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Atmospheric warming threatens to accelerate the retreat of the Antarctic Ice Sheet by increasing 

surface melting and facilitating ‘hydrofracturing’1–7, where meltwater flows into and enlarges 

fractures, potentially triggering ice-shelf collapse3–5,8–10. The collapse of ice shelves that ‘buttress’11–

13 the ice sheet accelerates ice flow and sea-level rise14–16. However, we do not currently know if and 

how much of the buttressing regions of Antarctica’s ice shelves are vulnerable to hydrofracture if 

inundated with water. Here we provide two lines of evidence suggesting that many buttressing 

regions are vulnerable. First, we train a deep convolutional neural network (DCNN) to map the 

surface expressions of fractures in satellite imagery across all Antarctic ice shelves. Second, we 

develop a fracture stability diagram based on linear elastic fracture mechanics (LEFM) to predict 

where basal and dry surface fractures form under today’s stress condition. We find close 

agreement between the theoretical prediction and the DCNN-mapped fractures, despite limitations 

associated with detecting fractures in satellite imagery. Finally, we use the LEFM theory to predict 

where surface fracture would become unstable if filled with water. Many regions regularly 

inundated with meltwater today are resilient to hydrofracturing - stresses are low enough that all 

water-filled fractures are stable. Conversely, 60% ±10% of ice shelves (by area) both buttress 

upstream ice and are vulnerable to hydrofracture if inundated with water. The DCNN-map 

confirms the presence of fractures in these buttressing regions. Increased surface melting17 could 

trigger hydrofracturing if it leads to water inundating the widespread vulnerable regions we 

identify. These are regions where atmospheric warming may have the largest impact on ice-sheet 

mass balance.  

 

https://paperpile.com/c/aSrbJ9/UVRWy+KaRuN+HsbyE+vxPhw+8dTdQ+fzFpY+X3WPK
https://paperpile.com/c/aSrbJ9/0HuA3+HsbyE+8dTdQ+vxPhw+Vqqty+7bQlg
https://paperpile.com/c/aSrbJ9/HuXjY+HR38i+cz94z
https://paperpile.com/c/aSrbJ9/HuXjY+HR38i+cz94z
https://paperpile.com/c/aSrbJ9/jGJRq+uorzu+qVCBc
https://paperpile.com/c/aSrbJ9/RLP3Z


Where ice shelves – the floating extensions of ice sheets – are laterally confined they generate resistive 

stress and transmit this upstream to slow the flow of ice into the ocean. This is called buttressing. Areas 

with larger tensile resistive stresses2,18 provide less buttressing13,19. When buttressing ice shelves collapse, 

upstream glaciers accelerate14–16. Observations and models have linked ice-shelf collapse to surface 

melting4,5,8,10,20 through hydrofracture; where meltwater flows into surface fractures, imposing additional 

loading and driving unstable fracture growth1,2. Repeated hydrofracture close to an ice-shelf edge has 

been hypothesized as a potential mechanism to drive collapse4. Flexural stresses generated by the filling 

and draining of lakes on ice shelves may also facilitate hydrofracture and trigger collapse5,21,22. Although 

hydrofracture has so far only been included in ice-sheet models with simple parametrizations9,10, 

simulations predict it could accelerate the collapse of the Antarctic Ice Sheet in response to atmospheric 

warming9,10. 

 

Figure 1 | Conceptualizing the regions of Antarctic ice shelves that will control the ice sheet’s 

response to atmospheric warming. Circles represent ice-shelf regions (upper) where meltwater 

accumulates, (lower-left) that are vulnerable to hydrofracture if covered in meltwater, and (lower-right) 

where significant buttressing is generated. Images show: (upper) Amery Ice Shelf with water accumulated 

in large melt ponds, Feb 21, 1989, Landsat 4, NASA; (lower-left) the collapse of Larsen B Ice Shelf, Mar 

7, 2002, MODIS, NASA; (lower-right) modelled estimate of buttressing on Larsen C Ice Shelf (Fürst et 

al. (2016)13; reproduced from their Fig. 3). Regions downstream of the red contour (blue) are relatively 

unimportant for buttressing.  

 

Antarctica’s response to surface melting 
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https://paperpile.com/c/aSrbJ9/7bQlg+Vqqty
https://paperpile.com/c/fYKmgj/pb3f3


Hydrofracture requires sufficient surface meltwater and tensile stress. However, not all parts of ice 

shelves provide substantial buttressing and thus, to predict the impact of atmospheric warming on 

Antarctic ice loss we must predict (1) the distribution of meltwater on ice shelves7,17,23–25; (2) the regions 

of ice shelves providing buttressing13,19; and (3) the regions of ice shelves that will undergo hydrofracture 

if meltwater accumulates (Fig. 1; ref. 26). Progress has been made in constraining where meltwater 

accumulates today and will in the future (the upper circle in Fig. 1). Stokes et al. (2019)25 

comprehensively mapped lakes in East Antarctica using satellite imagery from Jan 2017. Trusel et al. 

(2015)17 predicted that melt rates seen in areas that have undergone catastrophic collapse in the past will 

become widespread this century. Alley et al. (2018)7 assessed the state of firn on ice shelves, which is 

linked to the ability of an ice shelf to retain surface water27, using microwave backscatter observations. 

They found some locations already in a state that would allow lake formation and potentially 

hydrofracture7,27
. However, a location will only undergo hydrofracture if local stresses allow, with higher 

tensile stress promoting hydrofracture. For clarity, here we will refer to the tendency of a location to 

hydrofracture if inundated with water as its vulnerability to hydrofracture. Crucially, areas of higher 

tensile stress2 provide less buttressing13,19, yet are most vulnerable to hydrofracture. Therefore, an 

important open question is: are any of the regions generating substantial buttressing also vulnerable to 

hydrofracture under present-day conditions? Do the two lower circles in Fig. 1 overlap? This is the focus 

of this article. 

 

Fractures detection by a neural network 

Fracture-like features are visible in satellite imagery (e.g., the 125m-resolution MODIS mosaic of 

Antarctica, MOA 200928; Fig. 3a), but comprehensive manual mapping is impractical (ice shelves cover 

1.5 million pixels in MOA). Therefore, we employ a deep convolutional neural network (DCNN), the U-

Net29, to identify the fracture-like features in the relatively low resolution, but continent-wide MOA 

imagery. We trained the DCNN with a subset of MOA imagery in which fracture features were manually 

labeled (Extended Data Fig. 1c). The output of the DCNN is a map of the likelihood (ranging from 0 to 1) 

that a pixel contains part of a fracture. The trained DCNN performs well when evaluated against an 

unseen subset of imagery (Extended Data Fig. 2). We apply the trained DCNN to map fracture-like 

features across all of Antarctica’s ice-shelves (Fig. 2). Examples of the imagery and the fracture features 

identified by the DCNN are shown in Fig. 3a and b respectively. Because there are morphological 

similarities between surface fractures and other fracture features – e.g., full-thickness rifts, surface 

expressions of basal fractures30–32 – it is likely that some of these make up a proportion of the fractures 

mapped by the DCNN. We refer to them throughout as fractures, but consider this limitation when 

comparing the DCNN results to the theoretical predictions below.   

