8 research outputs found

    Developmental changes in barley microRNA expression profiles coupled with miRNA target analysis

    No full text
    MicroRNAs are 19- to 24-nt-long single-stranded RNAs that are crucial regulators of gene expression which control plant development and response to environmental cues. We have analyzed microtranscriptomes of five barley developmental stages. Generally, during the barley development, miR168-3p and miR1432-5p levels increase while the 5'U-miR156-5p level decreases (with exception for the 2-week-old barley). We have identified two miR156-5p izomiRs (called 5'U-miR156-5p [20 nt] and 5'UU-miR156-5p [21 nt]), which were expressed differently during barley development. The 5' U-miR156-5p level decreased in 3-week-, 6-week-, and 68-day-old barley, when compared to the 1-week-old plants. Meanwhile, the 5' UU-miR156-5p level increased significantly in the 68-day-old barley plants. Moreover, only the 5' U-miR156 isomiR recognizes and guides unique transcription factor mRNAs from the Squamosa Promoter Binding Protein-Like (SPL) family. We identified many non-canonical microRNAs with changed expression levels during the barley development. Here, we present the profiles of microRNA expression characteristics for particular barley developmental stages. These analyses are accompanied by the experimental degradome analysis of miRNA targets

    MiRNAs differentially expressed in vegetative and reproductive organs of <i>Marchantia polymorpha</i> – insights into their expression pattern, gene structures and function

    No full text
    MicroRNAs regulate gene expression affecting a variety of plant developmental processes. The evolutionary position of Marchantia polymorpha makes it a significant model to understand miRNA-mediated gene regulatory pathways in plants. Previous studies focused on conserved miRNA-target mRNA modules showed their critical role in Marchantia development. Here, we demonstrate that the differential expression of conserved miRNAs among land plants and their targets in selected organs of Marchantia additionally underlines their role in regulating fundamental developmental processes. The main aim of this study was to characterize selected liverwort-specific miRNAs, as there is a limited knowledge on their biogenesis, accumulation, targets, and function in Marchantia. We demonstrate their differential accumulation in vegetative and generative organs. We reveal that all liverwort-specific miRNAs examined are encoded by independent transcriptional units. MpmiR11737a, MpmiR11887 and MpmiR11796, annotated as being encoded within protein-encoding genes, have their own independent transcription start sites. The analysis of selected liverwort-specific miRNAs and their pri-miRNAs often reveal correlation in their levels, suggesting transcriptional regulation. However, MpmiR11796 shows a reverse correlation to its pri-miRNA level, suggesting post-transcriptional regulation. Moreover, we identify novel targets for selected liverwort-specific miRNAs and demonstrate an inverse correlation between their expression and miRNA accumulation. In the case of one miRNA precursor, we provide evidence that it encodes two functional miRNAs with two independent targets. Overall, our research sheds light on liverwort-specific miRNA gene structure, provides new data on their biogenesis and expression regulation. Furthermore, identifying their targets, we hypothesize the potential role of these miRNAs in early land plant development and functioning.</p

    Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing.

    No full text
    Comprehensive expression profiles of Arabidopsis (Arabidopsis thaliana) MIRNA genes and mature microRNAs (miRs) are currently not available. We established a quantitative real-time polymerase chain reaction platform that allows rapid and sensitive quantification of 177 Arabidopsis primary miR transcripts (pri-miRs). The platform was used to detect phosphorus (P) or nitrogen (N) status-responsive pri-miR species. Several pri-miR169 species as well as pri-miR398a were found to be repressed during N limitation, whereas during P limitation, pri-miR778, pri-miR827, and pri-miR399 species were induced and pri-miR398a was repressed. The corresponding responses of the biologically active, mature miRs were confirmed using specific stem-loop reverse transcription primer quantitative polymerase chain reaction assays and small RNA sequencing. Interestingly, the latter approach also revealed high abundance of some miR star strands. Bioinformatic analysis of small RNA sequences with a modified miRDeep algorithm led to the identification of the novel P limitation-induced miR2111, which is encoded by two loci in the Arabidopsis genome. Furthermore, miR2111, miR169, a miR827-like sequence, and the abundances of several miR star strands were found to be strongly dependent on P or N status in rapeseed (Brassica napus) phloem sap, flagging them as candidate systemic signals. Taken together, these results reveal the existence of complex small RNA-based regulatory networks mediating plant adaptation to mineral nutrient availability

    A stable tRNA-like molecule is generated from the long noncoding RNA <i>GUT15</i> in <i>Arabidopsis</i>

    No full text
    <p>The <i>Arabidopsis GUT15</i> RNA belongs to a class of noncoding RNAs that are expressed from the intergenic regions of protein-coding genes. We show that the RNA polymerase II transcribed <i>GUT15</i> transcript serves as a precursor for two stable RNA species, a tRNA-like molecule and <i>GUT15</i>-tRF-F5, which are both encoded by the final intron in the <i>GUT15</i> gene. The <i>GUT15</i>-encoded tRNA-like molecule cannot be autonomously transcribed by RNA polymerase III. However, this molecule contains a CCA motif, suggesting that it may enter the tRNA maturation pathway. The <i>GUT15</i>-encoded tRNA-like sequence has an inhibiting effect on the splicing of its host intron. Moreover, we demonstrate that the canonical tRNA genes nested within introns do not affect the splicing patterns of their host protein-coding transcripts.</p

    Genomic, transcriptomic, and metabolomic analysis of Oldenlandia corymbosa reveals the biosynthesis and mode of action of anti-cancer metabolites

    No full text
    Plants accumulate a vast array of secondary metabolites, which constitute a natural resource for pharmaceuticals. Oldenlandia corymbosa belongs to the Rubiaceae family, and has been used in traditional medicine to treat different diseases, including cancer. However, the active metabolites of the plant, their biosynthetic pathway and mode of action in cancer are unknown. To fill these gaps, we exposed this plant to eight different stress conditions and combined different omics data capturing gene expression, metabolic profiles, and anti-cancer activity. Our results show that O. corymbosa extracts are active against breast cancer cell lines and that ursolic acid is responsible for this activity. Moreover, we assembled a high-quality genome and uncovered two genes involved in the biosynthesis of ursolic acid. Finally, we also revealed that ursolic acid causes mitotic catastrophe in cancer cells and identified three high-confidence protein binding targets by Cellular Thermal Shift Assay (CETSA) and reverse docking. Altogether, these results constitute a valuable resource to further characterize the biosynthesis of active metabolites in the Oldenlandia group, while the mode of action of ursolic acid will allow us to further develop this valuable compound.Ministry of Education (MOE)Nanyang Technological UniversityPublished versionI.J. is supported by Nanyang Biologics, M.M. is supported by a NTU Start‐Up Grant and Singaporean Ministry of Education grant MOE2018‐T2‐2‐053. J.M.D (NTU‐PPF‐2019). Y.K. is supported by Natural Product Research Laboratory Biomedical Research Council of A*STAR (Agency for Science, Technology and Research) Transition Fund (H16/99/b0/004), the Singapore Institute of Food and Biotechnology Innovation core fund
    corecore