47 research outputs found
Can group-based reassuring information alter low back pain behavior? A cluster-randomized controlled trial?
Background
Low back pain (LBP) is common in the population and multifactorial in nature, often involving negative consequences. Reassuring information to improve coping is recommended for reducing the negative consequences of LBP. Adding a simple non-threatening explanation for the pain (temporary muscular dysfunction) has been successful at altering beliefs and behavior when delivered with other intervention elements. This study investigates the isolated effect of this specific information on future occupational behavior outcomes when delivered to the workforce.
Design
A cluster-randomized controlled trial.
Methods
Publically employed workers (n=505) from 11 Danish municipality centers were randomized at center-level (cluster) to either intervention (two 1-hour group-based talks at the workplace) or control. The talks provided reassuring information together with a simple non-threatening explanation for LBP - the ‘functional-disturbance’-model. Data collections took place monthly over a 1-year period using text message tracking (SMS). Primary outcomes were self-reported days of cutting down usual activities and work participation. Secondary outcomes were self-reported back beliefs, work ability, number of healthcare visits, bothersomeness, restricted activity, use of pain medication, and sadness/depression.
Results
There was no between-group difference in the development of LBP during follow-up. Cumulative logistic regression analyses showed no between-group difference on days of cutting down activities, but increased odds for more days of work participation in the intervention group (OR=1.83 95% CI: 1.08-3.12). Furthermore, the intervention group was more likely to report: higher work ability, reduced visits to healthcare professionals, lower bothersomeness, lower levels of sadness/depression, and positive back beliefs.
Conclusion
Reassuring information involving a simple non-threatening explanation for LBP significantly increased the odds for days of work participation and higher work ability among workers who went on to experience LBP during the 12-month follow-up. Our results confirm the potential for public-health education for LBP, and add to the discussion of simple versus multidisciplinary interventions
Search for electron antineutrino appearance in a long-baseline muon antineutrino beam
Electron antineutrino appearance is measured by the T2K experiment in an accelerator-produced antineutrino beam, using additional neutrino beam operation to constrain parameters of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix. T2K observes 15 candidate electron antineutrino events with a background expectation of 9.3 events. Including information from the kinematic distribution of observed events, the hypothesis of no electron antineutrino appearance is disfavored with a significance of 2.40σ and no discrepancy between data and PMNS predictions is found. A complementary analysis that introduces an additional free parameter which allows non-PMNS values of electron neutrino and antineutrino appearance also finds no discrepancy between data and PMNS predictions
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
Physics Potentials with the Second Hyper-Kamiokande Detector in Korea
We have conducted sensitivity studies on an alternative configuration of the Hyper-Kamiokande experiment by locating the 2nd Hyper-Kamiokande detector in Korea at 11001300 km baseline. Having two detectors at different baselines improves sensitivity to leptonic CP violation, neutrino mass ordering as well as nonstandard neutrino interactions. There are several candidate sites in Korea with greater than 1 km high mountains ranged at an 13 degree off-axis angle. Thanks to larger overburden of the candidate sites in Korea, low energy physics, such as solar and supernova neutrino physics as well as dark matter search, is expected to be improved. In this paper sensitivity studies on the CP violation phase and neutrino mass ordering are performed using current T2K systematic uncertainties in most cases. We plan to improve our sensitivity studies in the near future with better estimation of our systematic uncertainties
Depression, psychological distress and Internet use among community-based Australian adolescents: a cross-sectional study
BACKGROUND: There has been rapid increase in time spent using Internet as a platform for entertainment, socialising and information sourcing. This study aimed to evaluate the relationship between duration of time spent using Internet for leisure, depressive symptoms, and psychological distress among Australian adolescents. METHODS: Depressive symptoms were indicated by the youth self-report module from the Diagnostic and Statistical Manual of Mental Disorders Version IV criteria, and psychological distress was measured by Kessler Psychological Distress scale. Internet use was self-reported based on use on an average weekday, and an average weekend day. Multivariate logistic regression models were used to examine the relationship between Internet use and mental health outcomes. Models