19 research outputs found

    Validation of treatment escalation as a definition of atopic eczema flares.

    Get PDF
    BACKGROUND: Atopic eczema (AE) is a chronic disease with flares and remissions. Long-term control of AE flares has been identified as a core outcome domain for AE trials. However, it is unclear how flares should be defined and measured. OBJECTIVE: To validate two concepts of AE flares based on daily reports of topical medication use: (i) escalation of treatment and (ii) days of topical anti-inflammatory medication use (topical corticosteroids and/or calcineurin inhibitors). METHODS: Data from two published AE studies (studies A (n=336) and B (n=60)) were analysed separately. Validity and feasibility of flare definitions were assessed using daily global bother (scale 0 to 10) as the reference standard. Intra-class correlations were reported for continuous variables, and odds ratios and area under the receiver operator characteristic (ROC) curve for binary outcome measures. RESULTS: Good agreement was found between both AE flare definitions and change in global bother: area under the ROC curve for treatment escalation of 0.70 and 0.73 in studies A and B respectively, and area under the ROC curve of 0.69 for topical anti-inflammatory medication use (Study A only). Significant positive relationships were found between validated severity scales (POEM, SASSAD, TIS) and the duration of AE flares occurring in the previous week - POEM and SASSAD rose by half a point for each unit increase in number of days in flare. Smaller increases were observed on the TIS scale. Completeness of daily diaries was 95% for Study A and 60% for Study B over 16 weeks). CONCLUSION: Both definitions were good proxy indicators of AE flares. We found no evidence that 'escalation of treatment' was a better measure of AE flares than 'use of topical anti-inflammatory medications'. Capturing disease flares in AE trials through daily recording of medication use is feasible and appears to be a good indicator of long-term control. TRIAL REGISTRATION: Current Controlled Trials ISRCTN71423189 (Study A)

    Comparison of miRNA expression patterns using total RNA extracted from matched samples of formalin-fixed paraffin-embedded (FFPE) cells and snap frozen cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Archival formalin-fixed paraffin-embedded (FFPE) tissues have limited utility in applications involving analysis of gene expression due to mRNA degradation and modification during fixation and processing. This study analyzed 160 miRNAs in paired snap frozen and FFPE cells to investigate if miRNAs may be successfully detected in archival specimens.</p> <p>Results</p> <p>Our results show that miRNA extracted from FFPE blocks was successfully amplified using Q-RT-PCR. The levels of expression of miRNA detected in total RNA extracted from FFPE were higher than that extracted from snap frozen cells when the quantity of total RNA was identical. This phenomenon is most likely explained by the fact that larger numbers of FFPE cells were required to generate equivalent quantities of total RNA than their snap frozen counterparts.</p> <p>Conclusion</p> <p>We hypothesise that methylol cross-links between RNA and protein which occur during tissue processing inhibit the yield of total RNA. However, small RNA molecules appear to be less affected by this process and are recovered more easily in the extraction process. In general miRNAs demonstrated reliable expression levels in FFPE compared with snap frozen paired samples, suggesting these molecules might prove to be robust targets amenable to detection in archival material in the molecular pathology setting.</p

    Improved RNA quality and TaqMan® Pre-amplification method (PreAmp) to enhance expression analysis from formalin fixed paraffin embedded (FFPE) materials

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Archival formalin-fixed paraffin-embedded (FFPE) tissues represent an abundant source of clinical specimens; however their use is limited in applications involving analysis of gene expression due to RNA degradation and modification during fixation and processing. This study improved the quality of RNA extracted from FFPE by introducing a heating step into the selected extraction protocols. Further, it evaluated a novel pre-amplification system (PreAmp) designed to enhance expression analysis from tissue samples using assays with a range of amplicon size (62–164 bp).</p> <p>Results</p> <p>Results from the Bioanalyzer and TaqMan<sup>® </sup>data showed improvement of RNA quality extracted using the modified protocols from FFPE. Incubation at 70°C for 20 minutes was determined to be the best condition of those tested to disrupt cross-links while not compromising RNA integrity. TaqMan<sup>® </sup>detection was influenced by master mix, amplicon size and the incorporation of a pre-amplification step. TaqMan<sup>® </sup>PreAmp consistently achieved decreased C<sub>T </sub>values in both snap frozen and FFPE aliquots compared with no pre-amplification.</p> <p>Conclusion</p> <p>Modification to extraction protocols has facilitated procurement of RNA that may be successfully amplified using QRT-PCR. TaqMan<sup>® </sup>PreAmp system is a robust and practical solution to limited quantities of RNA from FFPE extracts.</p

