32 research outputs found

    Genetic parameter estimates for plasma oxidative status traits in slaughter pigs

    Get PDF
    The aim of the present study was to assess the effect of sex and to estimate genetic parameters for several traits related to plasma oxidative status in slaughter pigs, i.e., ferric reducing ability of plasma (FRAP), concentrations of a-tocopherol and malondialdehyde (MDA), and glutathione peroxidase (GPx) activity. Blood samples were collected at slaughter from 477 Pietrain x (Landrace x Large White intercross) pigs of 2 performance test stations. Heritabilities (+/- SE) of plasma oxidative status traits as well as their phenotypic and additive genetic correlations with animal performance traits were estimated with multiple-trait REML animal models using VCE software. Results displayed no significant difference between barrows and gilts for FRAP and alpha-tocopherol in plasma. However, gilts had a significantly higher concentration of MDA and lower GPx activity compared with barrows. Heritability estimates were high for GPx (0.55 +/- 0.05), and medium to low for alpha-tocopherol (0.30 +/- 0.06), FRAP (0.22 +/- 0.05), and MDA (0.15 +/- 0.04). Estimated additive genetic and phenotypic correlations between these four traits were generally low, except for a negative additive genetic correlation between FRAP and GPx of -0.45 (+/- 0.23). Additive genetic correlations between plasma oxidative status traits and animal performance traits were also generally absent or low with maximum values of similar to 0.3. Parameter estimates in this study have to be interpreted with caution because of the small size of the dataset. Nevertheless, it may be concluded that there is considerable additive genetic variance for plasma oxidative status traits in slaughter pigs. More research is warranted on the genetic determination of oxidative stress in farm animals and its relevance in breeding programs

    Intramuscular fatty acid profiles in farm animals vis-a-vis meat eating and nutritional quality: A Review

    Get PDF
    In regards with fast growing meat consumption in modernizing countries in the 20th Century, recommendations for a public healthier eating were formulated. It is assumed that an increasing consumption of meat whose fat composition is considered too high in saturated fatty acids (SFA) and too low in Polyunsaturated fatty acids (PUFA), constitutes a public health hazard. The main health risk associated with consumption of meat rich in SFA is that they are reported to contribute to the development of cardiovascular disease in human. This paper aims to review the existing information on some of the most important aspects of intramuscular fatty acid composition and metabolism in farm animals. Trends in healthy eating resulted in selection for leaner animals that has characterized the meat production systems in developed countries, affecting de facto meat eating and technological indices. Similar predictions would be drawn for emerging societies thus; more reflections are needed to deal with human health aspects of meat, without affecting its eating quality and technological processing. Keywords: Intramuscular fat, fatty acid profiles, meat quality, modern eating trend

    Milk production performance of Ankole crossbreds and Holstein Friesian cattle in different production environments of Rwanda

    Get PDF
    The aim of the study was to assess the productive performance of dairy cattle in three different agro-ecological zones of Rwanda: Congo-Nile/Western (WAZ), Central plateau/Central (CAZ), and Eastern plateau/East Agro-ecological Zones (EAZ). A single-visit multi-subject survey was conducted to obtain information on the dairy cattle performance from 51 farms. The breed groups were classified as Ankole x Holstein Friesian (AF), other Ankole crossbreds (AX), and pure Holstein Friesian (F). The F had higher (p < 0.001) milk yield than AF in all zones except EAZ and AF had higher (p < 0.0001) milk yield than AX in all zones. Across all zones, F produced 9 L more than AX and 6 L more than AF per day. Cows from EAZ had the highest average milk yield; however, it was not significantly different from CAZ. The difference that was observed between AF in EAZ and AF in the other two zones indicates that agro-ecological zones should not only be the target in livestock development activities rather additional factors such as feed availability at farm level, social economic, and market infrastructure should be considered in Rwanda

    Milk production and lactation length in Ankole cattle and Ankole crossbreds in Rwanda

