72 research outputs found
Risk stratification of symptomatic patients suspected of colorectal cancer using faecal and urinary markers
Aim
Faecal markers, such as the faecal immunochemical test for haemoglobin (FIT) and faecal calprotectin (FCP), have been increasingly used to exclude colorectal cancer (CRC) and colonic inflammation. However, in those with lower gastrointestinal symptoms there are considerable numbers who have cancer but have a negative FIT test (i.e. false negative), which has impeded its use in clinical practice. We undertook a study of diagnostic accuracy CRC using FIT, FCP and urinary volatile organic compounds (VOCs) in patients with lower gastrointestinal symptoms.
Method
One thousand and sixteen symptomatic patients with suspected CRC referred by family physicians were recruited prospectively in accordance with national referring protocol. A total of 562 patients who completed colonic investigations, in addition to providing stool for FIT and FCP as well as urine samples for urinary VOC measurements, were included in the final outcome measures.
Results
The sensitivity and specificity for CRC using FIT was 0.80 [95% confidence interval (CI) 0.66â0.93] and 0.93 (CI 0.91â0.95), respectively. For urinary VOCs, the sensitivity and specificity for CRC was 0.63 (CI 0.46â0.79) and 0.63 (CI 0.59â0.67), respectively. However, for those who were FITânegative CRC (i.e. false negatives), the addition of urinary VOCs resulted in a sensitivity of 0.97 (CI 0.90â1.0) and specificity of 0.72 (CI 0.68â0.76).
Conclusions
When applied to the FITânegative group, urinary VOCs improve CRC detection (sensitivity rises from 0.80 to 0.97), thus showing promise as a secondâstage test to complement FIT in the detection of CRC
Recommended from our members
Kiwifruit fermentation drives positive gut microbial and metabolic changes irrespective of initial microbiota composition
It is well established that individuals vary greatly in the composition of their core microbiota. Despite differing ecology, we show here that metabolic capacity converges under the pressure of kiwifruit substrates in a model gut system. The impact of pre-digested green and gold kiwifruit on the human colonic microbiota and their metabolic products was assessed using in vitro, pH-controlled, anaerobic batch culture fermenters. Phylogenetic analyses revealed that bacterial composition changed over time, irrespective of whether a substrate was added or not, indicating a natural adjustment period to the gut model environment. Adding kiwifruit substrate caused additional changes in terms of growth of specific bacterial groups, bacterial diversity and metabolite profiles. Relative abundance of Bacteroides spp. increased with both green and gold kiwifruit substrate while Bifidobacterium spp. increased only with green kiwifruit. NMR spectroscopy and GC demonstrated an increase in organic acids (primarily acetate, butyrate, and propionate) and a concomitant decrease in several amino acids and oligosaccharides following addition of green and gold kiwifruit substrate. The experiments demonstrated that despite markedly different baseline profiles in individual donor inoculum, kiwifruit components can induce substantive change in microbial ecology and metabolism which could have consequences for human health
Recommended from our members
In vitro fermentation of juçara pulp (Euterpe edulis) by human colonic microbiota
This study was carried out to investigate the potential fermentation properties of juçara pulp, using pH-controlled anaerobic batch cultures reflective of the distal region of the human large intestine. Effects upon major groups of the microbiota were monitored over 24 h incubations by fluorescence in situ hybridisation (FISH). Short-chain fatty acids (SCFA) were measured by HPLC. Phenolic compounds, during an in vitro simulated digestion and fermentation, were also analysed. Juçara pulp can modulate the intestinal microbiota in vitro, promoting changes in the relevant microbial populations and shifts in the production of SCFA. Fermentation of juçara pulp resulted in a significant increase in numbers of bifidobacteria after a 24 h fermentation compared to a negative control. After in vitro digestion, 46% of total phenolic content still remained. This is the first study reporting the potential prebiotic effect of juçara pulp; however, human studies are necessary to prove its efficacy
Recommended from our members
An in vitro approach to study effects of prebiotics and probiotics on the faecal microbiota and selected immune parameters relevant to the elderly
