72 research outputs found

    Community Self-Analysis and Temporary Intervention in Arts and Cultural Districts

    Get PDF
    The collected data revealed opportunities for integrating shared cultural elements into housing design; it also informed the program and concept for the Doctorate Design Project while supporting the viability of culturally appropriate public housing design in the United States. The project illustrates that the process of understanding specific cultures can ultimately reveal universal strategies for improving the quality of life for residents from any culture

    Coactosin Promotes F-Actin Protrusion in Growth Cones Under Cofilin-Related Signaling Pathway

    Get PDF
    During brain development, axon outgrowth and its subsequent pathfinding are reliant on a highly motile growth cone located at the tip of the axon. Actin polymerization that is regulated by actin-depolymerizing factors homology (ADF-H) domain-containing family drives the formation of lamellipodia and filopodia at the leading edge of growth cones for axon guidance. However, the precise localization and function of ADF-H domain-containing proteins involved in axon extension and retraction remain unclear. We have previously shown that transcripts and proteins of coactosin-like protein 1 (COTL1), an ADF-H domain-containing protein, are observed in neurites and axons in chick embryos. Coactosin overexpression analysis revealed that this protein was localized to axonal growth cones and involved in axon extension in the midbrain. We further examined the specific distribution of coactosin and cofilin within the growth cone using superresolution microscopy, structured illumination microscopy, which overcomes the optical diffraction limitation and is suitable to the analysis of cellular dynamic movements. We found that coactosin was tightly associated with F-actin bundles at the growth cones and that coactosin overexpression promoted the expansion of lamellipodia and extension of growth cones. Coactosin knockdown in oculomotor neurons resulted in an increase in the levels of the inactive, phosphorylated form of cofilin and dysregulation of actin polymerization and axonal elongation, which suggests that coactosin promoted axonal growth in a cofilin-dependent manner. Indeed, the application of a dominant-negative form of LIMK1, a downstream effector of GTPases, reversed the effect of coactosin knockdown on axonal growth by enhancing cofilin activity. Combined, our results indicate that coactosin functions promote the assembly of protrusive actin filament arrays at the leading edge for growth cone motility

    Dynamics of membranes driven by actin polymerization

    Get PDF
    A motile cell, when stimulated, shows a dramatic increase in the activity of its membrane, manifested by the appearance of dynamic membrane structures such as lamellipodia, filopodia and membrane ruffles. The external stimulus turns on membrane bound activators, like Cdc42 and PIP2, which cause increased branching and polymerization of the actin cytoskeleton in their vicinity leading to a local protrusive force on the membrane. The emergence of the complex membrane structures is a result of the coupling between the dynamics of the membrane, the activators and the protrusive forces. We present a simple model that treats the dynamics of a membrane under the action of actin polymerization forces that depend on the local density of freely diffusing activators on the membrane. We show that, depending on the spontaneous membrane curvature associated with the activators, the resulting membrane motion can be wave-like, corresponding to membrane ruffling and actin-waves, or unstable, indicating the tendency of filopodia to form. Our model also quantitatively explains a variety of related experimental observations and makes several testable predictions.Comment: 37 pages, 8 figures, revte

    Novel Roles of Formin mDia2 in Lamellipodia and Filopodia Formation in Motile Cells

    Get PDF
    Actin polymerization-driven protrusion of the leading edge is a key element of cell motility. The important actin nucleators formins and the Arp2/3 complex are believed to have nonoverlapping functions in inducing actin filament bundles in filopodia and dendritic networks in lamellipodia, respectively. We tested this idea by investigating the role of mDia2 formin in leading-edge protrusion by loss-of-function and gain-of-function approaches. Unexpectedly, mDia2 depletion by short interfering RNA (siRNA) severely inhibited lamellipodia. Structural analysis of the actin network in the few remaining lamellipodia suggested an mDia2 role in generation of long filaments. Consistently, constitutively active mDia2 (ΔGBD-mDia2) induced accumulation of long actin filaments in lamellipodia and increased persistence of lamellipodial protrusion. Depletion of mDia2 also inhibited filopodia, whereas expression of ΔGBD-mDia2 promoted their formation. Correlative light and electron microscopy showed that ΔGBD-mDia2–induced filopodia were formed from lamellipodial network through gradual convergence of long lamellipodial filaments into bundles. Efficient filopodia induction required mDia2 targeting to the membrane, likely through a scaffolding protein Abi1. Furthermore, mDia2 and Abi1 interacted through the N-terminal regulatory sequences of mDia2 and the SH3-containing Abi1 sequences. We propose that mDia2 plays an important role in formation of lamellipodia by nucleating and/or protecting from capping lamellipodial actin filaments, which subsequently exhibit high tendency to converge into filopodia

    A direct role for SNX9 in the biogenesis of filopodia.

