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ABSTRACT 22 

The present study aimed to ascertain the different fatty acid (FA) descriptors linking 23 

dietary and muscle FA composition in one-year-old gilthead sea bream. For that 24 

purpose, our own published data along with additional data from the present study were 25 

compiled and analysed. High linear correlations (r2 = 0.90, P < 0.001) between dietary 26 

and muscle fatty acid composition were reported for monoenes, C18 polyunsaturated 27 

FA (PUFA) and long-chain PUFA. Prediction deviations due to changes in muscle 28 

fatness were analyzed in an independent trial with two different feeding levels (full 29 

ration size, 30% restriction ration). Regardless of feeding regimen, predicted values for 30 

muscle FA at low concentrations deviated (P < 0.001) from observed values, but good 31 

predictions with less than 6% deviations were found for abundant fatty acids (16:1n-7, 32 

18:1n-9, 18:2n-6, 18:3n-3, 20:4n-6, 20:5n-3, 22:6n-3). All this highlights the predictable 33 

effects of dietary oils in the muscle FA composition of gilthead sea bream, although 34 

further research is needed to cover all the range of commercial fish size  and for the up-35 

scaling of laboratory results to different fish farming conditions.  36 

 37 

 38 
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1. Introduction 41 

 42 

The nature of lipid digestion has a substantial effect on the transfer of fatty acids 43 

(FA) from the diet into the animal product (Woods & Fearon, 2009). In ruminants, 44 

dietary FA are rapidly hydrogenated by rumen microorganisms into more highly 45 

saturated end products (Demeyer & Doreau, 1999). This partial hydrogenation also 46 

produces many other minor FA including branched and odd-numbered FA, as well 47 

intermediate products such as conjugate linoleic acids (CLA), among which C18:2c-9, 48 

t-11 is the most important isomer (Bhattacharya, Banu, Rahman, Causey & Fernandes, 49 

2006). By contrast, in terrestrial monogastrics such as pig and poultry, FA are absorbed 50 

unchanged and have more predictable effects on tissue FA composition  (Chesworth, 51 

Stuchbury & Scaife, 1998), although a wide range of factors including age, gender, 52 

genotype and fatness influence the FA composition of edible matter in non-ruminant 53 

animal products (Daza, Lopez-Bote, Olivares, Menoyo & Ruiz, 2007; Wood et al., 54 

2008; Ntawubizi, Raes, Buys & De Smet, 2009).  55 

There is also now increased interest for ensuring the nutritional value of seafood 56 

products. For instance, many marine fish species are known to be excellent dietary 57 

sources of n-3 long chain polyunsaturated fatty acids (LC-PUFA), especially 58 

eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3). 59 

However, given the variations in fat content of flesh from fatty, medium or lean fish, the 60 

total EPA or DHA levels can vary in a large extent (www.nutraqua.com). With regard 61 

to farmed fish, it is also known that dietary fish meal and fish oil (FO) levels modify the 62 

muscle FA profiles, but continuous efforts have been directed towards the reduction of 63 

wild-fishery derived raw materials in the feeds of farmed fish. Hence, the inclusion 64 

level of such marine feedstuffs have been steadily declining for the last ten-years not 65 
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only due to increasing costs, but also to ensure the sustainability of fish farming (Tacon 66 

& Metian, 2008). 67 

Of note, gilthead sea bream is a major finfish species farmed in the 68 

Mediterranean area and there is ample evidence that practical diets with less than 25% 69 

of fish meal plus fish oil can support optimal growth when the theoretical needs of 70 

essential amino acids and FA are supplied  (Benedito-Palos, Saera-Vila, Calduch-Giner, 71 

Kaushik & Pérez-Sánchez, 2007; Benedito-Palos, Navarro, Sitjà-Bobadilla, Bell, 72 

Kaushik & Pérez-Sánchez, 2008; Benedito-Palos, Navarro, Kaushik & Pérez-Sánchez, 73 

2010). By examining the kinetics of muscle FA as affected by dietary FA profiles, it 74 

was shown that the muscle FA composition of gilthead sea bream fed vegetable oils 75 

follows a simple dilution model with possibilities of tailoring the FA profile with 76 

adequate dietary and feeding regimes (Benedito-Palos, Navarro, Bermejo-Nogales, 77 