https://paperpile.com/c/aSrbJ9/RLP3Z+cTEFP+59gQq+OZpaE+X3WPK
https://paperpile.com/c/aSrbJ9/cz94z+DBv6c
https://paperpile.com/c/aSrbJ9/SjrvT
https://paperpile.com/c/aSrbJ9/OZpaE
https://paperpile.com/c/aSrbJ9/RLP3Z
https://paperpile.com/c/aSrbJ9/X3WPK
https://paperpile.com/c/aSrbJ9/PG7cY
https://paperpile.com/c/aSrbJ9/X3WPK+PG7cY
https://paperpile.com/c/aSrbJ9/KaRuN
https://paperpile.com/c/aSrbJ9/cz94z+DBv6c
https://paperpile.com/c/aSrbJ9/SXUZc
https://paperpile.com/c/aSrbJ9/c12vS
https://paperpile.com/c/aSrbJ9/fmKhd+dUaH8+UR5av


 

Figure 2 | Continent-wide fracture map. Locations of fracture features classified by the U-Net are 

marked in white. The model (learning rate = 1.4, momentum = 0.2, decay rate = 0.95) and threshold (= 0.2) 

that optimize the model performance on the validation set are chosen to generate the fracture map. The 

performance of the U-Net evaluated against the unseen testing set: AUC = 0.97, sensitivity = 0.63 and 

specificity = 0.99 (percentage of pixels without fracture not classified as fracture by DCNN). 

 

Fracture stability diagram 

Next, we develop a new theoretical framework to predict the location of dry surface fractures. There are 

two widely-adopted models for ice fracturing: the zero-stress approximation33 and linear elastic fracture 

mechanics (LEFM)2,34. The zero-stress approximation only applies where fractures are densely spaced 

(fracture spacing is much smaller than fracture depth)35. Because the spacing between dry fractures (~1 

km) is often larger than the fracture depth, we apply LEFM. Although dry-fracture depths predicted by 

LEFM are simply a factor of 𝜋/2 larger than those predicted by the zero-stress approximation1 (Extended 

https://paperpile.com/c/aSrbJ9/U9PEZ
https://paperpile.com/c/aSrbJ9/KaRuN+2UAC7
https://paperpile.com/c/aSrbJ9/PanhU
https://paperpile.com/c/aSrbJ9/UVRWy


Data Fig. 5b), LEFM provides an estimate of the critical tensile resistive stress required to form dry 

fractures, which is crucial for this study.  

 

Figure 3 | Model-observation comparison of fracture locations. (a) 125m-resolution MOA showing 

part of the Ross Ice Shelf (location shown by star in inset) and the (b) fracture features (marked in white) 

identified by the DCNN with good performance (AUC = 0.97; Methods). (c) Stability diagram for dry 

surface fractures and basal fractures; dimensionless stress �̃�𝑥𝑥 against dimensionless toughness �̃�𝐼𝑐. The 

boundary between the no-fracture and stable-fracture regions is obtained numerically (black and blue 

curve for surface and basal fracture, respectively) and analytically (red curve for surface fracture, equation 

2). Dashed lines denote the boundary between stable and unstable fractures. Dimensionless stress and 

toughness (equation 1) are computed for every fracture location detected by the DCNN and displayed as a 

density plot (~32k data points); the colour bar denotes the number of fracture locations that have the same 

dimensionless values (Methods). 

 

To quantify how ice-shelf stress affects fracture stability we construct a fracture stability diagram (Fig. 3c). 

Vertical propagation of a stable fracture stops when it is too energetically costly to break the ice further. In 

contrast, unstable fractures propagate through the entire ice thickness. Fractures may form on both the 

surface and base of ice shelves, their stability depends on the tensile resistive stress 𝑅𝑥𝑥 (ref. 2,34) 

perpendicular to the fracture, ice thickness H, fracture toughness 𝐾𝐼𝑐 (a measurable material property; ref. 

36) and ice density ρi. The stability of both surface and basal fractures depends on two fundamental 

parameters (Supplementary Information (SI) Section 3), the dimensionless tensile resistive stress (�̃�𝑥𝑥) and 

dimensionless fracture toughness (�̃�𝐼𝑐): 

https://paperpile.com/c/aSrbJ9/KaRuN+2UAC7
https://paperpile.com/c/aSrbJ9/bJw1O


 �̃�𝑥𝑥 ≡
𝑅𝑥𝑥

𝜌𝑖 𝑔𝐻
, �̃�𝐼𝑐 ≡

𝐾𝐼𝑐

𝜌𝑖𝑔𝐻3/2.        (1) 

We analytically derive a power-law (SI Section 3) for the critical tensile resistive stress 𝑅∗
𝑥𝑥 that allows 

the formation of stable surface fractures (red curve in Fig. 3c), 

�̃�𝐼𝑐 = 𝛼�̃�∗
𝑥𝑥

3/2
, 𝛼 ≡

𝜋

3√3

𝐹3/2

𝑓1/2,   (2) 

which closely matches the corresponding numerical solution (black solid curve in Fig. 3c; SI Section 3). 

When 𝑅𝑥𝑥< 𝑅∗
𝑥𝑥, no surface fractures can exist according to LEFM (white area in Fig. 3c). When the 

dimensionless tensile resistive stress exceeds a threshold (black dashed line in Fig. 3c) surface fractures 

are unstable. The transition boundaries (between no-fracture, stable-fracture and unstable-fracture) for 

basal fractures with the inclusion of the effects of vertically varying temperature (SI Section 7) are shown 

by light blue curves in Fig.3c. In the absence of meltwater, LEFM predicts that a basal fracture will 

destabilize at a smaller dimensionless stress �̃�𝑥𝑥 than a surface fracture. 

  

To assess where the DCNN-identified fracture features lie in this space, we compute the dimensionless 

parameters, �̃�𝑥𝑥 and �̃�𝐼𝑐, for every fracture location (1 km resolution) using observed ice thickness37, 

fracture toughness, 𝐾𝐼𝑐 = 150 kPa⋅m 1/2, from laboratory measurements36, strain rates derived from a data-

constrained flow model13, and ice viscosity calculated using ice-surface temperature from a regional 

climate model38 (Extended Data Fig. 6c). Fig. 3c plots them on the parameter space as a density map. 

Most fracture features (89% of 32k locations identified as fractures by the DCNN) lie in the parameter 

region where the theory predicts stable surface fractures (gray area in Fig. 3c). We also note that 56% of 

the 32k identified fracture features lie in the parameter regime of stable basal fractures. Given the 

simplicity of the theory and the limitations of the DCNN mapping, this agreement is encouraging and 

suggests that the theory predicts both stable surface and basal fractures across realistic ranges of �̃�𝑥𝑥 and 

�̃�𝐼𝑐. Note that no parameters were tuned to determine the locations of data on Fig. 3c. 

