346 research outputs found

    Why Microtubules run in Circles - Mechanical Hysteresis of the Tubulin Lattice

    Full text link
    The fate of every eukaryotic cell subtly relies on the exceptional mechanical properties of microtubules. Despite significant efforts, understanding their unusual mechanics remains elusive. One persistent, unresolved mystery is the formation of long-lived arcs and rings, e.g. in kinesin-driven gliding assays. To elucidate their physical origin we develop a model of the inner workings of the microtubule's lattice, based on recent experimental evidence for a conformational switch of the tubulin dimer. We show that the microtubule lattice itself coexists in discrete polymorphic states. Curved states can be induced via a mechanical hysteresis involving torques and forces typical of few molecular motors acting in unison. This lattice switch renders microtubules not only virtually unbreakable under typical cellular forces, but moreover provides them with a tunable response integrating mechanical and chemical stimuli.Comment: 5 pages, 4 Movies in the Supplemen

    Evaluation of Die Trim Morphology Made by CAD-CAM Technology

    Get PDF
    Statement of problem The die contour can affect the emergence profile of prosthetic restorations. However, little information is available regarding the congruency between a stereolithographic (SLA) die and its corresponding natural tooth. Purpose The purpose of this vitro study was to evaluate the shapes of SLA die in comparison with the subgingival contour of a prepared tooth to be restored with a ceramic crown. Material and methods Twenty extracted human teeth, 10 incisors, and 10 molars, were disinfected and mounted in a typodont model. The teeth were prepared for a ceramic restoration. Definitive impressions were made using an intraoral scanner from which 20 SLA casts with removable dies were fabricated. The removable dies and corresponding human teeth were digitized using a 3-dimensional desktop scanner and evaluated with computer-aided design software. The subgingival morphology with regard to angle, length, and volume at the buccolingual and mesiodistal surfaces and at zones A, B, C, and D were compared. Data were first analyzed with repeated measures analysis of variance (ANOVA), using locations (buccolingual and mesiodistal), zones (A, B, C, and D), and model type (SLA and Natural) as within-subject factors and tooth type (molar and incisor) as the between-subject factor. Post hoc analyses were performed to investigate the difference between natural teeth and corresponding SLA models, depending upon the interaction effect from the repeated measures ANOVA (α=.05). Results For angle analysis, the incisor group demonstrated a significant difference between the natural tooth and SLA die on the buccolingual surfaces (PPPPPP Conclusions For the comparison of angles, SLA dies did not replicate the subgingival contour of natural teeth on the buccolingual surfaces of the incisal groups. For the comparison of length and volume, SLA dies were more concave and did not replicate the subgingival contour of natural teeth in the incisal and molar groups

    Nonlinear competition between asters and stripes in filament-motor-systems

    Full text link
    A model for polar filaments interacting via molecular motor complexes is investigated which exhibits bifurcations to spatial patterns. It is shown that the homogeneous distribution of filaments, such as actin or microtubules, may become either unstable with respect to an orientational instability of a finite wave number or with respect to modulations of the filament density, where long wavelength modes are amplified as well. Above threshold nonlinear interactions select either stripe patterns or periodic asters. The existence and stability ranges of each pattern close to threshold are predicted in terms of a weakly nonlinear perturbation analysis, which is confirmed by numerical simulations of the basic model equations. The two relevant parameters determining the bifurcation scenario of the model can be related to the concentrations of the active molecular motors and of the filaments respectively, which both could be easily regulated by the cell.Comment: 13 pages, 7 figure

    Status of the EERA joint programme on energy storage

    Get PDF

    Comparison of The Kois Dento-Facial Analyzer System with an Earbow for Mounting a Maxillary Cast

    Get PDF
    Statement of problem: The Kois Dento-Facial Analyzer System (KDFA) is used by clinicians to mount maxillary casts and evaluate and treat patients. Limited information is available for understanding whether the KDFA should be considered as an alternative to an earbow. Purpose: The purpose of this study was to evaluate maxillary casts mounted using the KDFA with casts mounted using Panadent\u27s Pana-Mount Facebow (PMF). Both articulation methods were compared against a lateral cephalometric radiograph. Material and methods: Fifteen dried human skulls were used. Lateral cephalometric radiographs and 2 maxillary impressions were made of each skull. One cast from each skull was mounted on an articulator by means of the KDFA and the other by using the PMF. A standardized photograph of each articulation was made, and the distance from the articular center to the incisal edge position and the occlusal plane angle were measured. The distance from condylar center to the incisal edge and the occlusal plane angle were measured from cephalometric radiographs. Finally, the 3-dimensional position of each articulation was determined with a Panadent CPI-III. A randomized complete block design analysis of variance (RCBD) and post hoc tests (Tukey-Kramer HSD) (α=.05) were used to evaluate the occlusal plane angle and axis-central incisor distance. A paired 2-sample t test for means (α=.05) was used to compare the X, Y, and Z distance at the right and left condyle. Results: The KDFA and PMF mounted the maxillary cast in a position that was not statistically different from the skull when comparing the occlusal plane angle (P=.165). Both the KDFA and the PMF located the maxillary central incisor edge position in a significantly different position compared with the skull (P=.001) but were not significantly different from each other. The 3-dimensional location of the maxillary casts varied at the condyles by approximately 9 to 10.3 mm. Conclusion: The KDFA mounted the maxillary cast in a position that was not statistically different from the PMF when comparing the incisal edge position and the occlusal plane angle. Both the KDFA and the PMF located the maxillary incisal edge position in a significantly different position compared with the anatomic position on dried human skulls

    Calorimetric Methods and Thermal Management of Lithium-ion batteries: A mini-review

    Get PDF
    Lithium-ion batteries can be employed in dissimilar applications, including grid integration, electric vehicles, grid support, and consumer electronics. Lithium-ion batteries are one of the most important tools for storing electrical energy. These tools are important because of their widespread use in industry. Therefore, modelling lithium-ion batteries and examining their temperature distribution and heat transfer is very important mostly for safety concerns. Therefore, the study of battery heat transfer helps designers to propose and develop a suitable cooling system. Different sources including overpotential contribute to heat generation. Different understandings were achieved from the previous modelling and experimental studies which involve the necessity for more accurate heat generation measurements of lithium-ion batteries, and improved modelling of the heat generation specifically comprehended at big discharge and charge rates for different applications including electric vehicles
    • …
    corecore