    Get PDF
    Filopodia are finger-like actin-rich protrusions that extend from the cell surface and are important for cell-cell communication and pathogen internalization. The small size and transient nature of filopodia combined with shared usage of actin regulators within cells confounds attempts to identify filopodial proteins. Here, we used phage display phenotypic screening to isolate antibodies that alter the actin morphology of filopodia-like structures (FLS) in vitro. We found that all of the antibodies that cause shorter FLS interact with SNX9, an actin regulator that binds phosphoinositides during endocytosis and at invadopodia. In cells, we discover SNX9 at specialized filopodia in Xenopus development and that SNX9 is an endogenous component of filopodia that are hijacked by Chlamydia entry. We show the use of antibody technology to identify proteins used in filopodia-like structures, and a role for SNX9 in filopodia

    Phosphoproteomic differences in major depressive disorder postmortem brains indicate effects on synaptic function

    Get PDF
    There is still a lack in the molecular comprehension of major depressive disorder (MDD) although this condition affects approximately 10% of the world population. Protein phosphorylation is a posttranslational modification that regulates approximately one-third of the human proteins involved in a range of cellular and biological processes such as cellular signaling. Whereas phosphoproteome studies have been carried out extensively in cancer research, few such investigations have been carried out in studies of psychiatric disorders. Here, we present a comparative phosphoproteome analysis of postmortem dorsolateral prefrontal cortex tissues from 24 MDD patients and 12 control donors. Tissue extracts were analyzed using liquid chromatography mass spectrometry in a data-independent manner (LC-MSE). Our analyses resulted in the identification of 5,195 phosphopeptides, corresponding to 802 non-redundant proteins. Ninety of these proteins showed differential levels of phosphorylation in tissues from MDD subjects compared to controls, being 20 differentially phosphorylated in at least 2 peptides. The majority of these phosphorylated proteins were associated with synaptic transmission and cellular architecture not only pointing out potential biomarker candidates but mainly shedding light to the comprehension of MDD pathobiology

    Functional Complexity of the Axonal Growth Cone: A Proteomic Analysis

    Get PDF
    The growth cone, the tip of the emerging neurite, plays a crucial role in establishing the wiring of the developing nervous system. We performed an extensive proteomic analysis of axonal growth cones isolated from the brains of fetal Sprague-Dawley rats. Approximately 2000 proteins were identified at ≥99% confidence level. Using informatics, including functional annotation cluster and KEGG pathway analysis, we found great diversity of proteins involved in axonal pathfinding, cytoskeletal remodeling, vesicular traffic and carbohydrate metabolism, as expected. We also found a large and complex array of proteins involved in translation, protein folding, posttranslational processing, and proteasome/ubiquitination-dependent degradation. Immunofluorescence studies performed on hippocampal neurons in culture confirmed the presence in the axonal growth cone of proteins representative of these processes. These analyses also provide evidence for rough endoplasmic reticulum and reveal a reticular structure equipped with Golgi-like functions in the axonal growth cone. Furthermore, Western blot revealed the growth cone enrichment, relative to fetal brain homogenate, of some of the proteins involved in protein synthesis, folding and catabolism. Our study provides a resource for further research and amplifies the relatively recently developed concept that the axonal growth cone is equipped with proteins capable of performing a highly diverse range of functions

    Coordinated Movement of Vesicles and Actin Bundles during Nerve Growth Revealed by Superresolution Microscopy

    No full text
    Summary: The growth cone is an essential structure for nerve growth. Although its membrane and cytoskeleton are likely to interact coordinately during nerve growth, the mechanisms are unknown due to their close proximity. Here, we used superresolution microscopy to simultaneously observe vesicles and F-actin in growth cones. We identified a novel vesicular generation mechanism that is independent of clathrin and dependent on endophilin-3- and dynamin-1 and that occurs proximal to the leading edge simultaneously with fascin-1-dependent F-actin bundling. In contrast to conventional clathrin-dependent endocytosis, which occurs distal from the leading edge at the basal surfaces of growth cones, this mechanism was distinctly observed at the apical surface using 3D imaging and was involved in mediating axon growth. Reduced endophilin or fascin inhibited this endocytic mechanism. These results suggest that, at the leading edge, vesicles are coordinately generated and transported with actin bundling during nerve growth. : Nozumi et al. simultaneously observe the movements of vesicles and F-actin in growth cones using SIM superresolution microscopy to characterize their coordinated trafficking at the leading edge. They find that endophilin-mediated endocytosis is linked to fascin-dependent F-actin bundling during nerve growth, while clathrin-mediated endocytosis is not. Keywords: filopodi
    corecore