The aging process leads to alterations of gut microbiota and modifications to the immune response, such changes may be associated with increased disease risk. Prebiotics and probiotics can modulate microbiome changes induced by aging; however, their effects have not been directly compared. The aim of this study was to use anaerobic batch culture fermenters to assess the impact of various fermentable carbohydrates and microorganisms on the gut microbiota and selected immune markers. Elderly volunteers were used as donors for these experiments to enable relevance to an aging population. The impact of fermentation supernatants on immune markers relevant to the elderly were assessed in vitro. Levels of IL-1ÎČ, IL-6, IL-8, IL-10 and TNF-α in peripheral blood mononuclear cell culture supernatants were measured using flow cytometry. Trans-galactooligosaccharides (B-GOS) and inulin both stimulated bifidobacteria compared to other treatments (p<0.05). Fermentation supernatants taken from faecal batch cultures supplemented with B-GOS, inulin, B. bifidum, L. acidophilus and Ba. coagulans inhibited LPS induced TNF-α (p<0.05). IL-10 production, induced by LPS, was enhanced by fermentation supernatants from faecal batch cultures supplemented with B-GOS, inulin, B. bifidum, L. acidophilus, Ba. coagulans and Bac. thetaiotaomicron (p<0.05). To conclude, prebiotics and probiotics could lead to potentially beneficial effects to host health by targeting specific bacterial groups, increasing saccharolytic fermentation and decreasing inflammation associated with aging. Compared to probiotics, prebiotics led to greater microbiota modulation at the genus level within the fermenters
Recommended from our members
Impact of high fat diets, prebiotics and probiotics on gut microbiota and immune function, with relevance to elderly populations
According to WHO, the number of people over 60 years of age is set to rise to 2 billion by 2050. Dysbiosis of microbial composition and impaired immune function have been observed in elderly persons compared to younger adults. As a result, the aging population has a higher disease risk than other age groups. In addition, high fat intakes have been observed to exert negative effects on microbial composition and immune function in murine studies. Elderly people have higher fat intakes than recommended levels, and this may make them more vulnerable to disease risk. Therefore, the impact of high fat consumption on elderly populations may be of relevance. Prebiotics and probiotics have been shown to have positive effects on microbiota composition and immune function in the elderly. This review describes aged-related changes in gut microbiome of elderly persons. It will also summarise studies concerning the impact of prebiotics, probiotics and high fat diets on microbiota composition and immune function
Utilisation of Mucin Glycans by the Human Gut Symbiont Ruminococcus gnavus Is Strain-Dependent
Commensal bacteria often have an especially rich source of glycan-degrading enzymes which allow them to utilize undigested carbohydrates from the food or the host. The species Ruminococcus gnavus is present in the digestive tract of â„90% of humans and has been implicated in gut-related diseases such as inflammatory bowel diseases (IBD). Here we analysed the ability of two R. gnavus human strains, E1 and ATCC 29149, to utilize host glycans. We showed that although both strains could assimilate mucin monosaccharides, only R. gnavus ATCC 29149 was able to grow on mucin as a sole carbon source. Comparative genomic analysis of the two R. gnavus strains highlighted potential clusters and glycoside hydrolases (GHs) responsible for the breakdown and utilization of mucin-derived glycans. Transcriptomic and functional activity assays confirmed the importance of specific GH33 sialidase, and GH29 and GH95 fucosidases in the mucin utilisation pathway. Notably, we uncovered a novel pathway by which R. gnavus ATCC 29149 utilises sialic acid from sialylated substrates. Our results also demonstrated the ability of R. gnavus ATCC 29149 to produce propanol and propionate as the end products of metabolism when grown on mucin and fucosylated glycans. These new findings provide molecular insights into the strain-specificity of R. gnavus adaptation to the gut environment advancing our understanding of the role of gut commensals in health and disease
Recommended from our members
Gut microbial activity, implications for health and disease: the potential role of metabolite analysis
Microbial metabolism of proteins and amino acids by human gut bacteria generates a variety of compounds including phenol, indole, and sulfur compounds and branched chain fatty acids, many of which have been shown to elicit a toxic effect on the lumen. Bacterial fermentation of amino acids and proteins occurs mainly in the distal colon, a site that is often fraught with symptoms from disorders including ulcerative colitis (UC) and colorectal cancer (CRC). In contrast to carbohydrate metabolism by the gut microbiota, proteolysis is less extensively researched. Many metabolites are low molecular weight, volatile compounds. This review will summarize the use of analytical methods to detect and identify compounds in order to elucidate the relationship between specific dietary proteinaceous substrates, their corresponding metabolites, and implications for gastrointestinal health
- âŠ