Saera-Vila, Kaushik & Pérez-Sánchez, 2009). According to this a finishing period with 78 

a FO-based diet can restore the FA profile and the efficacy of that has been 79 

demonstrated in a number of species, including rainbow trout, turbot, Atlantic salmon, 80 

European sea bass, red sea bream and warm fresh water species such as Murray cod  81 

(revised in Turchini, Torstensen & Ng, 2009). However, predictive equations examining 82 

the association between dietary FA intake and FA composition of edible matter are 83 

practically reduced to Atlantic salmon (Bell, McEvoy, Tocher, McGhee, Campbell & 84 

Sargent, 2001; Bell et al., 2002; Bell, Tocher, Henderson, Dick & Crampton, 2003) and 85 

Atlantic cod (Karalazos et al., 2007). Furthermore, results accumulated so far remain 86 

insufficient or still equivocal and do not allow to develop a proper strategy for 87 

increasing the beneficial FA in farmed fish.  88 

Regarding gilthead sea bream, we have shown earlier that season and fish size 89 

have negligible effects on the muscle FA composition of juvenile fish fed different 90 
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dietary oil sources (Benedito-Palos et al., 2008). This is indicative that FA composition 91 

remains mostly constant in one-year-old farmed fish, and the aim of the present study 92 

was to underline the descriptors linking dietary and muscle FA composition. For that 93 

purpose, our own published data along with additional data derived from the present 94 

study were compiled and analysed.  Prediction deviations due to changes in fatness 95 

were subsequently analysed in an independent trial under restricted and un-restricted 96 

feeding conditions.  97 

 98 

 99 

2. Materials and methods 100 

 101 

2.1. Diets 102 

Data on composition of the different diets used in the different studies is 103 

summarized in Table 1. A short description of the diets is given below. Extruded pellets 104 

were manufactured by the Skretting Company (Stavanger, Norway) or the Institut 105 

National de la Researche Agronomique (INRA) at the experimental research station of 106 

Donzaq (Landes, France). Diets A-D (manufactured by Skretting)  were fish meal-based 107 

diets containing 449 g of crude protein/kg and  were supplemented with South 108 

American FO (A ), rapeseed oil (B), linseed oil (C ) or soybean oil (D). Diet J was a 109 

commercial Skretting diet ( D-2 Excel 1P) based on fish meal (350 g/kg) and FO (70 110 

g/kg),supplemented with a blend of vegetable oils (60 soybean oil: 40 rapeseed oil). 111 

Diets E to H (manufactured by INRA, France) were practical diets based on plant 112 

proteins (150 g/kg) and Scandinavian FO (E),  partially (F-G ) or totally (H ) replaced 113 

by a blend of vegetable oils (17 rapeseed oil: 58 linseed oil: 25 palm oil) (for details see 114 

Benedito-Palos et al., 2007; Benedito-Palos et al., 2008). Diet I (manufactured by 115 
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INRA) was a plant protein-based diet with Scandinavian FO (150 g/kg) as the only 116 

dietary lipid source.  117 

All diets (A-J) contained similar crude protein levels around 47-48% of dry 118 

matter, whereas the total lipid content varied from 19% to 24% of dry matter. The 119 

inclusion of plant ingredients at the expense of fish meal and FO had a direct effect on 120 

the FA composition of the diets. In particular, EPA and DHA largely decreased, 121 

whereas an opposite trend was found for C18 PUFA. 122 

 123 

2. Animal care and experimental setup 124 

 Fish rearing was according to the guidelines set out by the Spanish Council of 125 

Animal Care under a protocol approved by the Review Board of the Institute of 126 

Aquaculture Torre de la Sal (IATS, Castellón, Spain).  127 

The study included data from different feeding trials carried out at the IATS with 128 

juvenile fish purchased from different fish producers and fed different diets: i) Cupimar, 129 

Cádiz, Spain (A-D feeding trial, August-October 2003; original data,  ii) Ferme Marine 130 

de Douhet (FMD), Bordeaux, France (E-H feeding trial, May-September 2005; 131 

published in Benedito-Palos et al., 2008) and iii) Valle Cà Zuliani, Cà Venier, Italy       132 