    Get PDF
    This study assessed daily milk yield (DMY), 100-day (MY100), and 305-day (MY305) milk yield, and lactation length (LL) in purebred Ankole cattle and Ankole crossbreds, and the influence of environmental factors on these traits. Milk yield data were obtained for 865 cows and 1234 lactations and analyzed using a mixed linear model. The overall least squares mean of DMY, MY100, and MY305 across breed groups was 2.7 L (N = 1234, SD = 1.7), 262 L (N = 959, SD = 176), and 759 L (N = 448, SD = 439), respectively, while the average lactation length was 256 days (N = 960, SD = 122). All factors included (breed group, season and year of calving, and parity) were significant for yield traits, except season of calving for MY305. First-parity cows had the lowest milk production, and fourth-parity cows the highest. For all traits, pure Ankole cows had the lowest milk yield. Among the crossbreds, there was no significant difference between Ankole x Friesian, Ankole-Jersey mother x Sahiwal sire, and Ankole-Sahiwal mother x Jersey sire, or between Ankole x Sahiwal and Ankole-Sahiwal mother x Sahiwal sire. It was concluded that Ankole crosses with Friesian or Jersey can be beneficial, even under a management system of limited nutrition as in Rwanda

    The effect of high temperature and humidity on milk yield in Ankole and crossbred cows

    Get PDF
    Tropical regions are characterized by high temperature and humidity across the year. At high values of temperature humidity index (THI), there is a risk of heat stress leading to lower milk yield. The objective of this study was to describe the effect of season and the effect of maximum daily THI on milk yield of that day in purebred Ankole and Ankole-Friesian, Ankole-Jersey and Ankole-Sahiwal crosses in a tropical climate. In total, 53,730 records of daily milk yield from 183 cows in Rwanda were analyzed. The results showed that THI had a negative effect on daily milk yield above a threshold, but the effect was small (-0.11 kg milk/THI unit at most). Purebred Ankole cows had the lowest daily milk yield and the lowest threshold (THI mean 66), as compared to the crossbreds (THI mean 68-69). Ankole-Friesian had a steeper decline in daily milk yield above the threshold than Ankole. The crossbreds, especially Ankole-Friesian, had higher daily milk yield than purebred Ankole also at very high THI. The results indicate some differences between breed groups in the way of coping with a hot and humid climate and raise questions about dairy cows' adaptation to such a climate

    Modelling the predictable effects of dietary lipid sources on the fillet fatty acid composition of one-year-old gilthead sea bream (Sparus aurata L.)

    Get PDF
    The present study aimed to ascertain the different fatty acid (FA) descriptors linking dietary and muscle FA composition in one-year-old gilthead sea bream. For that purpose, our own published data along with additional data from the present study were compiled and analysed. High linear correlations (r2 = 0.90, P &lt; 0.001) between dietary and muscle fatty acid composition were reported for monoenes, C18 polyunsaturated FA (PUFA) and long-chain PUFA. Prediction deviations due to changes in muscle fatness were analyzed in an independent trial with two different feeding levels (full ration size, 30% restriction ration). Regardless of feeding regimen, predicted values for muscle FA at low concentrations deviated (P &lt; 0.001) from observed values, but good predictions with less than 6% deviations were found for abundant fatty acids (16:1n-7, 18:1n-9, 18:2n-6, 18:3n-3, 20:4n-6, 20:5n-3, 22:6n-3). All this highlights the predictable effects of dietary oils in the muscle FA composition of gilthead sea bream, although further research is needed to cover all the range of commercial fish size and for the up-scaling of laboratory results to different fish farming conditions

    Genome-Wide Association Study Singles Out SCD and LEPR as the Two Main Loci Influencing Intramuscular Fat Content and Fatty Acid Composition in Duroc Pigs