 

Vulnerability to unstable hydrofracture 

To estimate vulnerability to hydrofracture across all ice shelves, we next examine the extreme case when 

water inundates all ice shelves. In this way we estimate the geographic extent of the lower-left circle in 

Fig. 1. When surface fractures are filled with meltwater, the weight of water can destabilize the fractures, 

leading to unstoppable fracture propagation. However, when the ice stresses are sufficiently compressive, 

pre-existing water-filled fractures remain stable (SI Section 5). Here we assume that surface water flows 

rapidly into surface fractures and does not refreeze fast enough to affect fracture propagation. Slow inflow 

and refreezing could stabilize surface fractures. A fracture model coupled to a hydrological model could 

account for this39.  

https://paperpile.com/c/aSrbJ9/ErZ7q
https://paperpile.com/c/aSrbJ9/bJw1O
https://paperpile.com/c/aSrbJ9/cz94z
https://paperpile.com/c/aSrbJ9/7oxVW
https://paperpile.com/c/aSrbJ9/wigEo


 

In regions where 𝑅𝑥𝑥 > 𝑅∗
𝑥𝑥 , (red in Fig. 4a), surface fractures will be unstable if filled with water – 

these locations are vulnerable to hydrofracture. Where 𝑅𝑥𝑥 < 𝑅∗
𝑥𝑥  water-filled fractures will be stable, 

unless the original dry fracture is deeper than di (Fig. 4a). The pre-existing surface fracture depth di 

required to destabilize hydrofracture increases as 𝑅𝑥𝑥 decreases, as plotted in Extended Data Fig. 5c-d. 

Given that pre-existing fractures in regions of low 𝑅𝑥𝑥 are unlikely to be 50-150 metres deep, we consider 

the ice-shelf regions marked yellow and green in Fig, 3 to be resilient to meltwater-driven fracturing. 

Finally, some regions have sufficiently compressive stresses that water-filled fractures cannot grow, 

regardless of their size (black regions in Fig. 4a).  

 

 

Figure 4 | Map of ice-shelf vulnerability to hydrofracture. (a) Water-filled fractures are unstable in 

vulnerable areas (red & blue) and stable in resilient regions (yellow & green) unless pre-existing surface 

fractures of depth 𝑑𝑖 exist. Where stresses are sufficiently compressive, water-filled fractures cannot open 

(black). Present-day meltwater on the (c) Amery (Jan 15/17, 2019, Landsat 8) and (e) George VI (Feb 4, 

1991, Landsat 5) ice shelves predominantly lies in regions resilient to hydrofracture (yellow, green & black 

in (b,d)). Blue denotes regions providing insignificant buttressing13. We find that 60% ±10% of the 

Antarctic ice shelf area provides buttressing and is vulnerable to hydrofracture (red).  

 

Vulnerable and buttressing regions 

https://paperpile.com/c/fYKmgj/pb3f3


Our key question is whether regions vulnerable to hydrofracture coincide with buttressing regions (Fig. 

1). Both the DCNN-mapped fractures and the LEFM theory suggest they do coincide. Blue areas in Fig. 

4a were identified by Fürst et al. (2016)13 as regions of ‘passive ice’ that provide little buttressing. Red 

regions in Fig. 4 are where the ice shelf is vulnerable to hydrofracture according to our LEFM analysis 

and also provide significant buttressing13; i.e., they lie outside of Fürst et al.’s passive regions. These 

regions cover 60% ± 10% of the total area of Antarctica’s ice shelves. The details of the extent of these 

regions depend on the buttressing computation13 and the method used to compute stresses, but the finding 

that buttressing and vulnerable regions substantially overlap does not (Extended Data Fig. 8). The DCNN 

map confirms widespread surface fractures in these regions (Fig. 2).  

 

While it does not impact our key conclusions, we neglect the impact of the low-density, low-viscosity 

near-surface firn layer, and ice softening due to damage (Methods). The net effect of the firn is to slightly 

increase surface fracture depths (SI Section 2, Extended Data Fig. 3c) and therefore slightly increase the 

extent of the vulnerable regions. Conversely, damaged ice would generate lower tensile resistive stress 

and decrease the extent of vulnerable regions slightly (Methods Section 3.3).  

 

Hydrofracture can only occur if the ice-shelf surface is inundated with meltwater. In many locations large 

meltwater ponds have persisted for decades. Many of these, for example on the George VI (Fig. 4c), 

Amery (Fig. 4e), and Roi Baudoin ice shelves23,40 lie in regions that, due to low tensile (and in places 

compressive) resistive stresses, are resilient to hydrofracture (Fig. 4b,d). Moreover, using a recent survey 

of East Antarctic supraglacial lakes (Stokes et al., 2019)25, we estimate an upper bound of only 0.6% of 

East Antarctic ice shelves (by area) currently provide buttressing, experience meltwater ponding, and are 

vulnerable to hydrofracture (Methods Section 4; Extended Data Fig. 10). Increased meltwater ponding in 

resilient locations will not lead to widespread hydrofracturing according to our analysis. However, 

predictions of future melt17,41 suggest that melt rates seen in locations which experience meltwater 

ponding today could become widespread by 2100 under high emissions scenarios. This, coupled with 

present-day widespread low porosity firn7 and large-scale surface-meltwater drainage that can transport 

water long distances from melt zones26, strongly indicates that meltwater ponding could spread to many 

of the buttressing and vulnerable regions under future warming scenarios.  

 

Summary 

We have used fracture mechanics, machine learning and continent-wide datasets to estimate the 

vulnerability of Antarctica’s ice shelves to hydrofracture. Although hydrofracture and buttressing are 

favoured by different stress conditions, a large proportion of Antarctic ice shelves are both vulnerable to 

https://paperpile.com/c/aSrbJ9/cz94z
https://paperpile.com/c/aSrbJ9/cz94z
https://paperpile.com/c/aSrbJ9/cz94z
https://paperpile.com/c/aSrbJ9/cTEFP+n5N89
https://paperpile.com/c/aSrbJ9/OZpaE
https://paperpile.com/c/aSrbJ9/RLP3Z+ZNKdT
https://paperpile.com/c/aSrbJ9/X3WPK
https://paperpile.com/c/aSrbJ9/SjrvT


hydrofracture, if inundated with meltwater, and provide significant buttressing. Our analysis yields a 

fracture stability diagram based on LEFM which shows promising agreement with the first continent-

wide attempt at mapping fracture features, but could be extended to include viscous35 and thermal 

effects39. This theory could be implemented into an ice-sheet model to improve sea-level predictions and 

the machine learning approach to mapping fractures can easily be applied to higher-resolution imagery. If 

warming allows meltwater to enter the vulnerable, buttressing regions we have identified, hydrofracture-

driven ice-shelf collapse is possible, which could have major consequences for Antarctic mass loss and 

global sea-level rise. 
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Methods 

1. Machine learning development and evaluation 

To develop a machine learning model to detect the fracture patterns, we first train several models on a 

training set to learn the relationships between input images and corresponding fractures labeled manually 

by visual inspection. Next, we assess the performance of the trained models on a validation data set with a 

range of hyperparameters. The best performing model on the validation data is selected for evaluation on 

an unseen test data set. 

