21 research outputs found

    Southern hemisphere winter ozone fluctuations

    Get PDF
    In this paper the relationship between ozone and atmospheric variability is explored over the southern hemisphere during the austral winter season, with special emphasis on synoptic transient fluctuations. The analysis of ozone tracks (or high-frequency ozone variability) shows that they have a significant correspondence with storm tracks at middle and high latitudes. Moreover, ozone tracks maximize over the Indian Ocean slightly downstream of the storm-track maximum, while over the Pacific region both ozone and storm tracks show decreased amplitudes.In particular, over southern South America (a region of climatological winter ozone minima and moderate to high ozone variability) the leading winter synoptic-scale variability mode was identified through a rotated extended empirical orthogonal function analysis applied to the meridional-wind perturbation at 300 hPa. The resulting mode is characterized by a baroclinic wave travelling eastward along subpolar latitudes, which maximizes near the tropopause level. Composite ozone fields based on this mode confirm, from a statistical point of view, the classical relationship between ridges (troughs) and minimum (maximum) ozone content. Furthermore, it is shown that dynamical processes in the upper troposphere and lower stratosphere associated with subpolar waves are responsible for the observed ozone distribution. This happens due to the barotropic equivalent vertical structure of the wave, together with the fact that ozone partial pressure maximizes near the level where the waves attain maximum amplitudes.Fil: Vigliarolo, Paula Karina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro Austral de Investigaciones CientĂ­ficas; ArgentinaFil: Vera, Carolina Susana. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Ciudad Universitaria. Centro de Investigaciones del Mar y la AtmĂłsfera. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la AtmĂłsfera; ArgentinaFil: Diaz, S. B.. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones del Mar y la AtmĂłsfera; Argentin

    Spatio-temporal characteristics of the recent rainfall recovery in West Africa

    No full text
    Using daily (monthly) rainfall data from 167 (254) stations across West Africa with at least 80% data availability for the 31-year period 1980-2010 and the gridded African Rainfall Climatology Version 2 (ARC2) for the period 1983-2010, linear trends in yearly and monthly rainfall totals were investigated. Measures of the Expert Team on Climate Change Detection and Indices (ETCCDI) and two rainy season onset and retreat definitions were employed to assess the corresponding trends in frequency and intensity of daily rainfall and changes to monsoon season length. A rotated Empirical Orthogonal Function analysis yielded two homogeneous rainfall regions, the Sahel and Guinea Coast, in terms of interannual to decadal rainfall variability, and this led to analysis of station data and Standardised Precipitation Index for the two regions. Results show that the majority of stations in the Sahel between the West Coast and 15 degrees E shows a statistically significant positive rainfall trend for annual totals. The August-October period exhibits the largest rainfall recovery in the Sahel and the date of the retreat of the rainy season significantly moved later into the year by 2 days decade(-1). The recovery is reflected both in more rainy days associated with longer wet spell duration and more extreme rainfall events. Trends along the Guinea Coast are weak and non-significant except for extreme rainfall related indices. This missing significance is partly related to the hiatus in rainfall increase in the 1990s, but also to the larger interannual rainfall variability. However, the tendency towards a more intense second rainy season suggests a later withdrawal of rains from the West African subcontinent. ARC2 trends are broadly consistent where ground calibration was undertaken, but are dubious for Nigeria and Ghana, and especially for the Guinea, Jos and Cameroon Line highlands due to missing gauge data
    corecore