    Get PDF
    [EN] Intramuscular fat (IMF) content and fatty acid composition affect the organoleptic quality and nutritional value of pork. A genome-wide association study was performed on 138 Duroc pigs genotyped with a 60k SNP chip to detect biologically relevant genomic variants influencing fat content and composition. Despite the limited sample size, the genome-wide association study was powerful enough to detect the association between fatty acid composition and a known haplotypic variant in SCD (SSC14) and to reveal an association of IMF and fatty acid composition in the LEPR region (SSC6). The association of LEPR was later validated with an independent set of 853 pigs using a candidate quantitative trait nucleotide. The SCD gene is responsible for the biosynthesis of oleic acid (C18:1) from stearic acid. This locus affected the stearic to oleic desaturation index (C18:1/C18:0), C18: 1, and saturated (SFA) and monounsaturated (MUFA) fatty acids content. These effects were consistently detected in gluteus medius, longissimus dorsi, and subcutaneous fat. The association of LEPR with fatty acid composition was detected only in muscle and was, at least in part, a consequence of its effect on IMF content, with increased IMF resulting in more SFA, less polyunsaturated fatty acids (PUFA), and greater SFA/PUFA ratio. Marker substitution effects estimated with a subset of 65 animals were used to predict the genomic estimated breeding values of 70 animals born 7 years later. Although predictions with the whole SNP chip information were in relatively high correlation with observed SFA, MUFA, and C18: 1/C18: 0 (0.48-0.60), IMF content and composition were in general better predicted by using only SNPs at the SCD and LEPR loci, in which case the correlation between predicted and observed values was in the range of 0.36 to 0.54 for all traits. Results indicate that markers in the SCD and LEPR genes can be useful to select for optimum fatty acid profiles of pork.This research was funded by the Spanish Ministry of Economy and Competitiveness (MINECO; grants AGL2012-33529 and AGL2015-65846-R).Ros-Freixedes, R.; Gol, S.; Pena, R.; Tor, M.; Ibañez Escriche, N.; Dekkers, J.; Estany, J. (2016). Genome-Wide Association Study Singles Out SCD and LEPR as the Two Main Loci Influencing Intramuscular Fat Content and Fatty Acid Composition in Duroc Pigs. PLoS ONE. 11(3). https://doi.org/10.1371/journal.pone.0152496S113Cameron, N. ., Enser, M., Nute, G. ., Whittington, F. ., Penman, J. ., Fisken, A. ., … Wood, J. . (2000). Genotype with nutrition interaction on fatty acid composition of intramuscular fat and the relationship with flavour of pig meat. Meat Science, 55(2), 187-195. doi:10.1016/s0309-1740(99)00142-4Christophersen, O. A., & Haug, A. (2011). Animal products, diseases and drugs: a plea for better integration between agricultural sciences, human nutrition and human pharmacology. Lipids in Health and Disease, 10(1), 16. doi:10.1186/1476-511x-10-16Ntawubizi, M., Colman, E., Janssens, S., Raes, K., Buys, N., & De Smet, S. (2010). Genetic parameters for intramuscular fatty acid composition and metabolism in pigs1. Journal of Animal Science, 88(4), 1286-1294. doi:10.2527/jas.2009-2355Ros-Freixedes, R., Reixach, J., Tor, M., & Estany, J. (2012). Expected genetic response for oleic acid content in pork1. Journal of Animal Science, 90(12), 4230-4238. doi:10.2527/jas.2011-5063Clop, A., Ovilo, C., Perez-Enciso, M., Cercos, A., Tomas, A., Fernandez, A., … Noguera, J. L. (2003). Detection of QTL affecting fatty acid composition in the pig. Mammalian Genome, 14(9), 650-656. doi:10.1007/s00335-002-2210-7Kim, Y., Kong, M., Nam, Y. J., & Lee, C. (2006). A Quantitative Trait Locus for Oleic Fatty Acid Content on Sus scrofa Chromosome 7. Journal of Heredity, 97(5), 535-537. doi:10.1093/jhered/esl026Sanchez, M.