(I feeding trial, May-August 2009; original data). In all cases, juvenile fish were 133 

acclimatised to laboratory conditions for 20-30 days before the start of feeding trials. 134 

After this initial period, groups of 60 fish (16-34 g initial body weight) were placed into 135 

circular fiberglass tanks (500 l) in triplicate groups per dietary treatment. Water flow 136 

was 20 l/min and oxygen content of outlet water remained higher than 85% saturation. 137 

Day length and water temperature varied over the course of the study following natural 138 

changes at IATS latitude (40º5’N; 0º10’E). Feed was offered to satiety to maximize 139 

growth two times per day, six days per week over the course of 12-17 weeks. Overall, 140 
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body weight at slaughter was increased 3-6 fold times. Randomly selected fish (three 141 

fish per replicated tank; nine fish per treatment) were killed by a blow on the head 142 

before tissue sampling. Fillets (devoid of bone and skin) were rapidly excised and 143 

stored at -80 ºC until analyses of chemical and FA composition.  144 

In an additional feeding trial (May-August 2009; original data), juvenile fish of 145 

17 g initial body weight (FMD origin) were fed with a commercial diet (diet J) 146 

distributed at two different ration levels: i) full ration (ad-libitum group) and ii) 30% 147 

restricted ration (R group). Each experimental group was arranged in triplicate 500 l 148 

tanks and reared over the course of 11 weeks. Fish rearing and tissue sampling was 149 

carried out as indicated above for the other feeding trials. 150 

 151 

2.4. Chemical composition and fatty acid analyses  152 

The composition of diets and fish samples was analysed by standard procedures 153 

as described elsewhere (Benedito-Palos et al., 2009). Total lipids for FA analyses were 154 

extracted by the method of Folch, Less & Sloane-Stanley (1957), using 155 

chloroform:methanol (2:1) containing 0.01% butylated hydroxytoluene (BHT) as 156 

antioxidant. After the addition of nonadecanoic FA (19:0) as internal standard, total 157 

lipids (TL) were subjected to acid-catalysed transmethylation for 16 hours at 50 ºC 158 

using 1 ml toluene and 2 ml of 1% (v/v) sulphuric acid in methanol (Christie, 1982). 159 

The FA methyl esters (FAME) were extracted with hexane:diethyl ether (1:1, v/v), and 160 

purified by thin layer chromatography (Silica gel G 60, 20 x 20 cm glass plates; Merck, 161 

Darmstadt, Germany) using hexane:diethyl-ether:acetic acid (85:15:1.5, v/v) as a 162 

solvent system. The FAME were then analyzed with a gas chromatograph (GC 8000 163 

Series, Fisons Instruments, Rodano, Italy), equipped with a fused silica 30 m x 0.25 mm 164 

open tubular column (Tracer, TR-WAX; film thickness: 0.25 µm; Teknokroma, 165 
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Barcelona, Spain) and a cold on-column injection system. Helium was used as a carrier 166 

gas, and temperature programming was from 50 to 180 ºC at 40 ºC/min and then to 220 167 

ºC at 3 ºC/min. Peaks were recorded in a personal computer using software package 168 

(version 4.0.2.0. Azur, Datalys, St Martin d’Heres, France). Individual FAME were 169 

identified by reference to well characterized FO standards, and the relative amount of 170 

each FA was expressed as a percentage of the total amount of FA in the analysed 171 

sample.  172 

BHT and internal standard (19:0) were obtained from Sigma-Aldrich (Madrid, 173 

Spain). All solvents in lipid extraction and FA analyses were HPLC grade and were 174 

obtained from Merck (Darmstadt, Germany). 175 

 176 

2.5. Statistical analysis 177 

Linear regression equations between dietary and tissue FA were calculated with 178 

the following model, Y = aX + b, where Y = muscle tissue fatty acid (% of total FAME) 179 

and X = dietary fatty acid (% of total FAME). Prediction deviations of the model were 180 

analyzed using a statistical t-test to determine if the predicted FA value (result from the 181 

regression equation) was statistically distinguishable from the observed value at a 182 

significance level of 5%. All analyses were made using the SPSS package version 15.0 183 