 

1.1. Training, validation, and testing datasets 

A 1000 x 1000 km (8000 x 8000 pixels, at 125m-resolution) region covering the Larsen C and George VI 

ice shelves in the MODIS mosaic of Antarctica (MOA28,42) was used as the training and validation sets 

(Extended Data Fig. 1a). This subset of MOA contains fracture features near shear margins, calving 

fronts, and grounding lines, covering the range of typical fracture patterns observed on Antarctic ice 

shelves. We first crop the 8000 x 8000 pixels image into smaller tiles (1000 x 1000 pixels), of which 32 

tiles contain ice-shelves (non-black areas in Extended Data Fig. 1a). We randomly divide the 32 tiles into 

a training set (26 image tiles) and a validation set (6 image tiles). To evaluate the developed machine 

learning model on an unseen data set, we prepare an independent testing set consisting of 6 image tiles of 

size 1000 x 1000 pixels randomly selected from the remaining continent-wide MODIS image. 

 

Using a Matlab script, we manually label the datasets (38 tiles in total) by visually identifying fractures 

based on their linear morphology and alignment perpendicular to flow (fractured areas are filled in white 

as shown in Extended Data Fig. 1c). The marked fractures are rasterized as binary labels. A sample 

training tile and its labels are shown in Extended Data Fig. 1b and c, respectively. 

 

1.2. Model selection 

For model selection, here we compare the predictive performance of a wide range of machine learning 

models. We explored four sets of models, including (1) several single layer convolutional neural networks 

(CNN) with different filter sizes, 1×1 , 28×28, and 56×56, (2) U-Net29 using different numbers of first 

layer feature maps (1, 2, 4, 16, 32, 64), (3) Feature Pyramid Networks (FPN)43 with a ResNet-18 

backbone, and (4) an edge detector44 (using OpenCV’s cv.Canny implementation with minimal threshold 

= 0 and maximum threshold = 255). There are many other advanced segmentation models such as 

DeepLabv345, SegNet46, PSPNet47, etc. Doing a detailed comparison for a wide range of advanced 

segmentation models to detect fractures on satellite imagery is an interesting future direction to explore.  

 

https://paperpile.com/c/aSrbJ9/SXUZc+kc70a
https://paperpile.com/c/aSrbJ9/c12vS
https://paperpile.com/c/aSrbJ9/W3qxs
https://paperpile.com/c/aSrbJ9/5kD12
https://paperpile.com/c/aSrbJ9/OIyFk
https://paperpile.com/c/aSrbJ9/RVUSi
https://paperpile.com/c/aSrbJ9/75LG1


We use the area under the receiver operating characteristics curve (AUC) as the evaluation metric for 

model selection. The AUCs of the trained models on the validation set is plotted in Extended Data Fig. 

2a(i) as a function of the total number of parameters in each model. All models were trained with a batch 

size of 1. The single-layer CNN and FPN models were trained using the stochastic gradient descent 

optimizer to minimize the cross-entropy loss. The U-Net was trained with the momentum optimizer to 

minimize the cross-entropy loss.  

 

As shown in Extended Data Fig. 2a, the performance of U-Net increases significantly when the initial 

number of feature maps (d) increases from 1 to 4, reaching a maximum of AUC = 0.99 when d = 32, then 

slightly decreases when d goes beyond 32. Single-layer CNN with filter sizes of 1×1, 28×28, and 56×56 

perform well but do not exceed the performance of U-Net when the number of parameters is increased. 

This is likely due to insufficient number of layers to recognize complex fracture patterns. Lastly, the FPN 

was a state-of-the-art method for recognizing objects on the COCO dataset48, however, it has an AUC of 

0.82 for the fracture detection task in this study, which is significantly lower than U-Net’s. This is likely a 

result of overparameterization for this comparatively simpler task. Based on these observations, we 

selected U-Net with 32 initial feature maps for making predictions on the continent-wide map. A sample 

validation label and image are displayed in Extended Data Fig. 2 c and d, respectively.  

 

1.3. U-Net architecture           

To detect fractures we employed the U-Net29, a DCNN that has been successfully applied to image 

segmentation. In addition to a contracting path, which is typical for convolutional neural networks, the U-

Net also contains an expansive path, which gives rise to its U-shaped architecture (Extended Data Fig. 

1d). The expansive path recovers the location of the classified pattern and enables efficient use of training 

examples.  

 

In our U-Net setup, there are 2 classes (fracture and non-fracture) in the output predictions, one channel in 

the input image (1000 x 1000 pixels), 32 feature maps in the first layer, and 13 convolutional layers (ten 

3x3 convolutional layers, two 2x2 transposed convolutional layers, and one final 1x1 convolutional 

layers) in the entire architecture (Extended Data Fig. 1d). For each block in the contracting path the image 

is convolved twice with 3x3 filters, each followed by a ReLU activation function, and down-sampled with 

a 2x2 max pooling (stride 2) filter. For each block in the expansive path, the image size is increased by a 

2x2 up-sampling (transposed convolutional) filter, followed by a concatenation with the cropped feature 

maps from the corresponding contracting layer, two 3x3 convolution filters and a ReLU activation 

function. The number of filters is halved and doubled in the down-sampling and up-sampling steps, 
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respectively. Finally, a 1x1 convolution is applied to generate the output prediction (960 x 960 pixels). 

We train our model using the momentum optimizer with the hyperparameters (learning rate = 1.4, 

momentum = 0.2, decay rate = 0.95) that optimize the AUC on the validation set. A sample prediction of 

the fracture is shown in the right panel of Extended Data Fig. 1d. 

 

1.4. Threshold selection 

Next, a classification threshold is applied to the predictions (continuous output between 0 to 1, Extended 

Data Fig. 2e) so that every pixel is classified as either a fracture (white in Extended Data Fig. 2f) or non-

fracture (black in Extended Data Fig. 2f). Every threshold corresponds to a point on the receiver operating 

characteristics (ROC) curve. Lower thresholds yield higher sensitivity (percentage of pixels with fractures 

that are classified as fractures) but lower specificity (percentage of pixels without fractures that are 

classified as non-fractures). We apply a range of thresholds (0-1) on the validation-set predictions and 

measure the F1 scores. The threshold (= 0.2) with the highest F1 score on the validation set is selected for 

generating the continent-wide fracture map shown in Fig. 2. 

 

1.5. Evaluation on testing set      

Finally, we evaluate the model performance using the testing set which has not been seen by the model. 

The model shows an AUC of 0.97 (95% CI: 0.93-0.99) on the testing set, as shown in Extended Data Fig. 

2b. Confidence interval (CI) of model performance is calculated using bootstrapping with 1000 samples. 

