463 research outputs found

    Structural optimization and biological evaluation of 2-substituted 5-hydroxyindole-3-carboxylates as potent inhibitors of human 5-lipoxygenase.

    Get PDF
    Pharmacological suppression of leukotriene biosynthesis by inhibitors of 5-lipoxygenase (5-LO) is a strategy to intervene with inflammatory and allergic disorders. We recently presented 2-amino-5-hydroxy-1H-indoles as efficient 5-LO inhibitors in cell-based and cell-free assays. Structural optimization led to novel benzo[g]indole-3-carboxylates exemplified by ethyl 2-(3-chlorobenzyl)-5- hydroxy-1H-benzo[g]indole-3-carboxylate (compound 11a), which inhibits 5-LO activity in human neutrophils and recombinant human 5-LO with IC50 values of 0.23 and 0.086 ÎĽM, respectively. Notably, 11a efficiently blocks 5-LO product formation in human whole blood assays (IC50 = 0.83-1.6 ÎĽM) and significantly prevented leukotriene B4 production in pleural exudates of carrageenan-treated rats, associated with reduced severity of pleurisy. Together, on the basis of their high potency against 5-LO and the marked efficacy in biological systems, these novel and straightforward benzo[g]indole-3-carboxylates may have potential as anti-inflammatory therapeutics

    Arzanol, a prenylated heterodimeric phloroglucinyl pyrone, inhibits eicosanoid biosynthesis and exhibits anti-inflammatory efficacy in vivo.

    Get PDF
    Based on its capacity to inhibit in vitro HIV-1 replication in T cells and the release of pro-inflammatory cytokines in monocytes, the prenylated heterodimeric phloroglucinyl α-pyrone arzanol was identified as the major anti-inflammatory and anti-viral constituent from Helichrysum italicum. We have now investigated the activity of arzanol on the biosynthesis of pro-inflammatory eicosanoids, evaluating its anti-inflammatory efficacy in vitro and in vivo. Arzanol inhibited 5-lipoxygenase (EC 7.13.11.34) activity and related leukotriene formation in neutrophils, as well as the activity of cyclooxygenase (COX)-1 (EC 1.14.99.1) and the formation of COX-2-derived prostaglandin (PG)E(2)in vitro (IC(50)=2.3-9μM). Detailed studies revealed that arzanol primarily inhibits microsomal PGE(2) synthase (mPGES)-1 (EC 5.3.99.3, IC(50)=0.4μM) rather than COX-2. In fact, arzanol could block COX-2/mPGES-1-mediated PGE(2) biosynthesis in lipopolysaccharide-stimulated human monocytes and human whole blood, but not the concomitant COX-2-derived biosynthesis of thromboxane B(2) or of 6-keto PGF(1α), and the expression of COX-2 or mPGES-1 protein was not affected. Arzanol potently suppressed the inflammatory response of the carrageenan-induced pleurisy in rats (3.6mg/kg, i.p.), with significantly reduced levels of PGE(2) in the pleural exudates. Taken together, our data show that arzanol potently inhibits the biosynthesis of pro-inflammatory lipid mediators like PGE(2)in vitro and in vivo, providing a mechanistic rationale for the anti-inflammatory activity of H. italicum, and a rationale for further pre-clinical evaluation of this novel anti-inflammatory lead

    Discovery of benzo[g]indol-3-carboxylates as potent inhibitors of microsomal prostaglandin E(2) synthase-1.

