double phase encoding.

Quantum Information Processing, 12(11):3477–3493.

[80] Zachos, C., Fairlie, D., and Curtright, T. (2005). Quantum Mechanics in Phase

Space: An Overview with Selected Papers. World Scientific series in 20th century

physics. World Scientific.

[81] Zou, X. T. and Mandel, L. (1990). Photon-antibunching and sub-poissonian

photon statistics. Phys. Rev. A, 41:475–476.

131



Appendix A

Equations and proofs

Matrix elements of displacement operators with re-

spect to number states

We begin the proof by showing that,

D̂(z) ∣z1⟩ = D̂(z)D̂(z1) ∣0⟩ = D̂(z + z1) exp [12(zz
∗
1 − z∗z1)]

= ∣z + z1⟩ exp [12(zz
∗
1 − z∗z1)] (A.1)

Therefore we can show that,

⟨n∣D̂(z)∣z1⟩ = ⟨n∣z + z1⟩ exp [12(zz
∗
1 − z∗z1)]

(z + z1)n

√
N !

exp [12(zz
∗
1 − z∗z1)] ⟨0∣z + z1⟩ =

(z + z1)n

√
n!

exp [12(zz
∗
1 − z∗z1) −

1
2 ∣z + z1∣2]

(A.2)
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Alternatively, we can write ⟨n∣D̂(z)∣z1⟩ in terms of ⟨N ∣D̂(z)∣m⟩ such that,

⟨n∣D̂(z)∣z1⟩ = ⟨n∣D̂(z)e
−∣z1 ∣

2

∞
∑
m=0

z
m

1√
m!
∣m⟩

= e
−∣z1 ∣

2

∞

∑
m=0

z
m

1√
m!
⟨n∣D̂(z)∣m⟩ (A.3)

Then comparing Eq. (A.2) and Eq. (A.3), we get that,

(z + z1)n

√
n!

exp [12(∣z∣
2 − ∣z1∣2) − z∗z1] = e

−∣z1 ∣
2

∞

∑
m=0

z
m

1√
m!
⟨n∣D̂(z)∣m⟩ (A.4)

Taking t = z1
z , we can write the generating function of the Laguerre polynomial,

L
n−m

M
(x) as,

(1 + t)ne−tx =
∞

∑
m=0

L
n−m

M
(x)tm

(1 + t)ne−t∣z∣2 = e 1
2 ∣z∣

2
∞

∑
m=0

√
n!√
m!
⟨n∣D̂(z)∣m⟩ zm−n z

m

1
zm (A.5)

And then comparing the two equations we get that,

⟨n∣D̂(z)∣m⟩ =
√
n!√
m!
z

n−m

e−
1
2 ∣z∣

2
L

n−m

m
(∣z∣2) (A.6)
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Fractional Fourier transform

In order to prove Eq. (3.18), we consider the number eigenstate wavefunctions

uN(x) =
1
π1/4

1
(2NN !)1/2HN(x) exp(−1

2x
2)

∞
∑
N=0

uN(x)uN(y) = δ(x − y)

F(θ;x)uN(x) = exp(iNθ)uN(x) (A.7)

where HN(x) is the Hermite polynomial. We have that,

F(θ;x)[f(x)] = F(θ;x)∫ δ(x − y)f(y)dy = F(θ;x)∫
∞
∑
N=0

uN(x)uN(y)f(y)dy

=∫ [
∞
∑
N=0

exp(iNθ)uN(x)uN(y)] f(y)dy (A.8)

We can then define the fractional Fourier transform as a linear transformation using

the kernel ∆(x, y; θ) such that

∆(x, y; θ) =
∞
∑
N=0

exp(iNθ)uN(x)uN(y)

=
∞
∑
N=0

1√
π 2NN !

exp(iNθ)HN(x)HN(y) exp(−1
2x

2) exp(−1
2y

2) (A.9)

Using a formula from Mehler for the integral representation of the Hermite polynomials

given as,

∞
∑
N=0

1√
π 2NN !

exp(iNθ)HN(x)HN(y) =
1

√
π
√

1 − e2iθ
exp [2xy e

iθ − e2iθ (x2 + y2)
1 − e2iθ

]

(A.10)
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Using the the Euler’s relation eiθ = cos θ + i sin θ, we have that,

1
√
π
√

1 − e2iθ
= 1√

π(1 − cos2 θ + sin2 θ + 2i sin θ cos θ)
= [1 − i cot θ

2π ]
1
2

(A.11)

And further prove that,

exp [2xy e
iθ − e2iθ (x2 + y2)

1 − e2iθ
] exp(−1

2x
2 − 1

2y
2)

= exp [2xy(cos θ + i sin θ) − (x2 + y2)[cos 2θ + i sin 2θ]
1 − (cos 2θ + i sin 2θ) ]

= exp [ ixysin θ −
i(x2 + y2) cot θ

2 ]

This proves Eq. (3.18).