(SPSS Inc., Chicago, IL, USA). 184 

 185 

 186 

187 
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3. Results  187 

  188 

In all the analysed studies, gilthead sea bream exhibited good specific growth 189 

rates (SGR, 1.6-1.8) and low feed:gain ratios (FGR, 0.9-1). Body weight at slaughter 190 

varied between 60 and 140 g without significant differences in whole body (12-14% fat, 191 

wet matter basis) and muscle fat stores (6-8 %, wet matter basis) independently of fish 192 

origin and diet composition. Regarding the effects of diets on muscle FA composition 193 

(Table 2), fish fed diets with a higher proportion of FO contained higher n-3 LC-PUFA 194 

in combination with reduced amounts of 18:1n-9, 18:2n-6 and 18:3n-3, as compared to 195 

fish fed diets with a higher proportion of vegetable oils. These values in muscle ranged 196 

between 31% and 6% for n-3 LC-PUFA in the two extreme groups, and between 17% 197 

and 63% in the case of the sum of C18 PUFA. 198 

 The linear regressions of muscle FA composition against FA composition of 199 

diets A-I are shown in Table 3. Slopes, Y-axis intercepts, correlation coefficients (r2) 200 

and P values were considered for 15 FA at detectable levels in all the analyzed fish 201 

samples. A significant correlation (P < 0.05) was established for all FA including 202 

saturated FA (14:0, 16:0, 18:0). However, strong and positive correlations were 203 

especially evident (P < 0.001) for C18 PUFA and LC-PUFA. Data on the relation 204 

between dietary FA and flesh FA composition for monoene FA (16:1n-7, 18:1n-9, 205 

20:1n-9 and 22:1n-11) are presented in Figure 1 and those for 18:2n-6, 18:3n-3, 20:4n-206 

6, 20:5n-3 and 22:6n-3 in Figure 2. 207 

When considering the effects of ration size, the final body weight of fish fed the 208 

full ration was greater (P < 0.001) than that of C fish (ad-libitum fish: 72.55 ± 0.07; R 209 

fish: 59.99 ± 0.52). Both groups of fish grew efficiently, although a slight improvement 210 

in FCR was found in R fish (0.99 ± 0.005) in comparison to ad libitum fed fish (0.92 ± 211 
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0.07). Dietary intervention decreased (P = 0.002) muscle body fat stores from 6.5% in 212 

wet matter basis in ad-libitum fish to 4.5% in R fish. Only minor changes were found in 213 

FA composition between groups and regarding the predicted values, a significant (P = 214 

0.01) deviation (less than 6%) was found for 18:1n-9 and 18:2n-6 in fish from the R 215 

group but not in ad libitum fed fish. Only minor changes were found in FA composition, 216 

and regarding the predicted values a slight but significant (P = 0.01) deviation (less than 217 

6%) was found for 18:1n-9 and 18:2n-6 in R fish but not in ad libitum fed fish. The 218 

predicted values for FA at low concentrations (20:1n-9 and 22:1n-11) deviated (P < 219 

0.001) from the observed values regardless of feeding regimen. In both experimental 220 

groups, predicted values mainly agreed (P > 0.05) with observations for 16:1n-7, 18:3n-221 

3, 20:4n-6, 20:5n-3 and 22:6n-3.  222 

 223 

224 
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4. Discussion   224 

 225 

The FA descriptors for one-year-old gilthead sea bream give close associations 226 

between dietary and muscle FA composition. Data on muscle FA composition were 227 

derived from feeding trials conducted at different times with fish originating from three 228 

major European producers, which assured a representative fish population of farmed 229 

gilthead sea bream. Partial and total replacement of either fish meal or FO was also 230 

considered in the experimental setup, and the replacement strategy of marine raw 231 

materials with plant ingredients covered a wide range of changes in the FA composition 232 

of diets containing 20-24 % crude lipid, which represents the normal range for dietary 233 

lipids in most commercial feeds used for gilthead sea bream farming..  234 

The slopes and Y-intercepts of the relations between muscle FA and dietary FA 235 

composition were specific for each FA, and correlation coefficients were particularly 236 

high for monoenes, C18 PUFA and LC-PUFA. Saturated FA, especially 16:0 and 18:0, 237 

gave low correlation coefficients (r2 = 0.5). These results are explained by the fact that 238 

the C14, C16 and C18 saturated FA are mainly the products of endogenous lipogenesis 239 

and interconversions between them limiting the impact of dietary supply levels. By 240 

contrast, marine fish species including gilthead sea bream have a very limited capacity 241 

to elongate and desaturate C18 vegetable oils into long chain C20 and C22 PUFA 242 

