14 research outputs found

    The timing of cod spawning on the Scotian Shelf

    Get PDF
    We used results from the Scotian Shelf Ichtyoplankton Programme to describe the spatial and temporal distributions of cod eggs and larvae off the coast of Nova Scotia. Summer spawning is restricted to the waters along the Laurentian Channel. Eggs and/or larvae are found in the spring in all areas where spawning activities are detected. Late fall - early winter spawning takes place over several banks and along the southern coast of Nova Scotia. A match between the seasonal blooms and the time of spawning does not appear to be essential, although it might exist in the spring. Larval drift from spawning grounds to nursery grounds is apparently rare on the Scotlan Shelf. These findings are discussed with reference to the match-mismatch hypothesis of Cushing

    The timing of cod spawning on the Scotian Shelf

    Get PDF
    We used results from the Scotian Shelf Ichtyoplankton Programme to describe the spatial and temporal distributions of cod eggs and larvae off the coast of Nova Scotia. Summer spawning is restricted to the waters along the Laurentian Channel. Eggs and/or larvae are found in the spring in all areas where spawning activities are detected. Late fall - early winter spawning takes place over several banks and along the southern coast of Nova Scotia. A match between the seasonal blooms and the time of spawning does not appear to be essential, although it might exist in the spring. Larval drift from spawning grounds to nursery grounds is apparently rare on the Scotlan Shelf. These findings are discussed with reference to the match-mismatch hypothesis of Cushing

    Evolutionarily Conserved Substrate Substructures for Automated Annotation of Enzyme Superfamilies

    Get PDF
    The evolution of enzymes affects how well a species can adapt to new environmental conditions. During enzyme evolution, certain aspects of molecular function are conserved while other aspects can vary. Aspects of function that are more difficult to change or that need to be reused in multiple contexts are often conserved, while those that vary may indicate functions that are more easily changed or that are no longer required. In analogy to the study of conservation patterns in enzyme sequences and structures, we have examined the patterns of conservation and variation in enzyme function by analyzing graph isomorphisms among enzyme substrates of a large number of enzyme superfamilies. This systematic analysis of substrate substructures establishes the conservation patterns that typify individual superfamilies. Specifically, we determined the chemical substructures that are conserved among all known substrates of a superfamily and the substructures that are reacting in these substrates and then examined the relationship between the two. Across the 42 superfamilies that were analyzed, substantial variation was found in how much of the conserved substructure is reacting, suggesting that superfamilies may not be easily grouped into discrete and separable categories. Instead, our results suggest that many superfamilies may need to be treated individually for analyses of evolution, function prediction, and guiding enzyme engineering strategies. Annotating superfamilies with these conserved and reacting substructure patterns provides information that is orthogonal to information provided by studies of conservation in superfamily sequences and structures, thereby improving the precision with which we can predict the functions of enzymes of unknown function and direct studies in enzyme engineering. Because the method is automated, it is suitable for large-scale characterization and comparison of fundamental functional capabilities of both characterized and uncharacterized enzyme superfamilies

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Influenza vaccination for immunocompromised patients: systematic review and meta-analysis from a public health policy perspective.

    Get PDF
    Immunocompromised patients are vulnerable to severe or complicated influenza infection. Vaccination is widely recommended for this group. This systematic review and meta-analysis assesses influenza vaccination for immunocompromised patients in terms of preventing influenza-like illness and laboratory confirmed influenza, serological response and adverse events

    Characterizations of HCV NS5A replication complex inhibitors

    Get PDF
    AbstractThe hepatitis C virus NS5A protein is an established and clinically validated target for antiviral intervention by small molecules. Characterizations are presented of compounds identified as potent inhibitors of HCV replication to provide insight into structural elements that interact with the NS5A protein. UV-activated cross linking and affinity isolation was performed with one series to probe the physical interaction between the inhibitors and the NS5A protein expressed in HCV replicon cells. Resistance mapping with the second series was used to determine the functional impact of specific inhibitor subdomains on the interaction with NS5A. The data provide evidence for a direct high-affinity interaction between these inhibitors and the NS5A protein, with the interaction dependent on inhibitor stereochemistry. The functional data supports a model of inhibition that implicates inhibitor binding by covalently combining distinct pharmacophores across an NS5A dimer interface to achieve maximal inhibition of HCV replication
    corecore