-P., Iannuccelli, N., Basso, B., Bidanel, J.-P., Billon, Y., Gandemer, G., … Le Roy, P. (2007). Identification of QTL with effects on intramuscular fat content and fatty acid composition in a Duroc × Large White cross. BMC Genetics, 8(1), 55. doi:10.1186/1471-2156-8-55Guo, T., Ren, J., Yang, K., Ma, J., Zhang, Z., & Huang, L. (2009). Quantitative trait loci for fatty acid composition in longissimus dorsi and abdominal fat: results from a White Duroc × Erhualian intercross F2population. Animal Genetics, 40(2), 185-191. doi:10.1111/j.1365-2052.2008.01819.xC.M. Dekkers, J. (2012). Application of Genomics Tools to Animal Breeding. Current Genomics, 13(3), 207-212. doi:10.2174/138920212800543057Uemoto, Y., Nakano, H., Kikuchi, T., Sato, S., Ishida, M., Shibata, T., … Suzuki, K. (2011). Fine mapping of porcine SSC14 QTL and SCD gene effects on fatty acid composition and melting point of fat in a Duroc purebred population. Animal Genetics, 43(2), 225-228. doi:10.1111/j.1365-2052.2011.02236.xUemoto, Y., Soma, Y., Sato, S., Ishida, M., Shibata, T., Kadowaki, H., … Suzuki, K. (2011). Genome-wide mapping for fatty acid composition and melting point of fat in a purebred Duroc pig population. Animal Genetics, 43(1), 27-34. doi:10.1111/j.1365-2052.2011.02218.xEstany, J., Ros-Freixedes, R., Tor, M., & Pena, R. N. (2014). A Functional Variant in the Stearoyl-CoA Desaturase Gene Promoter Enhances Fatty Acid Desaturation in Pork. PLoS ONE, 9(1), e86177. doi:10.1371/journal.pone.0086177Ramayo-Caldas, Y., Mercadé, A., Castelló, A., Yang, B., Rodríguez, C., Alves, E., … Folch, J. M. (2012). Genome-wide association study for intramuscular fatty acid composition in an Iberian × Landrace cross1. Journal of Animal Science, 90(9), 2883-2893. doi:10.2527/jas.2011-4900Muñoz, M., Rodríguez, M. C., Alves, E., Folch, J. M., Ibañez-Escriche, N., Silió, L., & Fernández, A. I. (2013). Genome-wide analysis of porcine backfat and intramuscular fat fatty acid composition using high-density genotyping and expression data. BMC Genomics, 14(1), 845. doi:10.1186/1471-2164-14-845Yang, B., Zhang, W., Zhang, Z., Fan, Y., Xie, X., Ai, H., … Ren, J. (2013). Genome-Wide Association Analyses for Fatty Acid Composition in Porcine Muscle and Abdominal Fat Tissues. PLoS ONE, 8(6), e65554. doi:10.1371/journal.pone.0065554Zhang, W., Zhang, J., Cui, L., Ma, J., Chen, C., Ai, H., … Yang, B. (2016). Genetic architecture of fatty acid composition in the longissimus dorsi muscle revealed by genome-wide association studies on diverse pig populations. Genetics Selection Evolution, 48(1). doi:10.1186/s12711-016-0184-2Kim, E.-S., Ros-Freixedes, R., Pena, R. N., Baas, T. J., Estany, J., & Rothschild, M. F. (2015). Identification of signatures of selection for intramuscular fat and backfat thickness in two Duroc populations1. Journal of Animal Science, 93(7), 3292-3302. doi:10.2527/jas.2015-8879Bosch, L., Tor, M., Reixach, J., & Estany, J. (2009). Estimating intramuscular fat content and fatty acid composition in live and post-mortem samples in pigs. Meat Science, 82(4), 432-437. doi:10.1016/j.meatsci.2009.02.013AOAC. 1997. Supplement to AOAC Official Method 996.06: Fat (total, saturated, and monounsaturated) in foods hydrolytic extraction gas chromatographic method. Page 18 in Official Methods of Analysis (16th ed). Association of Official Analytical Chemists, Arlington, VA.