12 research outputs found

    New Distributional Records of Some Minnesota Fishes

    Get PDF
    Minnesota is almost unique in that its waters drain by three divergent courses: the Red River to the Arctic, the Great Lakes to the Gulf of St. Lawrence and the Mississippi River to the Gulf of Mexico. The close proximity of the headwaters of these several drainages present opportunities for certain species to move from one basin to another. Species restricted to the Arctic basin have their southern limits in northern and western Minnesota. Many eastern and southern species have their northern and western limits within the state. In spite of the fact that intensive collecting has been carried on since 1890 by various workers new records or range extensions are made each year

    Habitat Specificity in Land Snails

    Get PDF

    Mutations disrupting neuritogenesis genes confer risk for cerebral palsy

    Get PDF
    In addition to commonly associated environmental factors, genomic factors may cause cerebral palsy. We performed whole-exome sequencing of 250 parent-offspring trios, and observed enrichment of damaging de novo mutations in cerebral palsy cases. Eight genes had multiple damaging de novo mutations; of these, two (TUBA1A and CTNNB1) met genome-wide significance. We identified two novel monogenic etiologies, FBXO31 and RHOB, and showed that the RHOB mutation enhances active-state Rho effector binding while the FBXO31 mutation diminishes cyclin D levels. Candidate cerebral palsy risk genes overlapped with neurodevelopmental disorder genes. Network analyses identified enrichment of Rho GTPase, extracellular matrix, focal adhesion and cytoskeleton pathways. Cerebral palsy risk genes in enriched pathways were shown to regulate neuromotor function in a Drosophila reverse genetics screen. We estimate that 14% of cases could be attributed to an excess of damaging de novo or recessive variants. These findings provide evidence for genetically mediated dysregulation of early neuronal connectivity in cerebral palsy

    Dissolved Oxygen and Thermal Regimes of a Ugandan Crater Lake

    No full text
    This paper quantifies the temporal pattern of thermal stratification and deoxygenation in Lake Nkuruba, a small (3 ha), deep (maximum depth = 38 m) crater lake in western Uganda. Dissolved oxygen penetrated to an average depth of 9 m and a maximum depth of 15 m below which the lake was permanently anoxic over the 2 years of study. Although surface oxygen levels were correlated with both surface water temperature and rainfall, seasonal cycles of dissolved oxygen were not well-defined and may have been obscured by the high frequency of short-term fluctuations and by inter-annual variations caused by shifts in rainfall. Surface water temperature averaged 23.3±0.7°C (S.D.) and varied directly with air temperature. Both diurnal changes and top-bottom temperature differentials were small averaging 1.7±0.7 °C and 1.6±0.8°C, respectively. Thermal stability ranged from 101.3 to 499.9 g-cm cm-2 and was positively related to surface water temperature suggesting that this small protected lake responds rapidly to short-term meteorological changes. Because contribution to the annual heat exchange cycle was confined to upper waters, the lake\u27s annual heat budget was low, 1,073.8 cal cm-2 yr-1. However, net primary productivity was relatively high averaging 1.3 g C m-2 d-1. The region where Lake Nkuruba is situated experienced a very strong earthquake (6.2 on the Richter scale) on 4 February, 1994. Subsequently, water levels dropped markedly in the lake, falling 3.14 m over a 5-month period

    Mutations disrupting neuritogenesis genes confer risk for cerebral palsy

    No full text
    Whole-exome sequencing of 250 parent-offspring trios identifies an enrichment of rare damaging de novo mutations in individuals with cerebral palsy and implicates genetically mediated dysregulation of early neuronal connectivity in the etiology of this disorder. In addition to commonly associated environmental factors, genomic factors may cause cerebral palsy. We performed whole-exome sequencing of 250 parent-offspring trios, and observed enrichment of damaging de novo mutations in cerebral palsy cases. Eight genes had multiple damaging de novo mutations; of these, two (TUBA1A and CTNNB1) met genome-wide significance. We identified two novel monogenic etiologies, FBXO31 and RHOB, and showed that the RHOB mutation enhances active-state Rho effector binding while the FBXO31 mutation diminishes cyclin D levels. Candidate cerebral palsy risk genes overlapped with neurodevelopmental disorder genes. Network analyses identified enrichment of Rho GTPase, extracellular matrix, focal adhesion and cytoskeleton pathways. Cerebral palsy risk genes in enriched pathways were shown to regulate neuromotor function in a Drosophila reverse genetics screen. We estimate that 14% of cases could be attributed to an excess of damaging de novo or recessive variants. These findings provide evidence for genetically mediated dysregulation of early neuronal connectivity in cerebral palsy.6 month embargo; published 28 September 2020This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Volcanology

    No full text
    corecore