We further perform a data titration experiment to understand the impact of the training set size with 

respect to the performance. Increasing the number of training tiles from 6 to 26 only increases the AUC 

from 0.95 to 0.97, indicating that increasing the training dataset size further will likely not significantly 

improve performance. The classification performance on the testing set, after applying the classification 

threshold (= 0.2) to the predictions, shows a specificity of 0.99 and sensitivity of 0.63.  

 

1.6. Continent-wide fracture map 

We apply the final U-Net with the selected threshold to the continent-wide MOA imagery to identify 

fracture features across all ice shelves (marked in white in Fig. 2). Note that the resolution of the fracture 

map is 125 m, but the resolution of the strain rate data (Extended Data Fig. 6a) is 1 km.13 We downsample 

the fracture map to 1 km resolution to construct Fig. 3c using the fracture locations and strain rate data on 

the same grid. The downsampling algorithm uses nearest-neighbor interpolation. The images before and 

after downsampling are shown in Extended Data Fig. 2f and g, respectively. Some detailed fracture 

patterns are lost in the 1km-resolution fracture map (Extended Data Fig. 2g) but the overall fracture 
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distribution is retained. For future work, the proposed method can be extended to a finer grid where 

higher resolution imagery (e.g., Landsat) and strain rates are available49. 

 

1.7. Limitations in fracture identification 

Most (89%) of the fractures mapped using 125m-resolution MOA imagery lie in the region of stability 

diagram (dimensionless tensile resistive stress and dimensionless fracture toughness) where our theory 

predicts that the tensile resistive stress exceeds the critical value required for dry surface fracturing. The 

remaining fracture locations fall in the region of parameter space where the theory predicts no dry surface 

fractures should form. There are several possible explanations, for example, unresolved locally high strain 

rates, existing fractures advecting into lower stress regions, incorrectly identified fractures, or fracturing 

resulting from more complex fracture modes than our theory describes. 

 

The theory also predicts that dry surface fractures exist in many locations where the DCNN does not 

detect them. Several explanations for this are possible. First, the satellite imagery we utilize operates in a 

part of the electromagnetic spectrum where energy does not penetrate through snow and ice. Therefore, it 

will fail to detect surface fractures buried by snow unless it has a sufficient surface expression. For 

example, the presence of buried surface fractures can sometimes be inferred from the presence of 

elongated depressions in the snow surface, which may be observable in MOA. However, it is possible that 

many sub-surface fractures are not detected by the DCNN because they have little or no surface 

expression. Satellite-based radar (e.g., RADARSAT, SENTINEL-1) can detect sub-surface structures 

because radio waves penetrate up to ~10 m into the sub-surface50,51. Applying the DCNN to these data 

may allow us to test whether buried surface fractures are widespread in these regions, as predicted by the 

theory. Secondly, it is possible that the limitations of the DCNN are causing us to fail to detect surface 

fractures in these locations. Although the performance of the DCNN output prediction (a continuous 

variable ranging from 0 to 1) evaluated against testing set is excellent (AUC=0.97), the binary 

classification of fracture features (a binary variable, either 0 or 1) identified via application of a 

classification threshold yields a sensitivity of 0.63, indicating that 37% of all fracture features manually 

labelled on the test data are not detected by the DCNN. Performance of the U-Net is expected to improve 

if higher resolution imagery were used. It is also possible that the relatively low-resolution imagery is 

incapable of detecting crevasses smaller than a few hundred metres in length or width, and we are 

therefore failing to detect many smaller crevasses in the locations where the theory predicts they should 

form. Future work could apply the DCNN within a high-performance computer framework to higher 

resolution imagery.  
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2. Theory of ice-shelf fractures 

We have developed a model of ice-shelf fracturing based on Linear Elastic Fracture Mechanics (LEFM). 

A complete theoretical description is available in the SI, which draws on references 1,2,18,33–36,52–57. The SI 

describes LEFM for surface crevasses (section 1) and basal crevasses (section 6), the determination of 

dimensionless parameters (equation 1) for the surface fracture stability diagram (Fig. 3c), the derivation 

of the critical stress required for surface crevasse formation (equation 2) (section 3), firn effects on 

surface crevasses (section 2), surface crevasse depth from LEFM vs Nye’s zero-stress approximation 

(section 4), water-filled crevasse stability and initial flaws (section 5), and the effects of vertical englacial 

temperature gradients on surface and basal fractures (section 7). Using theoretical results derived in the SI 

we discuss the stability of surface and basal fractures below. 

 

2.1. Physical regimes of surface and basal fractures 

The stability diagram for surface and basal fractures is shown in Extended Data Fig. 4d. We have labeled 

physical regimes I-V on the stability diagram, marked the ice-shelf locations corresponding to each 

regime (Extended Data Fig. 4e-h), and quantitatively showed the percentage of ice shelves corresponding 

to each physical regime I-V. The four panels (Extended Data Fig. 4e-h) show the variability in the 

location of each regime when different ice-shelf stress datasets are used (their corresponding stability 

diagrams are shown in Fig. 3c and Extended Data Fig. 8). Locations where basal fractures are stable 

(blue; regime III) cover 41-62% of ice shelves and are theoretically dominant on ice shelves. Locations 

where surface fractures could theoretically form are widespread and overlap with that of stable and 

unstable basal fractures. The locations of unstable basal fractures (red; regime IV) cover only 2-4% of the 

total ice-shelf area. These red areas largely overlap with areas of high extensional stress downstream of 

pinning points where ice is damaged or near existing rifts, as shown in Extended Data Fig. 4e-h, with 

close-view examples shown in the second row of panel e-h. Note that the red area is purely an output 

from a given dimensionless stress input, and is independent of the neural network-mapped fracture-

feature locations (white locations).  

 

Within this 2-4% area (regime IV; red in Extended Data Fig. 4e-h) the effective viscosity could be 

overestimated in locations with highly damaged ice. Some red areas that coincide with fracture features 

disappear when Fürst et al.’s stress field13 is used directly (Extended Data Fig. 4g,h), as this product 

inherently includes the damage-induced softening of the ice. On the other hand, LEFM may be unable to 

accurately describe basal fracture stability. For example, ice may be more ductile58 at the base and thus 

require more energy to break than predicted by LEFM, thus stabilizing basal crevasses that would be 

unstable according to LEFM and reducing the red areas in Extended Data Fig. 4e-h.  
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3. Data used for the fracture stability diagram 

3.1. Data sources  

The parameters required to plot ice-shelf locations on the stability diagram of dimensionless tensile resistive 

stress and dimensionless fracture toughness are tensile resistive stress 𝑅𝑥𝑥, ice thickness H, fracture 

toughness 𝐾𝐼𝑐, and ice density 𝜌𝑖. The stress is calculated using the strain rate 𝜖�̇�𝑥 and the effective viscosity, 

which is calculated using the viscosity factor B, according to Glen’s flow law, 𝑅𝑥𝑥 = 2𝐵𝜖�̇�𝑥
1/𝑛. We use 

the along-flow strain rate 𝜖�̇�𝑥 (Extended Data Fig. 6a) determined from a model assimilation of satellite-

derived velocity data13,59. The assimilated velocity field effectively smooths the observed velocity field60, 

which otherwise can be problematic when differentiating to compute strain-rate fields61. An alternative 

approach is to use the 1st principal strain rate. In the next section we demonstrate that using the 1st principal 

stress instead of the along-flow stress does not impact our main conclusions. Ice-shelf thickness is from 