    Regulation of microRNA biosynthesis and expression in 2102Ep embryonal carcinoma stem cells is mirrored in ovarian serous adenocarcinoma patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tumours with high proportions of differentiated cells are considered to be of a lower grade to those containing high proportions of undifferentiated cells. This property may be linked to the differentiation properties of stem cell-like populations within malignancies. We aim to identify molecular mechanism associated with the generation of tumours with differing grades from malignant stem cell populations with different differentiation potentials. In this study we assessed microRNA (miRNA) regulation in two populations of malignant Embryonal Carcinoma (EC) stem cell, which differentiate (NTera2) or remain undifferentiated (2102Ep) during tumourigenesis, and compared this to miRNA regulation in ovarian serous carcinoma (OSC) patient samples.</p> <p>Methods</p> <p>miRNA expression was assessed in NTera2 and 2102Ep cells in the undifferentiated and differentiated states and compared to that of OSC samples using miRNA qPCR.</p> <p>Results</p> <p>Our analysis reveals a substantial overlap between miRNA regulation in 2102Ep cells and OSC samples in terms of miRNA biosynthesis and expression of mature miRNAs, particularly those of the miR-17/92 family and clustering to chromosomes 14 and 19. In the undifferentiated state 2102Ep cells expressed mature miRNAs at up to 15,000 fold increased levels despite decreased expression of miRNA biosynthesis genes Drosha and Dicer. 2102Ep cells avoid differentiation, which we show is associated with consistent levels of expression of miRNA biosynthesis genes and mature miRNAs while expression of miRNAs clustering to chromosomes 14 and 19 is deemphasised. OSC patient samples displayed decreased expression of miRNA biosynthesis genes, decreased expression of mature miRNAs and prominent clustering to chromosome 14 but not 19. This indicates that miRNA biosynthesis and levels of miRNA expression, particularly from chromosome 14, are tightly regulated both in progenitor cells and in tumour samples.</p> <p>Conclusion</p> <p>miRNA biosynthesis and expression of mature miRNAs, particularly the miR-17/92 family and those clustering to chromosomes 14 and 19, are highly regulated in both progenitor cells and tumour samples. Strikingly, 2102Ep cells are not simply malfunctioning but respond to differentiation specifically, a mechanism that is highly relevant to OSC samples. Our identification and future manipulation of these miRNAs may facilitate generation of lower grade malignancies from these high-grade cells.</p

    Genomic Analysis of the Basal Lineage Fungus Rhizopus oryzae Reveals a Whole-Genome Duplication

    Get PDF
    Rhizopus oryzae is the primary cause of mucormycosis, an emerging, life-threatening infection characterized by rapid angioinvasive growth with an overall mortality rate that exceeds 50%. As a representative of the paraphyletic basal group of the fungal kingdom called “zygomycetes,” R. oryzae is also used as a model to study fungal evolution. Here we report the genome sequence of R. oryzae strain 99–880, isolated from a fatal case of mucormycosis. The highly repetitive 45.3 Mb genome assembly contains abundant transposable elements (TEs), comprising approximately 20% of the genome. We predicted 13,895 protein-coding genes not overlapping TEs, many of which are paralogous gene pairs. The order and genomic arrangement of the duplicated gene pairs and their common phylogenetic origin provide evidence for an ancestral whole-genome duplication (WGD) event. The WGD resulted in the duplication of nearly all subunits of the protein complexes associated with respiratory electron transport chains, the V-ATPase, and the ubiquitin–proteasome systems. The WGD, together with recent gene duplications, resulted in the expansion of multiple gene families related to cell growth and signal transduction, as well as secreted aspartic protease and subtilase protein families, which are known fungal virulence factors. The duplication of the ergosterol biosynthetic pathway, especially the major azole target, lanosterol 14α-demethylase (ERG11), could contribute to the variable responses of R. oryzae to different azole drugs, including voriconazole and posaconazole. Expanded families of cell-wall synthesis enzymes, essential for fungal cell integrity but absent in mammalian hosts, reveal potential targets for novel and R. oryzae-specific diagnostic and therapeutic treatments