(Sargent, Tocher & Bell, 2002), and most of these FA in the flesh are entirely derived 243 

from the diet, which enables the mathematical modelling of FA composition with a high 244 

level of confidence.  245 

In the present study, data for predictive equations were derived from fish with a 246 

body weight range of 60-140 g. But the model can be extrapolated to bigger fish (200-247 

300 g) because season and fish size components have a negligible effect on the muscle 248 
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FA composition of juvenile fish grown out for 8-month productive cycle under natural 249 

light and temperature conditions (Benedito-Palos et al., 2008). Attempts in salmonids 250 

for the nutritional modelling of FA composition remain yet uncertain, and collectively, 251 

data from the literature (Bell et al., 2001; 2002; 2003) suggest that selective retention or 252 

metabolism of individual FA is influenced to a large extent by the blend of dietary oils, 253 

fish size, age and fat level in the fish. Even in lean fish such as the Atlantic cod, the FA 254 

composition of muscle is highly influenced by diet, but with relatively high levels of 255 

18:1n-9 and DHA in polar lipids which  remain fairly constant, irrespective of whether 256 

the fish were fed a diet with FO or vegetable oil (Karalazos et al., 2007). This is 257 

indicative that perhaps a meta-analysis approach (e.g. warm vs. cold fish and lean vs. 258 

muscle fat fish) is needed for precise guidelines in managing beneficial fish FA for 259 

human health.  260 

The muscle FA composition in pigs, sheep and cattle is also dependent upon the 261 

amount of fat in the carcass and in the muscle (Wood et al. 2008). Thus, as fat content 262 

of the animal and meat increases between early life and the time of slaughter, the 263 

proportion of FA changes. This has been ascribed to an increased contribution of  de 264 

novo synthesis of saturated and monounsaturated FA and a relative decline for the direct 265 

incorporation of C18 and derivates from the diet. Thus, in young lean animals, 266 

genetically lean animals or animals fed low energy diets, the FA composition of 267 

phospholipids (PL) has a major influence on total muscle FA composition. But as body 268 

fat increases, neutral lipid (NL) predominates in overall FA composition (Kiessling, 269 

Pickova, Johansson, Asgard, Storebakken & Kiessling, 2001). In the present study, 270 

body fat stores in the muscle samples used for the predictive modelling remained fairly 271 

constant (6-8% in wet matter basis) and FA proportions increased linearly in the muscle 272 

as the corresponding FA level in the diet increased. However, the FA composition of PL 273 
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and NL is different because a selective incorporation of FA tend to dominate in PL, 274 

whereas FA composition of NL, as fat storage form, is more dependent on diet 275 

regardless of tissue function in both gilthead sea bream (Benedito-Palos et al., 2010) 276 

and other fish species (Sargent et al., 2002; Tocher, 2003). Thereby, it appears likely 277 

that 2-3 fold increases in body fat stores would lead to changes in muscle FA 278 

proportions (total lipids) when comparisons are made between one year (< 300 g body 279 

mass ) and 2-3 year-old gilthead sea bream (0.5-1 kg body mass). This, however, needs 280 

to be confirmed and long-term studies analyzing the age and fatness effects on FA 281 

composition are underway to cover the full range of commercial size (300g- 1 kg). 282 

The effects of fat gain on FA composition were analyzed by comparing fish fed 283 

to satiety against those fed at a reduced ration level. Decreases in body weight and body 284 

fat stores paralleled dietary restriction, but even then, a 30% reduction in muscle fat 285 

stores did not have a noteworthy effect on the FA profile. Similarly, Kiessling, Pickova, 286 

