128 research outputs found

    Significant elastic anisotropy in Ti1x_{1-x}Alx_xN alloys

    Full text link
    Strong compositional-dependent elastic properties have been observed theoretically and experimentally in Ti1x_{1-x}Alx_x N alloys. The elastic constant, C11_{11}, changes by more than 50% depending on the Al-content. Increasing the Al-content weakens the average bond strength in the local octahedral arrangements resulting in a more compliant material. On the other hand, it enhances the directional (covalent) nature of the nearest neighbor bonds that results in greater elastic anisotropy and higher sound velocities. The strong dependence of the elastic properties on the Al-content offers new insight into the detailed understanding of the spinodal decomposition and age hardening in Ti1x_{1-x}Alx_xN alloys.Comment: 3 figures, 3 page

    A comparison of collision cross section values obtained via travelling wave ion mobility-mass spectrometry and ultra high performance liquid chromatography-ion mobility-mass spectrometry : application to the characterisation of metabolites in rat urine

    Get PDF
    A comprehensive Collision Cross Section (CCS) library was obtained via Travelling Wave Ion Guide mobility measurements through direct infusion (DI). The library consists of CCS and Mass Spectral (MS) data in negative and positive ElectroSpray Ionisation (ESI) mode for 463 and 479 endogenous metabolites, respectively. For both ionisation modes combined, TWCCSN2 data were obtained for 542 non-redundant metabolites. These data were acquired on two different ion mobility enabled orthogonal acceleration QToF MS systems in two different laboratories, with the majority of the resulting TWCCSN2 values (from detected compounds) found to be within 1% of one another. Validation of these results against two independent, external TWCCSN2 data sources and predicted TWCCSN2 values indicated to be within 1-2% of these other values. The same metabolites were then analysed using a rapid reversed-phase ultra (high) performance liquid chromatographic (U(H)PLC) separation combined with IM and MS (IM-MS) thus providing retention time (tr), m/z and TWCCSN2 values (with the latter compared with the DI-IM-MS data). Analytes for which TWCCSN2 values were obtained by U(H)PLC-IM-MS showed good agreement with the results obtained from DI-IM-MS. The repeatability of the TWCCSN2 values obtained for these metabolites on the different ion mobility QToF systems, using either DI or LC, encouraged the further evaluation of the U(H)PLC-IM-MS approach via the analysis of samples of rat urine, from control and methotrexate-treated animals, in order to assess the potential of the approach for metabolite identification and profiling in metabolic phenotyping studies. Based on the database derived from the standards 63 metabolites were identified in rat urine, using positive ESI, based on the combination of tr, TWCCSN2 and MS data.</p

    Two Polo-like kinase 4 binding domains in Asterless perform distinct roles in regulating kinase stability

    Get PDF
    Plk4 (Polo-like kinase 4) and its binding partner Asterless (Asl) are essential, conserved centriole assembly factors that induce centriole amplification when overexpressed. Previous studies found that Asl acts as a scaffolding protein; its N terminus binds Plk4’s tandem Polo box cassette (PB1-PB2) and targets Plk4 to centrioles to initiate centriole duplication. However, how Asl overexpression drives centriole amplification is unknown. In this paper, we investigated the Asl–Plk4 interaction in Drosophila melanogaster cells. Surprisingly, the N-terminal region of Asl is not required for centriole duplication, but a previously unidentified Plk4-binding domain in the C terminus is required. Mechanistic analyses of the different Asl regions revealed that they act uniquely during the cell cycle: the Asl N terminus promotes Plk4 homodimerization and autophosphorylation during interphase, whereas the Asl C terminus stabilizes Plk4 during mitosis. Therefore, Asl affects Plk4 in multiple ways to regulate centriole duplication. Asl not only targets Plk4 to centrioles but also modulates Plk4 stability and activity, explaining the ability of overexpressed Asl to drive centriole amplification

    'Image' leveraging and sports mega-events: Germany and the 2006 FIFA World Cup

    Get PDF
    The broader setting for this research is the increase in willingness of governments of all political hues to stage sports mega-events. The paper starts from the observation that many states have and do instrumentalise sport to promote their country's image or 'brand' and attempt to gain prestige. This paper argues that Germany employed a deliberate leveraging strategy to improve their nation's (poor) image abroad. How did Germany do this? This study focuses on three aspects that were central to Germany's leveraging tactics: a series of long-term, carefully co-ordinated campaigns; the focus on a 'fan-centred' approach to the organisation of the event and the creation of a 'feelgood factor' around the tournament. More broadly, the article seeks to contribute to the nascent literature on leveraging sports mega-events by employing Chalip's 2004 model of leveraging legacies as an organising principle and focusing on strategies to improve a nation's image used by Germany. © 2012 Copyright Taylor and Francis Group, LLC

    Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx Renal.