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Service provider difficulties in operationalising coercive control

    No full text
    We examined perspectives of social workers, police officers and specialist domestic abuse practitioners about their perceived ability and organisational readiness to respond effectively to incidents of coercive and controlling behaviour. Interviews revealed intervention and risk assessment strategies structured around an outdated, maladaptive concept of domestic abuse as an unambiguous and violent event and frontline services that lacked appreciation of the power dynamics inherent in controlling relationships. The analysis demonstrates how lack of definitional clarity around non-physical domestic abuse can increase the use of discretion by frontline services and, by extension, increase the discounting of coercive control by pressured frontline officers

    Two Quantitative Trait Loci for Prepulse Inhibition of Startle Identified on Mouse Chromosome 16 Using Chromosome Substitution Strains

    No full text
    Prepulse inhibition (PPI) of acoustic startle is a genetically complex quantitative phenotype of considerable medical interest due to its impairment in psychiatric disorders such as schizophrenia. To identify quantitative trait loci (QTL) involved in mouse PPI, we studied mouse chromosome substitution strains (CSS) that each carry a homologous chromosome pair from the A/J inbred strain on a host C57BL/6J inbred strain background. We determined that the chromosome 16 substitution strain has elevated PPI compared to C57BL/6J (P = 1.6 × 10(−11)), indicating that chromosome 16 carries one or more PPI genes. QTL mapping using 87 F(2) intercross progeny identified two significant chromosome 16 loci with LODs of 3.9 and 4.7 (significance threshold LOD is 2.3). The QTL were each highly significant independently and do not appear to interact. Sequence variation between B6 and A/J was used to identify strong candidate genes in the QTL regions, some of which have known neuronal functions. In conclusion, we used mouse CSS to rapidly and efficiently identify two significant QTL for PPI on mouse chromosome 16. The regions contain a limited number of strong biological candidate genes that are potential risk genes for psychiatric disorders in which patients have PPI impairments

    Targeting the cancer stem cell marker, aldehyde dehydrogenase 1, to circumvent cisplatin resistance in NSCLC

    No full text
    Non-small cell lung cancer (NSCLC) accounts for a large proportion of cancer deaths and is characterized by low treatment response rates and poor overall prognosis. In the absence of specific treatable mutations, cisplatin-based chemotherapy plays an important role in the treatment of this disease. Unfortunately, the development of resistance has become a major therapeutic challenge in the use of this cytotoxic drug. Elucidating the mechanisms underlying this resistance phenotype, may result in the development of novel agents that enhance sensitivity to cisplatin in lung cancer patients. In this study, targeting the cancer stem cell activity of aldehyde dehydrogenase 1 (ALDH1) was investigated as a strategy to overcome chemoresistance in NSCLC. Tumors from NSCLC patients showed an increase in their profile of pluripotent stemness genes. Cisplatin exposure induced the emergence or expansion of an ALDH1-positive subpopulation in cisplatin sensitive and resistant NSCLC cell lines, respectively, further enhancing cisplatin resistance. Using the Aldefluor assay and FACS analysis, ALDH1 subpopulations were isolated and evaluated in terms of stem cell characteristics. Only ALDH1-positive cells exhibited asymmetric division, cisplatin resistance and increased expression of stem cell factors in vitro. Xenograft studies in NOD/SCID mice demonstrated efficient tumorigenesis from low cell numbers of ALDH1-positive and ALDH1-negative subpopulations. Targeting ALDH1 with Diethylaminobenzaldehyde (DEAB) and Disulfiram, significantly re-sensitized resistant lung cancer cells to the cytotoxic effects of cisplatin. Our data demonstrate the existence of a lung CSC population and suggest a role for targeting ALDH1 as a potential therapeutic strategy in re-sensitizing NSCLC cells to the cytotoxic effects of cisplatin
    corecore