Eales, Dosanjh & Higgs (2005) found slight variations in Chinook salmon given a 25% 287 

reduced ration. Under practical farming conditions, it is common practice to resort to 288 

slightly restricted rationing, in order to avoid feed wastages as well as to increase 289 

efficiency. Therefore, for the given size-class studied, it appears likely that the proposed 290 

equations can be up-scaled to most farm conditions. Thus overall deviations from 291 

predicted values are less than 6% for C18 PUFA and LC-PUFA, whereas FA 292 

descriptors for less abundant FA (< 1.5 %) such as 20:1n-9 and 22:1n-11, are 293 

substantially less accurate since probably low concentrations are by themselves a source 294 

of error.  295 

As mentioned earlier, a relation between dietary FA composition and flesh FA 296 

composition has been established in different species. But, whether the descriptors as 297 

established here for gilthead sea bream are applicable to other species needs to be 298 
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verified. For instance, the intrinsic potential for bioconversion of 18:2n-6 and 18:3n-3 299 

fatty acids to n-6 and n-3 long chain PUFA is reported to be higher in freshwater fish 300 

than in marine teleosts (Henderson & Tocher, 1987). Besides the ecological niche 301 

occupied by the  species, FA profiles are reportedly affected by water temperature 302 

(Jobling & Bendiksen, 2003; Skalli, Robin, Le Bayon, Le Delliou & Person-Le Ruyet, 303 

2006) and salinity (Haliloglu, BayIr, Sirkecioglu, Mevlüt Aras & Atamanalp, 2004), 304 

linked to the cell membrane fluidity and permeability. Additionally, the amount of 305 

muscle fat stores can differ between species, and the concordance with the model will 306 

be greater in species with high fat deposition, which contain more NL than PL. These 307 

factors need to be taken into account for tailoring flesh FA composition of fish, 308 

especially when increasing levels of alternatives to FO are used in the feeds of farmed 309 

fish. Furthermore, a better understanding of the mechanisms leading to tissue FA uptake 310 

and turnover are needed from intra- and inter-species comparative perspective to draw 311 

guidelines on the means to tailor flesh FA profile and to supply the recommended 312 

dietary allowance in EPA and DHA for human consumers. 313 

In summary, with the given regression formulas, the muscle FA profile of 314 

gilthead sea bream can be predicted for a given class of fish size as based on the FA 315 

composition of the diet. The data collected here correspond to fish which had undergone 316 

similar experimental rearing conditions under the same standards of handling and 317 

maintenance. This unavoidably leads to a decrease in the experimental statistical error 318 

that ultimately translates into the increase of the quality of the regression results, 319 

leading to high predictability to show the relation between dietary and muscle FA 320 

levels. Further work is in progress to complete the construction of a FA database for 321 

bigger fish in order to evaluate the specificity of predictive equations within and 322 

between different marine fish species and farming conditions. The application of such 323 
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predictions would strengthen the potential for tailoring flesh FA composition and to 324 

ensure the nutritional value of farmed seafood. 325 

 326 
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Figure captions 431 

 432 

Figure 1. Relationship between dietary and muscle fatty acid concentrations of 16:1n-7 433 

(a), 18:1n-9 (b), 20:1n-9 (c), and 22:1n-11 (d) in gilthead sea bream fed A-I diets in 434 

asynchronous trials. 435 

 436 

Figure 2. Relationship between dietary and muscle fatty acid concentrations of 18:3n-3 437 

(a), 18:2n-6 (b), 20:5n-3 (c), 20:4n-6 (d), and 22:6n-3 (e) in gilthead sea bream fed A-I 438 

diets in asynchronous trials. 439 
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Table 1. Chemical composition and fatty acid profile (% of total fatty acid methyl esters) of diets.  
 
 A B C D  E F G H  I  J 
Proximate composition              
Dry matter (DM, %) 94.9 95.0 96.3 96.8  93.4 94.1 94.7 95.3  95.1  89.1 
Protein (% DM) 47.7 47.3 46.9 47.5  48.9 48.7 49.0 48.6  47.8  48.2 
Fat (% DM) 23.6 23.6 24.6 24.3  22.1 22.2 22.1 22.3  19.6  19.9 
              