Additivity property of fractional Fourier transform

The property of Eq. (3.13) can be proved using Eq. (3.8), such that,

∫ dyK(x, y; θ1)K(y, z; θ2) = [
1 + i cot θ1

2π ]
1
2
[1 + i cot θ2

2π ]
1
2

×∫ dy exp [−i(cot θ1 + cot θ2)y2

2 − ix
2 cot θ1

2 − iz
2 cot θ2

2 + ixy

sin θ1
+ iyz

sin θ2
]

= R∫ exp [−iy
2(cot θ1 + cot θ2)

2 + iy ( x

sin θ1
+ z

sin θ2
)]

= R [ −2iπ
cot θ1 + cot θ2

] exp [−(x
2 + z2) cos(θ1 + θ2) + 2ixz

2(sin θ1 cos θ2 + cos θ1 sin θ2)
]

= [1 + i cot(θ1 + θ2)
2π ]

1
2

exp [−i(x
2 + z2) cot(θ1 + θ2)

2 + ixz

sin(θ1 + θ2)
] (A.12)
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where,

R = [(1 + i cot θ1)(1 + i cot θ2)
4π2 ]

1
2

exp [−i(x
2 cot θ1 + z2 cot θ2

2 )] (A.13)

Thus we have proved Eq. (3.13), since Eq. (A.12) is K(x, z; θ1 + θ2).

Moyal star product

The proof given by Moyal [55] is shown,

1
π ∫ dαdβ ⟨γ∣D†(α,β) ∣δ⟩ ⟨ϵ∣D(α,β) ∣ζ⟩

= 1
π ∫ dαdβ dx dp dx′dp′ ⟨γ∣x⟩ ⟨x∣D†(α,β)∣p⟩ ⟨p∣δ⟩ ⟨ϵ∣p′⟩ ⟨p′∣D(α,β)∣x′⟩ ⟨x′∣ζ⟩

= 1
π ∫ dαdβ dx dp dx′dp′ ⟨γ∣x⟩ ⟨x′∣ζ⟩ ⟨ϵ∣p′⟩ ⟨p∣δ⟩ ⟨x∣D†(α,β)∣p⟩ ⟨p′∣D(α,β)∣x′⟩

= 1
π ∫ dx dp dx′dp′ ⟨γ∣x⟩ ⟨x′∣ζ⟩ ⟨ϵ∣p′⟩ ⟨p∣δ⟩

× 1
2π exp[i(x′p′ − xp)]∫ dα ei

√
2α(p′−p)∫ dβ ei

√
2β(x−x′)

= ∫ dx dp ⟨γ∣x⟩ ⟨x∣ζ⟩ ⟨ϵ∣p⟩ ⟨p∣δ⟩

= ⟨γ∣ζ⟩ ⟨ϵ∣δ⟩ (A.14)

Laplacian for Berezin formalism

We give the proof that leads to the Laplacian as,

1
π ∫ dα′dβ′F (α′, β′)K exp [−K [Ds (α − α′, β − β′∣

π

2 ,
π

2)]]

= [exp(
∆(α,β∣π2 , π

2 )

4K )F (α,β)] (A.15)
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where,

∆(α,β∣π2 , π
2 ) =

∂2

∂α2 +
∂2

∂β2 ; K = 1 (A.16)

Taking the Fourier transform of both sides we have that,

1
π ∫ dα′dβ′dαdβF (α′, β′) exp [−[Ds (α − α′, β − β′∣

π

2 ,
π

2)]] exp[iαβ′ + iα′β]

= ∫ dαdβ exp [14 (
∂2

∂2α
+ ∂2

∂2β
)]F (α,β) exp[iαβ′ + iα′β] (A.17)

Then using,

∫ eixp ∂

∂x

n

[f(x)]dx = (−ip)nF(p) (A.18)

Using Taylor’s expansion, we show that,

exp [14 (
∂2

∂2α
+ ∂2

∂2β
)] exp[iαβ′ + iα′β] = 1 + (−α

′2 − β′2)
4 + [(−α

′2 − β′2)
4 ]

2
+ .....

(A.19)

Thus the RHS becomes,

= ∫ dαdβ exp [−1
4
(α′2 + β′2)] exp[iαβ′ + iα′β]F (α,β) (A.20)

And taking the gaussian intergral in the LHS with respect to α and β, we show that

it’s the same as Eq. (A.20).
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