    No full text
    Selective inhibition of pro-inflammatory prostaglandin (PG)E2 formation via microsomal PGE2 synthase-1 (mPGES-1) might be superior over inhibition of all cyclooxygenase (COX)-derived products by non-steroidal anti-inflammatory drugs (NSAIDs) and coxibs. We recently showed that benzo[g]indol-3-carboxylates potently suppress leukotriene biosynthesis by inhibiting 5-lipoxygenase. Here, we describe the discovery of benzo[g]indol-3-carboxylates as a novel class of potent mPGES-1 inhibitors (IC50 ≥ 0.1 μM). Ethyl 2-(3-chlorobenzyl)-5-hydroxy-1H-benzo[g]indole-3-carboxylate (compound 7a) inhibits human mPGES-1 in a cell-free assay (IC50 = 0.6 μM) as well as in intact A549 cells (IC50 = 2 μM), and suppressed PGE2 pleural levels in rat carrageenan-induced pleurisy. Inhibition of cellular COX-1/2 activity was significantly less pronounced. Compound 7a significantly reduced inflammatory reactions in the carrageenan-induced mouse paw edema and rat pleurisy. Together, based on the select and potent inhibition of mPGES-1 and 5-lipoxygenase, benzo[g]indol-3-carboxylates possess potential as novel anti-inflammatory drugs with a valuable pharmacological profile

    IL-6: A Janus-like factor in abdominal aortic aneurysm disease

    Get PDF
    AbstractBackground and aimsAn abdominal aortic aneurysm (AAA) is part of the atherosclerotic spectrum of diseases. The disease is hallmarked by a comprehensive localized inflammatory response with striking IL-6 hyperexpression. IL-6 is a multifaceted cytokine that, depending on the context, acts as a pro- or anti-inflammatory factor. In this study, we explore a putative role for IL-6 in AAA disease.MethodsELISA’s, Western blot analysis, real time PCR and array analysis were used to investigate IL-6 expression and signaling in aneurysm wall samples from patients undergoing elective AAA repair. A role for IL-6 in AAA disease was tested through IL-6 neutralization experiments (neutralizing antibody) in the elastase model of AAA disease.ResultsWe confirmed an extreme disparity in aortic wall IL-6 content between AAA and atherosclerotic disease (median [5th–95th percentile] aortic wall IL-6 content: 281.6 [0.0–1820.8] (AAA) vs. 1.9 [0.0–37.8] μg/g protein (atherosclerotic aorta), (p < 0.001). Array analysis followed by pathway analysis showed that IL-6 hyper-expression is followed by increased IL-6 signaling (p < 0.000039), an observation confirmed by higher aneurysm wall pSTAT3 levels, and SOCS1 and SOCS3 mRNA expression, (p < 0.018).Remarkably, preventive IL-6 neutralization i.e. treatment started one day prior to the elastase-induction resulted in >40% 7-day mortality due to aortic rupture. In contrast, delayed IL-6 neutralization (i.e. neutralization started at day 4 after elastase induction) did not result in ruptures, and quenched AAA growth (p < 0.021).ConclusionsAAA disease is characterized by increased IL-6 signaling. In the context of the elastase model of AAA disease, IL-6 appears a multi-faceted factor, protective upon acute injury, but negatively involved in the perpetuation of the disease process

    Changes of bivalent chromatin coincide with increased expression of developmental genes in cancer

    Get PDF
    Bivalent (poised or paused) chromatin comprises activating and repressing histone modifications at the same location. This combination of epigenetic marks at promoter or enhancer regions keeps genes expressed at low levels but poised for rapid activation. Typically, DNA at bivalent promoters is only lowly methylated in normal cells, but frequently shows elevated methylation levels in cancer samples. Here, we developed a universal classifier built from chromatin data that can identify cancer samples solely from hypermethylation of bivalent chromatin. Tested on over 7,000 DNA methylation data sets from several cancer types, it reaches an AUC of 0.92. Although higher levels of DNA methylation are often associated with transcriptional silencing, counter-intuitive positive statistical dependencies between DNA methylation and expression levels have been recently reported for two cancer types. Here, we re-analyze combined expression and DNA methylation data sets, comprising over 5,000 samples, and demonstrate that the conjunction of hypermethylation of bivalent chromatin and up-regulation of the corresponding genes is a general phenomenon in cancer. This up-regulation affects many developmental genes and transcription factors, including dozens of homeobox genes and other genes implicated in cancer. Thus, we reason that the disturbance of bivalent chromatin may be intimately linked to tumorigenesis

    The molecular pharmacology and in vivo activity of 2-(4-chloro-6-(2,3-dimethylphenylamino)pyrimidin-2-ylthio)octanoic acid (YS121), a dual inhibitor of microsomal prostaglandin E2 synthase-1 and 5-lipoxygenase.