Fatty acid profile              
14:0 6.6 2.0 1.9 1.9  5.0 3.7 1.8 0.5  6.8  5.0 
16:0 17.0 8.7 9.0 12.6  16.7 16.9 16.9 16.7  20.6  17.5 
16:1n-7 6.1 1.9 1.8 1.8  4.6 2.9 1.9 0.7  5.4  4.8 
18:0 3.5 2.1 3.2 3.0  2.5 2.9 3.4 3.7  4.1  4.1 
18:1 n-9 7.6 37.4 16.6 16.7  12.5 17.5 21.9 25.9  16.3  15.5 
18:1 n-7 2.3 2.6 1.2 1.6  1.9 1.6 1.4 1.2  2.6  2.9 
18:2 n-6 4.4 15.8 13.0 37.2  12.1 15.7 19.2 21.3  7.9  21.4 
18:3 n-3 1.2 6.5 32.1 4.8  1.5 8.9 16.3 23.2  0.8  2.3 
18:4 n-3 3.1 1.3 1.3 1.2  2.1 1.4 0.8 0.2  1.0  0.8 
20:1 n-9 3.6 3.2 2.5 2.5  7.2 5.1 3.0 1.0  5.0  1.1 
20:4 n-6 0.7 0.2 0.2 0.2  0.3 0.2 0.1 -  0.5  0.6 
20:4 n-3 0.7 0.2 0.2 0.2  0.4 0.2 0.1 -  0.6  0.3 
20:5 n-3  12.5 4.1 4.0 3.7  6.8 4.6 2.7 0.9  6.6  7.5 
22:1 n-11 3.5 3.0 2.7 2.8  10.1 6.7 3.6 0.7  2.4  1.0 
22:5 n-3 1.4 0.4 0.4 0.3  0.6 0.4 0.1 -  1.3  0.9 
22:6 n-3   13.5 4.5 4.5 4.2  8.3 5.6 3.3 1.0  7.2  4.5 
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Table 2. Initial body weight, final body weight and muscle fatty acid profile at slaughter (% of fatty acid methyl esters) in fish fed 
experimental diets.  

aMean body weight values and standard deviation of fish from triplicate tanks are presented. 
bMean fatty acid values and standard deviation of individual fish are presented (n = 9). 

Origin of fish Cupimar, Spain  Ferme Marine de Douhet, France  Valle Cà Zuliani, 
Italy 

Diet (see Table 1) A B C D  E F G H  I 
Initial body weight (g)a 34.0±0.1 34.0±0.1 34.2±0.1 34.3±0.1  16.1±0.1 16.3±0.1 16.3±0.1 16.1±0.1  17.1±0.1 
Final body weight (g)a 144.0±1.3 138.5±4.3 136.5±2.5 137.7±2.5  91.7±0.6 91.3±1.5 91.1±2.0 80.9±0.5  62.7±1.0 
            