Bedmap237 (Extended Data Fig. 6b). The viscosity factor B (Extended Data Fig. 6c) is calculated using an 

empirical function, which is dependent on ice temperature (equation (6) in ref. 57). Most surface fractures 

are 1-50m deep (less than 25% of the typical ice thickness), and the ice temperature within this range is 

approximately constant (figure. 1b in ref. 62). Thus, we calculate B using the surface temperature 𝑇𝑠 

(Extended Data Fig. 6d), obtained from a time average of the regional climate model RACMO2.3p2. The 

negligible effect of vertical temperature gradient on the surface fracture stability is addressed in SI Section 

7 and Extended Data Fig. 9. The fracture toughness is insensitive to temperature in the range of 100-273.15 

K according to laboratory measurements (figure 3 in ref. 36), and thus is assumed constant 𝐾𝐼𝑐 = 150 

kPa⋅m1/2 (ref. 36) across ice-shelves in our study. Note that an alternative approach is to use the stresses 

computed directly by the model assimilation ref. 13. This has the advantage that the effects of ice damage 

(e.g. due to crevassing) are accounted for in the ice viscosity, but this does not impact our main conclusions 

(Extended Data Fig. 8).  

 

3.2. Stability diagram for all ice-shelves and 2-D histogram 

The axes of the fracture stability diagram (Fig. 3c) are dimensionless fracture toughness �̃�𝐼𝑐 and tensile 

resistive stress �̃�𝑥𝑥 (equation 1), which controls whether fractures occur (equation 2) and their stability. 

To determine whether fractures form, �̃�𝐼𝑐 and �̃�𝑥𝑥 are calculated on a 1 x 1 km grid using the datasets 

identified in the previous section. These values are plotted as red dots in Extended Data Fig. 7 (n ≈ 

1.25×106 points), showing the range of parameter values across all ice shelves. The subset of locations 

where fractures are identified by the deep convolutional neural network (DCNN) are marked in yellow (n 

≈ 32000) in Extended Data Fig. 7. These points almost exclusively lie within the stable-fracture phase. 

 

https://paperpile.com/c/aSrbJ9/cz94z+hSXOo
https://paperpile.com/c/aSrbJ9/L0VmF
https://paperpile.com/c/aSrbJ9/FsqgA
https://paperpile.com/c/aSrbJ9/ErZ7q
https://paperpile.com/c/aSrbJ9/feDYw
https://paperpile.com/c/aSrbJ9/7TW5U
https://paperpile.com/c/aSrbJ9/bJw1O
https://paperpile.com/c/aSrbJ9/bJw1O
https://paperpile.com/c/aSrbJ9/cz94z


To visualize the density of points in Extended Data Fig. 7, we plot the 2-dimensional histogram for the 

fracture locations (yellow dots) in Fig. 3c in the main text. The data points are sorted into bins with 

logarithmically-varying widths for both axes (i.e. data in the range of 10𝑥 − 10𝑥+0.01 is sorted into the 

same bin). The total number of data points within each bin is denoted by the colour (Fig. 3c). This shows 

a dense population of fracture features within the parameter regime where we predict stable surface 

fractures and demonstrates a remarkable agreement with our analytical result (red line, equation 2) for the 

transition boundary between the no-surface-fracture and stable-surface-fracture regions of the stability 

diagram. 

 

3.3. Uncertainties associated with our choices of stress and strain-rate fields 

The tensile resistive stresses 𝑅𝑥𝑥 used in the stability diagram and vulnerability map in Fig. 3c and Fig. 4  

are calculated from surface-temperature-dependent viscosity factor 𝐵(𝑇) and along-flow strain rate 𝜖�̇�𝑥 

computed by Fürst et al. (2016) (ref. 13). To check the sensitivity of our results to the strain rates, we 

repeat our analysis using along-flow strain rates supplied by ref. 61 (panel A). These strain rates were 

derived by applying Gaussian smoothing to the MEaSUREs V2 Antarctic velocity product 60,63. We find 

fewer points within the no-surface-fracture regime and an increase in the extent of the vulnerable regions 

(c.f. Extended Data Fig. 8a and Fig. 4a).  

 

In addition, the impact of ice damage on ice viscosity64 is neglected in the main text. More damaged ice is 

less viscous and therefore experiences less stress for a given strain rate. The stresses calculated by ref. 13 

incorporate an inverted viscosity parameter, which is calculated so that model velocities match with 

observations60. The effects of damage are therefore embedded in the computed stresses. Extended Data 

Fig. 8b and 9c show the stability diagram and vulnerability maps computed using the along-flow stress 

and 1st principal stress (i.e. maximal tensile resistive or minimal compressive stress) determined by ref. 13. 

The difference between the distribution of data within the stability diagram is small.  

 

The conclusions drawn from our analysis of the stability diagram and vulnerability map are unaffected by 

these choices regarding strain-rates and stresses. First, most fracture features fall in the predicted physical 

regime (below the red theoretical curve). Second, large portions of the area vulnerable to hydrofracture 

(red regions in the lower panel) provide strong buttressing (outside the passive ice-shelf areas (blue)).  

 

3.4. Advection of fractures and stress history 

Although we evaluate the physical conditions (dimensionless stress and toughness; equations 1) at the 

present-day locations of the observed fractures, brittle fractures are likely to have initially formed 
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upstream of these locations and have been advected downstream. During this time they likely deformed 

viscously, causing the fracture to widen such that it can be seen in the 125m resolution satellite image. 

We track the stress upstream along streamlines (assuming steady flow) for all fracture features and 

identify the maximum dimensionless stress �̃�𝑥𝑥𝑚𝑎𝑥 that the fracture has experienced since crossing the 

grounding line. For each fracture location detected by the DCNN, we then plot �̃�𝑥𝑥𝑚𝑎𝑥 and the 

corresponding dimensionless toughness at the location where maximum dimensionless stress occurs, as 

shown in Extended Data Fig. 9b. Compared with �̃�𝑥𝑥 and �̃�𝐼𝑐 evaluated at the locations of the fracture 

features, Extended Data Fig. 9a, the points evaluated at the locations of the maximum dimensionless 

stresses are shifted to the right, so are still in the physical regime where the theory predicts stable surface 

fractures. This shows that although brittle fractures can form upstream at higher stresses compared to their 

current locations, most of them (89%) remain in the physical regime where LEFM predicts stable surface 

fractures, after they are advected downstream to their current locations. Note that, from the MOA images 

we do not know exactly where or when each fracture initially forms, but we do know that the majority of 

the surface fractures experience physical conditions that allow brittle surface fracture both at their 

maximum stress in the past (Extended Data Fig. 9b) and their current stress state (Extended Data Fig. 9a). 