ÓVILO, C., FERNÁNDEZ, A., NOGUERA, J. L., BARRAGÁN, C., LETÓN, R., RODRÍGUEZ, C., … TORO, M. (2005). Fine mapping of porcine chromosome 6 QTL and LEPR effects on body composition in multiple generations of an Iberian by Landrace intercross. Genetical Research, 85(1), 57-67. doi:10.1017/s0016672305007330Amills, M., Villalba, D., Tor, M., Mercad, A., Gallardo, D., Cabrera, B., … Estany, J. (2008). Plasma leptin levels in pigs with different leptin and leptin receptor genotypes. Journal of Animal Breeding and Genetics, 125(4), 228-233. doi:10.1111/j.1439-0388.2007.00715.xPurcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., … Sham, P. C. (2007). PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. The American Journal of Human Genetics, 81(3), 559-575. doi:10.1086/519795Bouwman, A. C., Janss, L. L., & Heuven, H. C. (2011). A Bayesian approach to detect QTL affecting a simulated binary and quantitative trait. BMC Proceedings, 5(S3). doi:10.1186/1753-6561-5-s3-s4Legarra, A., Croiseau, P., Sanchez, M., Teyssèdre, S., Sallé, G., Allais, S., … Elsen, J.-M. (2015). A comparison of methods for whole-genome QTL mapping using dense markers in four livestock species. Genetics Selection Evolution, 47(1), 6. doi:10.1186/s12711-015-0087-7Kass, R. E., & Raftery, A. E. (1995). Bayes Factors. Journal of the American Statistical Association, 90(430), 773-795. doi:10.1080/01621459.1995.10476572Barrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2004). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263-265. doi:10.1093/bioinformatics/bth457Wolc, A., Arango, J., Settar, P., Fulton, J. E., O’Sullivan, N. P., Preisinger, R., … Dekkers, J. C. M. (2012). Genome-wide association analysis and genetic architecture of egg weight and egg uniformity in layer chickens. Animal Genetics, 43, 87-96. doi:10.1111/j.1365-2052.2012.02381.xChen, E. Y., Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G., … Ma’ayan, A. (2013). Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics, 14(1), 128. doi:10.1186/1471-2105-14-128Rabbit programme. 2012. Available from: http://www.dcam.upv.es/dcia/ablasco/Programas/THE%20PROGRAM%20Rabbit.pdfHu, Z.-L., Park, C. A., & Reecy, J. M. (2015). Developmental progress and current status of the Animal QTLdb. Nucleic Acids Research, 44(D1), D827-D833. doi:10.1093/nar/gkv1233Óvilo, C., Fernández, A., Fernández, A. I., Folch, J. M., Varona, L., Benítez, R., … Silió, L. (2010). Hypothalamic expression of porcine leptin receptor (LEPR), neuropeptide Y (NPY), and cocaine- and amphetamine-regulated transcript (CART) genes is influenced by LEPR genotype. Mammalian Genome, 21(11-12), 583-591. doi:10.1007/s00335-010-9307-1Muñoz, G., Alcázar, E., Fernández, A., Barragán, C., Carrasco, A., de Pedro, E., … Rodríguez, M. C. (2011). Effects of porcine MC4R and LEPR polymorphisms, gender and Duroc sire line on economic traits in Duroc×Iberian crossbred pigs. Meat Science, 88(1), 169-173. doi:10.1016/j.meatsci.2010.12.018Galve, A., Burgos, C., Silió, L., Varona, L., Rodríguez, C., Ovilo, C., & López-Buesa, P. (2012). The effects of leptin receptor (LEPR) and melanocortin-4 receptor (MC4R) polymorphisms on fat content, fat distribution and fat composition in a Duroc×Landrace/Large White cross. Livestock Science, 145(1-3), 