Fatty acids (%)b            
14:0 4.9±0.2 2.1±0.1 1.9±0.1 0.9±0.2  4.5±0.3 2.6±0.4 1.7±0.3 1.1±0.4  4.1±0.2 
16:0 19.8±0.4 13.4±0.5 14.1±0.8 14.1±0.6  18.3±0.9 19.0±0.4 17.2±0.6 16.1±0.5  18.0±0.4 
16:1n-7 6.7±0.1 3.2±0.1 2.1±1.3 2.5±0.2  5.4±0.5 3.6±0.5 2.8±0.3 2.1±0.5  6.4±0.1 
18:0 4.6±0.3 3.1±0.2 4.4±0.2 4.1±0.1  3.0±0.2 4.1±0.5 3.9±0.6 4.4±0.6  4.1±0.2 
18:1 n-9 12.9±0.4 35.5±1.0 20.7±1.8 19.3±0.7  16.0±0.9 18.5±2.8 24.5±2.2 27.3±3.1  20.7±1.1 
18:2 n-6 4.4±0.2 13.7±0.3 8.7±5.8 30.8±1.3  11.8±0.2 14.9±1.5 17.4±0.1 20.5±1.6  7.9±0.3 
18:3 n-3 1.1±0.1 4.8±0.2 23.9±1.8 3.6±0.1  1.1±0.1 5.8±0.6 12.1±1.5 15.8±1.7  0.8±0.1 
18:4 n-3 2.1±0.1 0.8±0.1 0.8±0.4 0.8±0.1  1.3±0.1 0.8±0.1 0.7±0.1 0.5±0.1  0.9±0.1 
20:1 n-9 2.6±0.1 2.7±0.1 2.1±0.1 2.1±0.1  5.5±0.2 3.2±0.1 1.9±0.2 0.9±0.5  3.6±0.1 
20:4 n-6 0.8±0.1 0.3±0.1 0.5±0.3 0.4±0.1  0.3±0.1 0.4±0.1 0.2±0.1 0.1±0.1  0.6±0.1 
20:4 n-3 1.0±0.1 0.5±0.1 0.7±0.1 0.5±0.1  0.6±0.1 0.5±0.1 0.4±0.1 0.3±0.1  0.7±0.1 
20:5 n-3  10.1±0.1 3.5±0.3 3.8±0.5 3.7±0.3  5.0±0.3 4.3±0.7 2.5±0.7 1.5±0.7  5.9±0.2 
22:1 n-11 2.4±0.1 2.1±0.1 1.9±0.1 1.9±0.1  5.3±0.5 2.7±0.4 1.6±0.4 0.3±0.1  1.6±0.1 
22:5 n-3 3.1±0.1 1.3±0.2 1.1±0.8 1.4±0.1  1.5±0.1 1.2±0.1 0.6±2.5 0.4±0.1  2.4±0.1 
22:6 n-3   17.1±1.2 7.5±1.8 8.2±3.2 8.5±0.5  10.6±2.0 8.8±2.6 6.0±2.5 3.5±1.8  10.5±0.7 
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Table 3. Correlation coefficients (r2), slopes, 
Y-axis intercepts and P values for the 
regression analysis of dietary fatty acid 
concentrations versus muscle fatty acid 
concentrations. Data were derived from fish 
fed A-I diets in asynchronous gilthead sea 
bream trials. 

 

Fatty acid  r2 slope Y-axis 
intercept P 

14:0 0.87 0.60 0.60 <0.001 
16:0 0.53 0.51 9.64 0.016 
16:1n-7 0.97 0.94 1.02 <0.001 
18:0 0.55 0.91 1.99 0.014 
18:1 n-9 0.97 0.76 7.02 <0.001 
18:2 n-6 0.96 0.82 1.05 <0.001 
18:3 n-3 0.99 0.72 0.05 <0.001 
18:4 n-3 0.89 0.55 0.24 <0.001 
20:1 n-9 0.95 0.67 0.30 <0.001 
20:4 n-6 0.91 0.89 0.20 <0.001 
20:4 n-3 0.86 0.88 0.28 <0.001 
20:5 n-3  0.98 0.74 0.72 <0.001 
22:1 n-11 0.95 0.47 0.10 <0.001 
22:5 n-3 0.91 1.70 0.48 <0.001 
22:6 n-3   0.96 1.02 2.93 <0.001 
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Table 4. Effect of ration size (full ration, ad libitum fish; and 30% calorie-restricted diet, CR 
fish) upon predictable values on muscle fatty acid composition. 

 
aP values result from statistical t-test to determine if observed values are statistically distinguishable 
from predicted values.  

 Prediction  ad libitum fish  CR fish 

FA profile  Values  Mean ± SD P-valuea  Mean ± SD P-valuea 

16:1n-7 5.53  5.59 ± 0.03 0.17  5.37 ± 0.10 0.17 
18:1 n-9 18.80  18.27 ± 0.22 0.13  17.41 ± 0.30 0.01* 
18:2 n-6 18.60  18.75 ± 0.06 0.13  17.48 ± 0.30 0.01* 
18:3 n-3 1.71  1.88  ± 0.45 0.71  1.78 ± 0.03 0.09 
20:1 n-9 1.04  1.34 ± 0.01 <0.001*  1.34 ± 0.03 <0.001* 
20:4 n-6 0.73  0.65 ± 0.05 0.17  0.66 ± 0.05 0.22 
20:5 n-3 6.27  6.48 ± 0.11 0.20  6.07 ± 0.09 0.06 
22:1 n-11 0.57  0.84 ± 0.01 <0.001*  0.87 ± 0.04 <0.001* 
22:6 n-3   7.52  7.33 ± 0.18 0.46  7.25 ± 0.27 0.36 
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Figure 1 
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Figure 2 
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