108 research outputs found

    The fine-scale structure of the trade wind cumuli over Barbados – An introduction to the CARRIBA project

    Get PDF
    The CARRIBA (Cloud, Aerosol, Radiation and tuRbulence in the trade wInd regime over BArbados) project, focused on high resolution and collocated measurements of thermodynamic, turbulent, microphysical, and radiative properties of trade wind cumuli over Barbados, is introduced. The project is based on two one-month field campaigns in November 2010 (climatic wet season) and April 2011 (climatic dry season). Observations are based on helicopter-borne and ground-based measurements in an area of 100 km2 off the coast of Barbados. CARRIBA is accompanied by long-term observations at the Barbados Cloud Observatory located at the East coast of Barbados since early in 2010 and which provides a longer-term context for the CARRIBA measurements. The deployed instrumentation and sampling strategy are presented together with a classification of the meteorological conditions. The two campaigns were influenced by different air masses advected from the Caribbean area, the Atlantic Ocean, and the African continent which led to distinct aerosol conditions. Pristine conditions with low aerosol particle number concentrations of ∌100 cm3 were alternating with periods influenced by Saharan dust or aerosol from biomass burning resulting in comparably high number concentrations of ∌ 500 cm3. The biomass burning aerosol was originating from both the Caribbean area and Africa. The shallow cumulus clouds responded to the different aerosol conditions with a wide range of mean droplet sizes and number concentrations. Two days with different aerosol and cloud microphysical properties but almost identical meteorological conditions have been analyzed in detail. The differences in the droplet number concentration and droplet sizes appear not to show any significant change for turbulent cloud mixing, but the relative roles of droplet inertia and sedimentation in initiating coalescence, as well as the cloud reflectivity, do change substantially. © Author(s) 2013

    The fine-scale structure of the trade wind cumuli over Barbados – An introduction to the CARRIBA project

    Get PDF
    The CARRIBA (Cloud, Aerosol, Radiation and tuRbulence in the trade wInd regime over BArbados) project, focused on high resolution and collocated measurements of thermodynamic, turbulent, microphysical, and radiative properties of trade wind cumuli over Barbados, is introduced. The project is based on two one-month field campaigns in November 2010 (climatic wet season) and April 2011 (climatic dry season). Observations are based on helicopter-borne and ground-based measurements in an area of 100 km2 off the coast of Barbados. CARRIBA is accompanied by long-term observations at the Barbados Cloud Observatory located at the East coast of Barbados since early in 2010 and which provides a longer-term context for the CARRIBA measurements. The deployed instrumentation and sampling strategy are presented together with a classification of the meteorological conditions. The two campaigns were influenced by different air masses advected from the Caribbean area, the Atlantic Ocean, and the African continent which led to distinct aerosol conditions. Pristine conditions with low aerosol particle number concentrations of ∌100 cm3 were alternating with periods influenced by Saharan dust or aerosol from biomass burning resulting in comparably high number concentrations of ∌ 500 cm3. The biomass burning aerosol was originating from both the Caribbean area and Africa. The shallow cumulus clouds responded to the different aerosol conditions with a wide range of mean droplet sizes and number concentrations. Two days with different aerosol and cloud microphysical properties but almost identical meteorological conditions have been analyzed in detail. The differences in the droplet number concentration and droplet sizes appear not to show any significant change for turbulent cloud mixing, but the relative roles of droplet inertia and sedimentation in initiating coalescence, as well as the cloud reflectivity, do change substantially

    EUREC⁎A

    Get PDF
    The science guiding the EURECA campaign and its measurements is presented. EURECA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECA explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EURECA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement

    EUREC⁎A

    Get PDF
    The science guiding the EURECA campaign and its measurements is presented. EURECA comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. Through its ability to characterize processes operating across a wide range of scales, EURECA marked a turning point in our ability to observationally study factors influencing clouds in the trades, how they will respond to warming, and their link to other components of the earth system, such as upper-ocean processes or the life cycle of particulate matter. This characterization was made possible by thousands (2500) of sondes distributed to measure circulations on meso- (200 km) and larger (500 km) scales, roughly 400 h of flight time by four heavily instrumented research aircraft; four global-class research vessels; an advanced ground-based cloud observatory; scores of autonomous observing platforms operating in the upper ocean (nearly 10 000 profiles), lower atmosphere (continuous profiling), and along the air–sea interface; a network of water stable isotopologue measurements; targeted tasking of satellite remote sensing; and modeling with a new generation of weather and climate models. In addition to providing an outline of the novel measurements and their composition into a unified and coordinated campaign, the six distinct scientific facets that EURECA explored – from North Brazil Current rings to turbulence-induced clustering of cloud droplets and its influence on warm-rain formation – are presented along with an overview of EURECA's outreach activities, environmental impact, and guidelines for scientific practice. Track data for all platforms are standardized and accessible at https://doi.org/10.25326/165 (Stevens, 2021), and a film documenting the campaign is provided as a video supplement

    Recombinant C1 inhibitor P5/P3 variants display resistance to catalytic inactivation by stimulated neutrophils.

    No full text
    Proteolytic inactivation of serine protease inhibitors (serpins) by neutrophil elastase (HNE) is presumed to contribute to the deregulation of plasma cascade systems in septic shock. Here, we report a supplementary approach to construct serpins, in our case C1 inhibitor, that are resistant to catalytic inactivation by HNE. Instead of shifting the specificity of alpha 1-antitrypsin towards the proteases of the contact activation and complement systems, we attempted to obtain a C1 inhibitor species which resists proteolytic inactivation by HNE. 12 recombinant C1 inhibitor variants were produced with mainly conservative substitutions at the cleavage sites for HNE, 440-Ile and/or 442-Val. Three variants significantly resisted proteolytic inactivation, both by purified HNE, as well as by activated neutrophils. The increase in functional half-life in the presence of FMLP-stimulated cells was found to be 18-fold for the 440-Leu/442-Ala variant. Inhibitory function of these variants was relatively unimpaired, as examined by the formation of stable complexes with C1s, beta-Factor XIIa, kallikrein, and plasmin, and as determined by kinetic analysis. The calculated association rate constants (k(on)) were reduced twofold at most for C1s, and appeared unaffected for beta-Factor XIIa. The effect on the k(on) with kallikrein was more pronounced, ranging from a significant ninefold reduction to an unmodified rate. The results show that the reactive centre loop of C1 inhibitor can be modified towards decreased sensitivity for nontarget proteases without loss of specificity for target proteases. We conclude that this approach extends the possibilities of applying recombinant serpin variants for therapeutic use in inflammatory diseases
    • 

    corecore