145-152. doi:10.1016/j.livsci.2012.01.010UEMOTO, Y., KIKUCHI, T., NAKANO, H., SATO, S., SHIBATA, T., KADOWAKI, H., … SUZUKI, K. (2011). Effects of porcine leptin receptor gene polymorphisms on backfat thickness, fat area ratios by image analysis, and serum leptin concentrations in a Duroc purebred population. Animal Science Journal, 83(5), 375-385. doi:10.1111/j.1740-0929.2011.00963.xHirose, K., Ito, T., Fukawa, K., Arakawa, A., Mikawa, S., Hayashi, Y., & Tanaka, K. (2013). Evaluation of effects of multiple candidate genes (LEP,LEPR,MC4R,PIK3C3, andVRTN) on production traits in Duroc pigs. Animal Science Journal, 85(3), 198-206. doi:10.1111/asj.12134López-Buesa, P., Burgos, C., Galve, A., & Varona, L. (2013). Joint analysis of additive, dominant and first-order epistatic effects of four genes (IGF2,MC4R,PRKAG3andLEPR) with known effects on fat content and fat distribution in pigs. Animal Genetics, 45(1), 133-137. doi:10.1111/age.12091Mackowski, M., Szymoniak, K., Szydlowski, M., Kamyczek, M., Eckert, R., Rozycki, M., & Switonski, M. (2005). Missense mutations in exon 4 of the porcine LEPR gene encoding extracellular domain and their association with fatness traits. Animal Genetics, 36(2), 135-137. doi:10.1111/j.1365-2052.2005.01247.xLi, X., Kim, S.-W., Choi, J.-S., Lee, Y.-M., Lee, C.-K., Choi, B.-H., … Kim, K.-S. (2010). Investigation of porcine FABP3 and LEPR gene polymorphisms and mRNA expression for variation in intramuscular fat content. Molecular Biology Reports, 37(8), 3931-3939. doi:10.1007/s11033-010-0050-1Tyra, M., & Ropka-Molik, K. (2011). Effect of the FABP3 and LEPR gene polymorphisms and expression levels on intramuscular fat (IMF) content and fat cover degree in pigs. Livestock Science, 142(1-3), 114-120. doi:10.1016/j.livsci.2011.07.003Muraoka, O., Xu, B., Tsurumaki, T., Akira, S., Yamaguchi, T., & Higuchi, H. (2003). Leptin-induced transactivation of NPY gene promoter mediated by JAK1, JAK2 and STAT3 in the neural cell lines. Neurochemistry International, 42(7), 591-601. doi:10.1016/s0197-0186(02)00160-2Wood, J. D., Enser, M., Fisher, A. V., Nute, G. R., Sheard, P. R., Richardson, R. I., … Whittington, F. M. (2008). Fat deposition, fatty acid composition and meat quality: A review. Meat Science, 78(4), 343-358. doi:10.1016/j.meatsci.2007.07.019Clément, K., Vaisse, C., Lahlou, N., Cabrol, S., Pelloux, V., Cassuto, D., … Guy-Grand, B. (1998). A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature, 392(6674), 398-401. doi:10.1038/32911Dubern, B., & Clement, K. (2012). Leptin and leptin receptor-related monogenic obesity. Biochimie, 94(10), 2111-2115. doi:10.1016/j.biochi.2012.05.010Lim, K.-S., Kim, J.-M., Lee, E.-A., Choe, J.-H., & Hong, K.-C. (2014). A Candidate Single Nucleotide Polymorphism in the 3′ Untranslated Region of Stearoyl-CoA Desaturase Gene for Fatness Quality and the Gene Expression in Berkshire Pigs. Asian-Australasian Journal of Animal Sciences, 28(2), 151-157. doi:10.5713/ajas.14.0529Saatchi, M., Garrick, D. J., Tait, R. G., Mayes, M. S., Drewnoski, M., Schoonmaker, J., … Reecy, J. M. (2013). Genome-wide association and prediction of direct genomic breeding values for composition of fatty acids in Angus beef cattlea. BMC Genomics, 14(1). doi:10.1186/1471-2164-14-730Chen, L., Ekine-Dzivenu, C., Vinsky, M., Basarab, J., Aalhus, J., Dugan, M. E. R., … Li, C. (2015). Genome-wide association and genomic prediction of breeding values for fatty acid composition in subcutaneous adipose and longissimus lumborum muscle of beef cattle. BMC Genetics, 16(1). doi:10.1186/s12863-015-0290-
    corecore