    Get PDF
    The evolutionary features of clear-cell renal cell carcinoma (ccRCC) have not been systematically studied to date. We analyzed 1,206 primary tumor regions from 101 patients recruited into the multi-center prospective study, TRACERx Renal. We observe up to 30 driver events per tumor and show that subclonal diversification is associated with known prognostic parameters. By resolving the patterns of driver event ordering, co-occurrence, and mutual exclusivity at clone level, we show the deterministic nature of clonal evolution. ccRCC can be grouped into seven evolutionary subtypes, ranging from tumors characterized by early fixation of multiple mutational and copy number drivers and rapid metastases to highly branched tumors with >10 subclonal drivers and extensive parallel evolution associated with attenuated progression. We identify genetic diversity and chromosomal complexity as determinants of patient outcome. Our insights reconcile the variable clinical behavior of ccRCC and suggest evolutionary potential as a biomarker for both intervention and surveillance

    Fc-Optimized Anti-CD25 Depletes Tumor-Infiltrating Regulatory T Cells and Synergizes with PD-1 Blockade to Eradicate Established Tumors

    Get PDF
    CD25 is expressed at high levels on regulatory T (Treg) cells and was initially proposed as a target for cancer immunotherapy. However, anti-CD25 antibodies have displayed limited activity against established tumors. We demonstrated that CD25 expression is largely restricted to tumor-infiltrating Treg cells in mice and humans. While existing anti-CD25 antibodies were observed to deplete Treg cells in the periphery, upregulation of the inhibitory Fc gamma receptor (FcγR) IIb at the tumor site prevented intra-tumoral Treg cell depletion, which may underlie the lack of anti-tumor activity previously observed in pre-clinical models. Use of an anti-CD25 antibody with enhanced binding to activating FcγRs led to effective depletion of tumor-infiltrating Treg cells, increased effector to Treg cell ratios, and improved control of established tumors. Combination with anti-programmed cell death protein-1 antibodies promoted complete tumor rejection, demonstrating the relevance of CD25 as a therapeutic target and promising substrate for future combination approaches in immune-oncology

    Allele-Specific HLA Loss and Immune Escape in Lung Cancer Evolution

    Get PDF
    Immune evasion is a hallmark of cancer. Losing the ability to present neoantigens through human leukocyte antigen (HLA) loss may facilitate immune evasion. However, the polymorphic nature of the locus has precluded accurate HLA copy-number analysis. Here, we present loss of heterozygosity in human leukocyte antigen (LOHHLA), a computational tool to determine HLA allele-specific copy number from sequencing data. Using LOHHLA, we find that HLA LOH occurs in 40% of non-small-cell lung cancers (NSCLCs) and is associated with a high subclonal neoantigen burden, APOBEC-mediated mutagenesis, upregulation of cytolytic activity, and PD-L1 positivity. The focal nature of HLA LOH alterations, their subclonal frequencies, enrichment in metastatic sites, and occurrence as parallel events suggests that HLA LOH is an immune escape mechanism that is subject to strong microenvironmental selection pressures later in tumor evolution. Characterizing HLA LOH with LOHHLA refines neoantigen prediction and may have implications for our understanding of resistance mechanisms and immunotherapeutic approaches targeting neoantigens. Video Abstract [Figure presented] Development of the bioinformatics tool LOHHLA allows precise measurement of allele-specific HLA copy number, improves the accuracy in neoantigen prediction, and uncovers insights into how immune escape contributes to tumor evolution in non-small-cell lung cancer

    Fc Effector Function Contributes to the Activity of Human Anti-CTLA-4 Antibodies.

    Get PDF
    With the use of a mouse model expressing human Fc-gamma receptors (FcγRs), we demonstrated that antibodies with isotypes equivalent to ipilimumab and tremelimumab mediate intra-tumoral regulatory T (Treg) cell depletion in vivo, increasing the CD8+ to Treg cell ratio and promoting tumor rejection. Antibodies with improved FcγR binding profiles drove superior anti-tumor responses and survival. In patients with advanced melanoma, response to ipilimumab was associated with the CD16a-V158F high affinity polymorphism. Such activity only appeared relevant in the context of inflamed tumors, explaining the modest response rates observed in the clinical setting. Our data suggest that the activity of anti-CTLA-4 in inflamed tumors may be improved through enhancement of FcγR binding, whereas poorly infiltrated tumors will likely require combination approaches

    Phylogenetic ctDNA analysis depicts early-stage lung cancer evolution.

    Get PDF
    The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies
    corecore