We thus use equation 2 (the analytical solution for the boundary between the no-surface-fracture/stable-

surface-fracture regimes based on LEFM; red line in Extended Data Fig. 9) to estimate the areas where 

physical conditions allow the formation of dry, stable, and brittle surface fractures before they can later 

deform viscously and advect downstream. These areas are vulnerable to hydrofracture (red area in Fig. 

4a) since water-filled fractures are unstable (from both LEFM and zero-stress approximation). 

      

3.5. The surface expression of basal crevasses 

As described in the main text, a subset of the fracture features identified by the DCNN could be surface 

expressions of basal crevasses30–32. Although the DCNN was not trained to distinguish surface 

expressions of basal crevasses30–32 from surface fractures, we note that the two features are not mutually 

exclusive and very often co-exist31 (to comprehensively distinguish these two features continent-wide 

radar profiles showing basal crevasse would be required). As noted by Bassis and Ma (2015)58, a 

sufficiently wide basal crevasse can induce tensile stress near the surface large enough to create surface 

fractures. Most importantly, we show that most DCNN-identified fracture features (related to basal 

crevasses or not) occur where dimensionless stresses are sufficient to form stable dry surface fracture 

(Fig. 3c). 

 

4. Lake locations  

4.1 Stokes’ supraglacial lake locations compared with vulnerability map 
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Stokes et al. (2019)25 mapped supraglacial lakes in Landsat imagery from Jan 2017 across all East 

Antarctic ice shelves (defined using BedMap2's37 ice shelf mask). Plotting their lake locations on our map 

of vulnerability to hydrofracture (Extended Data Fig. 10b-e), we see that they mostly lie in the resilient 

regions (yellow-green areas).  

 

To obtain an upper estimate of the proportion of East Antarctic ice shelves that experience meltwater 

ponding and are vulnerable to hydrofracture, we sum the areas of the 1 km-by-1 km grid boxes that 

contain lakes and lie in the vulnerable regions, then divide by the total area of East Antarctic ice shelves, 

to give ~0.63%. The proportion of East Antarctic ice shelves that lie at the intersection of all three circles 

in Fig. 1 (i.e., meltwater ponds, they are vulnerable to hydrofracture and they provide significant 

buttressing) is approximately the same  (~0.6%) because Stokes’ lakes mostly lie in places providing 

significant buttressing (as identified by Fürst et al. (2016)13). Note that areas of most individual lakes are 

~0.001-0.01 km2 (see figure 3a in Stokes et al. (2019)25) - much smaller than the spatial resolution (1 km2) 

of our vulnerability map. Thus the true overlaps between these regions may be 2-3 orders of magnitude 

smaller than estimated here. 

 

 

Supplementary Information is available in the online version of the paper. 
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https://github.com/jakeret/tf_unet (ref. 65). The FPN implementation is available at 

https://github.com/qubvel/segmentation_models (ref. 66). The deep learning framework, TensorFlow, is 

available at https://www.tensorflow.org/. Scripts for calculating the fracture stability diagram (Fig. 3c) are 

available upon request. 

 

Data Availability  

The training, validation, and testing datasets are available at https://github.com/chingyaolai/Antarctic-

fracture-detection (http://doi.org/10.5281/zenodo.3899586). The neural-network mapped fracture 

locations on the MOA 2009 (125m resolution) imagery (Fig. 2) and the data required to construct the 

vulnerability map (Fig. 4) are available at https://doi.org/10.15784/601335. MOA (2009) imagery 

(https://doi.org/10.7265/N5KP8037) is available at the National Snow and Ice Data Center (NSIDC). 

Strain-rate fields are calculated from the dataset SUMER Antarctic Ice-shelf Buttressing, Version 1 

(https://doi.org/10.5067/FWHORAYVZCE7), available at NSIDC. Ice-shelf thickness is from Bedmap2 

(https://www.bas.ac.uk/project/bedmap-2/). The surface temperature data from the RACMO2.3p2 

regional climate model are available from J.M.W. (j.m.vanwessem@uu.nl). 
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Extended Data Figures 

 

Extended Data Figure 1 | Data preparation and the neural network architecture. The training and validation 

data are taken from a 8000 x 8000 pixel subset (covering Larsen and George VI ice shelves) of the 125m-

resolution MODIS imagery, as shown in (a), which produces 32 tiles of 1000 x 1000 pixel images containing ice-

shelves. The tiles are randomly separated into training (26 tiles) and validation (6 tiles) sets. (b) Example of a 

training tile and (c) the corresponding labels with white pixels indicating fractures. (d) U-Net architecture. The 

contracting and expansive paths give the U-Net29 its U-shaped architecture. Arrows illustrate operations within 

the network and at each stage the data dimension is noted. The input image is 1000 x 1000 pixels with 1 channel 

and the output prediction of the U-Net contains two classes (fracture and non-fracture). The right panel shows the 

fracture predictions. 
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Extended Data Figure 2 | Performance of the DCNN and fracture classification. (a)(i) Comparisons of the 

area under the receiver operating characteristics curve (AUC) for the validation data over number of parameters 

(N) for an edge detector44, single-layer CNN with different filter sizes (1×1, 28×28, 56×56; denoted by k in 

(a)(ii)), U-Net with different depths of first-layer feature maps (1, 2, 4, 16, 32, 64; denoted by d in (a)(ii)), and 

feature pyramid network (FPN)43 using a ResNet-18 backbone. (a)(ii) The AUCs and number of parameters (N) of 
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each model evaluated against the validation data are summarized in the table. (b) The performance of the U-Net 

(with d = 32) evaluated against an unseen testing set is shown by the receiver operating characteristics (ROC) 

curves. An example of the validation label image and original MOA image are shown in (c) and (d), respectively. 

(e) Output of the model, continuous values between 0 and 1. (f) Binarized classification of fractures that uses a 

threshold (= 0.2) maximizing the F1 score on the validation set. Fracture features with predictions exceeding the 

threshold are marked white. (g) The resolution of the fracture map is reduced to 1 km, the resolution of the strain-

rate data, before we incorporate the DCNN result with other data in Extended Data Fig. 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Extended Data Figure 3 | Stresses acting on a surface fracture and fracture stability. (a) and (b) illustrate the 

effects of tensile resistive stress, hydrostatic stress of water, and overburden stress of ice on opening or closing of a 

surface fracture. (c) The stress intensity factor (𝐾𝐼) as a function of surface fracture depth (𝑑𝑠) (equation (M5)) 

computed with 𝑅𝑥𝑥 = [0.5 , 1] MPa, 𝐻 = 300 m, surface firn density 𝜌
𝑠

= 400 kg m-3, and 𝐶 = 0.02 m-1 (see 

equation (M6); ref. 2). (The solution derived in this work is shown with a solid curves and that of Van der Veen (ref. 

2) by dashed curves.) The additional impacts of a firn layer are due to (d) reduced density and (e) reduced viscosity. 