    Get PDF
    The microsomal prostaglandin E2 synthase (mPGES)-1 is one of the terminal isoenzymes of prostaglandin (PG) E2 biosynthesis. Pharmacological inhibitors of mPGES-1 are proposed as an alternative to nonsteroidal anti-inflammatory drugs. We recently presented the design and synthesis of a series of pirinixic acid derivatives that dually inhibit mPGES-1 and 5-lipoxygenase. Here, we investigated the mechanism of mPGES-1 inhibition, the selectivity profile, and the in vivo activity of α-(n-hexyl)- substituted pirinixic acid [YS121; 2-(4-chloro-6-(2,3-dimethylphenylamino) pyrimidin-2-ylthio)octanoic acid)] as a lead compound. In cell-free assays, YS121 inhibited human mPGES-1 in a reversible and noncompetitive manner (IC 50 = 3.4 μM), and surface plasmon resonance spectroscopy studies using purified in vitro-translated human mPGES-1 indicate direct, reversible, and specific binding to mPGES-1 (KD = 10-14 μM). In lipopolysaccharide-stimulated human whole blood, PGE2 formation was concentration dependently inhibited (IC50 =2 μM), whereas concomitant generation of the cyclooxygenase (COX)-2-derived thromboxane B2 and 6-keto PGF1α and the COX-1-derived 12(S)-hydroxy-5-cis-8,10- transheptadecatrienoic acid was not significantly reduced. In carrageenan-induced rat pleurisy, YS121 (1.5 mg/kg i.p.) blocked exudate formation and leukocyte infiltration accompanied by reduced pleural levels of PGE2 and leukotriene B4 but also of 6-keto PGF 1α. Taken together, these results indicate that YS121 is a promising inhibitor of mPGES-1 with anti-inflammatory efficiency in human whole blood as well as in vivo

    Integrative Processing of Touch and Affect in Social Perception: An fMRI Study

    Get PDF
    Social perception commonly employs multiple sources of information. The present study aimed at investigating the integrative processing of affective social signals. Task-related and task-free functional magnetic resonance imaging was performed in 26 healthy adult participants during a social perception task concerning dynamic visual stimuli simultaneously depicting facial expressions of emotion and tactile sensations that could be either congruent or incongruent. Confounding effects due to affective valence, inhibitory top–down influences, cross-modal integration, and conflict processing were minimized. The results showed that the perception of congruent, compared to incongruent stimuli, elicited enhanced neural activity in a set of brain regions including left amygdala, bilateral posterior cingulate cortex (PCC), and left superior parietal cortex. These congruency effects did not differ as a function of emotion or sensation. A complementary task-related functional interaction analysis preliminarily suggested that amygdala activity depended on previous processing stages in fusiform gyrus and PCC. The findings provide support for the integrative processing of social information about others’ feelings from manifold bodily sources (sensory-affective information) in amygdala and PCC. Given that the congruent stimuli were also judged as being more self-related and more familiar in terms of personal experience in an independent sample of participants, we speculate that such integrative processing might be mediated by the linking of external stimuli with self-experience. Finally, the prediction of task-related responses in amygdala by intrinsic functional connectivity between amygdala and PCC during a task-free state implies a neuro-functional basis for an individual predisposition for the integrative processing of social stimulus content

    Intrinsic Shapes of Empathy: Functional Brain Network Topology Encodes Intersubjective Experience and Awareness Traits