were adjusted for potential confounders: age; relative level of socio-economic disadvantage, and body mass index. RESULTS: Adolescents were aged 11-17 years (M = 14.5 years, SD = 2.04 years). Greatest time spent using internet (≥7 h a day) was significantly associated with experiencing depressive symptoms among females (OR = 2.09, 95% CI = 1.16, 3.76, p < 0.05), and high/very high levels of psychological distress for male (OR = 2.23, 95% CI = 1.36, 3.65, p < 0.01) and female (OR = 2.38, 95% CI = 1.55, 3.67, p < 0.01) adolescents. CONCLUSIONS: With current initiatives to improve health behaviours among adolescents to improve physical health outcomes such as overweight or obesity, it is imperative that the reciprocal relationship with mental health is known and included in such public health developments. Internet use may interact with mental health and therefore could be a modifiable risk factor to reach and improve mental health outcomes for this age group. Caution is advised in interpretation of findings, with some inconsistencies emerging from this evidence
Search for CP Violation in Neutrino and Antineutrino Oscillations by the T2K Experiment with 2.2 x 10(21) Protons on Target
The T2K experiment measures muon neutrino disappearance and electron neutrino
appearance in accelerator-produced neutrino and antineutrino beams. With an
exposure of protons on target in neutrino
(antineutrino) mode, 89 candidates and 7 anti- candidates were
observed while 67.5 and 9.0 are expected for and normal mass
ordering. The obtained confidence interval for the violating
phase, , does not include the -conserving cases
(). The best-fit values of other parameters are
and .Comment: 9 pages, 6 figure
Search for light sterile neutrinos with the T2K far detector Super-Kamiokande at a baseline of 295 km
We perform a search for light sterile neutrinos using the data from the T2K far detector at a baseline of 295 km, with an exposure of 14.7ð7.6Þ × 1020 protons on target in neutrino (antineutrino) mode. A selection of neutral-current interaction samples is also used to enhance the sensitivity to sterile mixing.
No evidence of sterile neutrino mixing in the 3 þ 1 model was found from a simultaneous fit to the charged-current muon, electron and neutral-current neutrino samples. We set the most stringent limit on the sterile oscillation amplitude sin2 θ24 for the sterile neutrino mass splitting Δm241 < 3 × 10−3 eV2=c4
Search for neutral-current induced single photon production at the ND280 near detector in T2K
Neutrino neutral-current (NC) induced single photon production is a sub-leading order process for accelerator-based neutrino beam experiments including T2K. It is, however, an important process to understand because it is a background for electron (anti)neutrino appearance oscillation experiments. Here, we performed the first search of this process below 1 GeV using the fine-grained detector at the T2K ND280 off-axis near detector. By reconstructing single photon kinematics from electron-positron pairs, we achieved 95% pure gamma ray sample from 5.738 x 10(20) protons-on-targets neutrino mode data. We do not find positive evidence of NC induced single photon production in this sample. We set the model-dependent upper limit on the cross-section for this process, at 0.114 x 10(-38) cm(2) (90% C.L.) per nucleon, using the J-PARC off-axis neutrino beam with an average energy of similar to 0.6 GeV. This is the first limit on this process below 1 GeV which is important for current and future oscillation experiments looking for electron neutrino appearance oscillation signals
Search for heavy neutrinos with the T2K near detector ND280
International audienceThis paper reports on the search for heavy neutrinos with masses in the range 140<MN<493 MeV/c2 using the off-axis near detector ND280 of the T2K experiment. These particles can be produced from kaon decays in the standard neutrino beam and then subsequently decay in ND280. The decay modes under consideration are N→ℓα±π∓ and N→ℓα+ℓβ-ν(−)(α,β=e,μ). A search for such events has been made using the Time Projection Chambers of ND280, where the background has been reduced to less than two events in the current dataset in all channels. No excess has been observed in the signal region. A combined Bayesian statistical approach has been applied to extract upper limits on the mixing elements of heavy neutrinos to electron-, muon- and tau- flavored currents (Ue2, Uμ2, Uτ2) as a function of the heavy neutrino mass, e.g., Ue2<10-9 at 90% C.L. for a mass of 390 MeV/c2. These constraints are competitive with previous experiments
The Single-Phase ProtoDUNE Technical Design Report
ProtoDUNE-SP is the single-phase DUNE Far Detector prototype that is under construction and will be operated at the CERN Neutrino Platform (NP) starting in 2018. ProtoDUNE-SP, a crucial part of the DUNE effort towards the construction of the first DUNE 10-kt fiducial mass far detector module (17 kt total LAr mass), is a significant experiment in its own right. With a total liquid argon (LAr) mass of 0.77 kt, it represents the largest monolithic single-phase LArTPC detector to be built to date. It's technical design is given in this report