Reduced overburden stress due to lower density firn compared to ice acts to deepen surface fractures (black dot on 

green curve in (c)). In contrast, the reduced tensile resistive stress due to the reduced firn viscosity reduces surface 

fracture depth. The net effects from firn, shown by the red curve in (c), are secondary compared with the effects 

from tensile resistive and overburden stresses of ice. Therefore in the main analysis we neglect the effect of firn. 
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Extended Data Figure 4 | Physical regimes of surface and basal fractures. The schematics of a (a) surface and 

(b) basal crevasse with depth varying resistive stress 𝑅𝑥𝑥(𝑧) due to the vertical temperature gradient (assumed 

linear). (c) The fracture stability diagram for surface and basal crevasses with and without temperature effects 

(assuming the surface and the base of ice shelf are -30 and 0 ℃, respectively). Dashed and solid lines represent 

the transition boundaries of stable-to-unstable and no crack-to-stable crack, respectively. Warmer ice at the base 

reduces the ice viscosity (and thus stress), which impacts the locations of the stability boundaries of basal 

crevasse. (d) The five physical regimes (I-V) defined by the transition boundaries for surface crevasse (black 

curves in (c)) and basal crevasse with temperature effects (light blue curves in (c)). (e-h) The locations 

corresponding to regimes I-V on ice shelves are determined by different estimates of stress. The percentage values 

denote the portion of ice-shelf area containing the physical condition in each regime (I-V). The green, pink, blue, 



red, yellow, and white areas correspond to regimes I, II, III, IV, V, and the U-Net-detected fracture locations, 

respectively. First and second columns correspond to the stress field determined by the temperature dependent 

viscosity factor B(T) (equation (6) in ref. 47) combined with along-flow strain rates obtained by (e) Fürst et al. 

(2016) (ref. 13) and (f) Wearing (2017) (ref. 46). The stress field in the (g) along-flow and (h) and 1st principal 

stresses direction calculated by ref. 13 include the effects of damage-induced ice softening through the data 

assimilation and model inversion process. The second row of (e-h) is the close view of the white box in the first 

row. Note that the spatial areas of regimes I-V are calculated based solely on the dimensionless stress and 

toughness, and are independent of the U-Net result. The spatial resolution is 1km, same as the stress field 

resolution used in ref. 13. 
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Extended Data Figure 5 | Comparison between dry and water-filled fractures in LEFM (a) The stress 

intensity factor (equation (M5)) as a function of surface fracture depth is calculated for hydrofractures (blue 

curves) and dry surface fractures (black curves) for ice thickness H=1000 m. The number alongside each curve is 

the corresponding tensile resistive stress, 𝑅𝑥𝑥. Above the critical stress 𝑅∗
𝑥𝑥 ≈ 60𝑘Pa (calculated using equation 

2 and 𝐾𝐼𝑐 ≈ 150 kPa⋅m 1/2) dry-surface-fracture depths are stable (𝑑𝑠 black dot). Hydrofractures can become 

unstable when a pre-existing flaw filled with water reaches a depth denoted by the white dots (𝑑𝑖). Water-filled 

initial flaws smaller than the required depth 𝑑𝑖 will remain closed. When stress is sufficiently compressive, water-

filled fractures will not grow (e.g., the blue curve has negative slopes for any surface fracture depth below the red 

line). (b) Comparison of stable dry-surface-fracture depth 𝑑𝑠 with previous theories. Our numerical solution 

approaches Weertman’s solution at large ice thickness. (c, d) The required depth of an initial flaw,  𝑑𝑖, to 

destabilize a hydrofracture as a function of stress is shown by blue curves. The pre-existing flaw depths required 

to initialize stable dry surface fractures are plotted as a red curve in (c), and reach a maximum of ~3.8 m at the 

critical stress 𝑅∗
𝑥𝑥 (dashed line). Note that at the critical stress 𝑅∗

𝑥𝑥 the required initial flaw depth is the same as 

fracture depth, i.e. 𝑑𝑖 = 𝑑𝑠 = 𝑑𝑠
∗ ≈ 3.8m (half-white half-black dot in (a)). 



 

Extended Data Figure 6 | Antarctic-wide data used to predict vulnerability to hydrofracture. The 

dimensionless toughness and dimensionless stress are evaluated using (a) strain rates, (b) ice-shelf thickness, (c) 

surface temperature and (d) viscosity factor B (calculated from surface temperature), and plotted on the fracture 

stability diagram (Fig. 3c). 

 



 

Extended Data Figure 7 | Surface fracture stability diagram. The two parameters determining fracture 

stability, 𝐾𝐼𝑐 and �̃�𝑥𝑥, are computed at every 1x 1 km location on all ice shelves marked as red (n ≈ 1.25 million 

points) and all fracture features detected by the DCNN marked as yellow dots (n ≈ 32000). The frequency 

distribution of the yellow points is shown in Fig. 3c.  

 



 

Extended Data Figure 8 | Alternative stress computations. Sensitivity of surface fracture stability diagram 

(upper row) and the vulnerability map (lower row) to choices of stress and strain-rate data. The results are 

computed using strain rate calculated by ref. 46 (a), along-flow stress (b) and 1st principal stresses (c) both from  

ref. 13, which include damage-induced ice softening. Colour scale for the lower panel is the same as Fig. 4. The 

percentage values in the bottom row denotes the percentage of the total ice shelf area that is in the red regime in 

the second row (i.e. both buttressed and vulnerable to hydrofracture). Our main conclusions - ice-shelf stresses 

closely agree with the fracture criteria, and large buttressed areas are vulnerable to hydrofracture - are not affected 

by the use of these alternative stress fields.  
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Extended Data Figure 9 | Advection of fracture and stress history. We track the resistive stress upstream 

along streamlines (assuming steady-state) and identify the maximum dimensionless stress �̃�𝑥𝑥𝑚𝑎𝑥  each 

fracture feature has experienced in the past. For each location identified as a fracture by the DCNN, we 

evaluate �̃�𝑥𝑥𝑚𝑎𝑥 and the corresponding dimensionless toughness 𝐾𝐼𝑐 at the location where maximum 

dimensionless stress occurs, as shown in (b). The dimensionless parameters �̃�𝑥𝑥 and 𝐾𝐼𝑐 evaluated directly at 

the locations of fracture features are shown in (a) (same as Fig. 3c) for comparison. (b) The maximum 

dimensionless stresses mostly fracture features exceed the threshold for surface fracture formation (red line; 

equation 2). 

 

 

 

 

 

 

 

 

 

 



 

Extended Data Figure 10 | East Antarctic lake locations compared with vulnerability map. Stokes et al. 

(2019)24 have mapped lakes across much of East Antarctica for one melt season (2017), enabling us to 

compare these locations to our vulnerability map (Fig. 4). We find that very little vulnerable and buttressing 

area contain lakes today on East Antarctic ice shelves. An upper estimate of the overlap between “lake-

covered area” (top circle of Fig. 1) and “stress state-related vulnerable area” (lower left circle of Fig. 1) is 

only ~0.63% of the East Antarctic ice-shelf area. 
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