    Get PDF
    Trait empathy is an essential personality feature in the intricacy of typical social inclinations of individuals. Empathy is likely supported by multilevel neuronal network functioning, whereas local topological properties determine network integrity. In the present functional MRI study (N = 116), we aimed to trace empathic traits to the intrinsic brain network architecture. Empathy was conceived as composed of two dimensions within the concept of pre-reflective, intersubjective understanding. Vicarious experience consists of the tendency to resonate with the feelings of other individuals, whereas intuitive understanding refers to a natural awareness of others’ emotional states. Analyses of graph theoretical measures of centrality showed a relationship between the fronto-parietal network and psychometric measures of vicarious experience, whereas intuitive understanding was associated with sensorimotor and subcortical networks. Salience network regions could constitute hubs for information processing underlying both dimensions. The network properties related to empathy dimensions mainly concern inter-network information flow. Moreover, interaction effects implied several sex differences in the relationship between functional network organization and trait empathy. These results reveal that distinct intrinsic topological network features explain individual differences in separate dimensions of intersubjective understanding. The findings could help understand the impact of brain damage or stimulation through alterations of empathy-related network integrity

    Is There a Valence-Specific Pattern in Emotional Conflict in Major Depressive Disorder? An Exploratory Psychological Study

    Get PDF
    Objective: Patients with major depressive disorder (MDD) clinically exhibit a deficit in positive emotional processing and are often distracted by especially negative emotional stimuli. Such emotional-cognitive interference in turn hampers the cognitive abilities of patients in their ongoing task. While the psychological correlates of such emotional conflict have been well identified in healthy subjects, possible alterations of emotional conflict in depressed patients remain to be investigated. We conducted an exploratory psychological study to investigate emotional conflict in MDD. We also distinguished depression-related stimuli from negative stimuli in order to check whether the depression-related distractors will induce enhanced conflict in MDD. Methods: A typical word-face Stroop paradigm was adopted. In order to account for valence-specificities in MDD, we included positive and general negative as well as depression-related words in the study. Results: MDD patients demonstrated a specific pattern of emotional conflict clearly distinguishable from the healthy control group. In MDD, the positive distractor words did not significantly interrupt the processing of the negative target faces, while they did in healthy subjects. On the other hand, the depression-related distractor words induced significant emotional conflict to the positive target faces in MDD patients but not in the healthy control group. Conclusion: Our findings demonstrated for the first time an altered valence-specific pattern in emotional conflict in MD

    Grey and white matter correlates of recent and remote autobiographical memory retrieval:Insights from the dementias

    Get PDF
    The capacity to remember self-referential past events relies on the integrity of a distributed neural network. Controversy exists, however, regarding the involvement of specific brain structures for the retrieval of recently experienced versus more distant events. Here, we explored how characteristic patterns of atrophy in neurodegenerative disorders differentially disrupt remote versus recent autobiographical memory. Eleven behavioural-variant frontotemporal dementia, 10 semantic dementia, 15 Alzheimer's disease patients and 14 healthy older Controls completed the Autobiographical Interview. All patient groups displayed significant remote memory impairments relative to Controls. Similarly, recent period retrieval was significantly compromised in behavioural-variant frontotemporal dementia and Alzheimer's disease, yet semantic dementia patients scored in line with Controls. Voxel-based morphometry and diffusion tensor imaging analyses, for all participants combined, were conducted to investigate grey and white matter correlates of remote and recent autobiographical memory retrieval. Neural correlates common to both recent and remote time periods were identified, including the hippocampus, medial prefrontal, and frontopolar cortices, and the forceps minor and left hippocampal portion of the cingulum bundle. Regions exclusively implicated in each time period were also identified. The integrity of the anterior temporal cortices was related to the retrieval of remote memories, whereas the posterior cingulate cortex emerged as a structure significantly associated with recent autobiographical memory retrieval. This study represents the first investigation of the grey and white matter correlates of remote and recent autobiographical memory retrieval in neurodegenerative disorders. Our findings demonstrate the importance of core brain structures, including the medial prefrontal cortex and hippocampus, irrespective of time period, and point towards the contribution of discrete regions in mediating successful retrieval of distant versus recently experienced events
    • …
    corecore