742 research outputs found

    New Constraints on the Galactic Bar

    Full text link
    Previous work has related the Galactic Bar to structure in the local stellar velocity distribution. Here we show that the Bar also influences the spatial gradients of the velocity vector via the Oort constants. By numerical integration of test-particles we simulate measurements of the Oort C value in a gravitational potential including the Galactic Bar. We account for the observed trend that C is increasingly negative for stars with higher velocity dispersion. By comparing measurements of C with our simulations we improve on previous models of the Bar, estimating that the Bar pattern speed is Omega_b/Omega_0=1.87\pm0.04, where Omega_0 is the local circular frequency, and the Bar angle lies within 20<phi_0<45 deg. We find that the Galactic Bar affects measurements of the Oort constants A and B less than ~2 km/s/kpc for the hot stars.Comment: 4 pages, 2 figures, Accepted to ApJ Letters. Replaced with accepted versio

    Magnetorotational Instability in Liquid Metal Couette Flow

    Full text link
    Despite the importance of the magnetorotational instability (MRI) as a fundamental mechanism for angular momentum transport in magnetized accretion disks, it has yet to be demonstrated in the laboratory. A liquid sodium alpha-omega dynamo experiment at the New Mexico Institute of Mining and Technology provides an ideal environment to study the MRI in a rotating metal annulus (Couette flow). A local stability analysis is performed as a function of shear, magnetic field strength, magnetic Reynolds number, and turbulent Prandtl number. The later takes into account the minimum turbulence induced by the formation of an Ekman layer against the rigidly rotating end walls of a cylindrical vessel. Stability conditions are presented and unstable conditions for the sodium experiment are compared with another proposed MRI experiment with liquid gallium. Due to the relatively large magnetic Reynolds number achievable in the sodium experiment, it should be possible to observe the excitation of the MRI for a wide range of wavenumbers and further to observe the transition to the turbulent state.Comment: 12 pages, 22 figures, 1 table. To appear in the Astrophysical Journa

    Evolution and Nucleosynthesis of AGB stars in Three Magellanic Cloud Clusters

    Full text link
    We present stellar evolutionary sequences for asymptotic giant branch (AGB) stars in the Magellanic Cloud clusters NGC 1978, NGC 1846 and NGC 419. The new stellar models for the three clusters match the observed effective temperatures on the giant branches, the oxygen-rich to carbon-rich transition luminosities, and the AGB-tip luminosities. A major finding is that a large amount of convective overshoot (up to 3 pressure scale heights) is required at the base of the convective envelope during third dredge-up in order to get the correct oxygen-rich to carbon-rich transition luminosity. The stellar evolution sequences are used as input for detailed nucleosynthesis calculations. For NGC 1978 and NGC 1846 we compare our model results to the observationally derived abundances of carbon and oxygen. We find that additional mixing processes (extra-mixing) are required to explain the observed abundance patterns. For NGC 1846 we conclude that non-convective extra-mixing processes are required on both the RGB and the AGB, in agreement with previous studies. For NGC 1978 it is possible to explain the C/O and 12C/13C abundances of both the O-rich and the C-rich AGB stars by assuming that the material in the intershell region contains high abundances of both C and O. This may occur during a thermal pulse when convective overshoot at the inner edge of the flash-driven convective pocket dredges C and O from the core to the intershell. For NGC 419 we provide our predicted model abundance values although there are currently no published observed abundance studies for the AGB stars in this cluster.Comment: 16 figures, 3 tables, Accepted for publication in Ap

    Study of the impact of the post-MS evolution of the host star on the orbits of close-in planets. I. Sample definition and physical properties

    Full text link
    Context: To date, more than 30 planets have been discovered around giant stars, but only one of them has been found to be orbiting within 0.6 AU from the host star, in direct contrast to what is observed for FGK dwarfs. This result suggests that evolved stars destroy/engulf close-in planets during the red giant phase. Aims: We are conducting a radial velocity survey of 164 bright G and K giant stars in the southern hemisphere with the aim of studying the effect of the host star evolution on the inner structure of planetary systems. In this paper we present the spectroscopic atmospheric parameters (\Teff, \logg, ξ\xi, [Fe/H]) and the physical properties (mass, radius, evolutionary status) of the program stars. In addition, rotational velocities for all of our targets were derived. Methods: We used high resolution and high S/N spectra to measure the equivalent widths of many Fe{\sc\,i} and Fe{\sc\,ii} lines, which were used to derive the atmospheric parameters by imposing local thermodynamic and ionization equilibrium. The effective temperatures and metallicities were used, along with stellar evolutionary tracks to determine the physical properties and evolutionary status of each star. Results: We found that our targets are on average metal rich and they have masses between \sim\,1.0\,M_\odot and 3.5\,M_\odot. In addition, we found that 122 of our targets are ascending the RGB, while 42 of them are on the HB phase.Comment: Accepted for publication in A&

    The Herschel Planetary Nebula Survey (HerPlaNS) I. Data Overview and Analysis Demonstration with NGC 6781

    Get PDF
    This is the first of a series of investigations into far-IR characteristics of 11 planetary nebulae (PNs) under the Herschel Space Observatory Open Time 1 program, Herschel Planetary Nebula Survey (HerPlaNS). Using the HerPlaNS data set, we look into the PN energetics and variations of the physical conditions within the target nebulae. In the present work, we provide an overview of the survey, data acquisition and processing, and resulting data products. We perform (1) PACS/SPIRE broadband imaging to determine the spatial distribution of the cold dust component in the target PNs and (2) PACS/SPIRE spectral-energy-distribution (SED) and line spectroscopy to determine the spatial distribution of the gas component in the target PNs. For the case of NGC 6781, the broadband maps confirm the nearly pole-on barrel structure of the amorphous carbon-richdust shell and the surrounding halo having temperatures of 26-40 K. The PACS/SPIRE multi-position spectra show spatial variations of far-IR lines that reflect the physical stratification of the nebula. We demonstrate that spatially-resolved far-IR line diagnostics yield the (T_e, n_e) profiles, from which distributions of ionized, atomic, and molecular gases can be determined. Direct comparison of the dust and gas column mass maps constrained by the HerPlaNS data allows to construct an empirical gas-to-dust mass ratio map, which shows a range of ratios with the median of 195+-110. The present analysis yields estimates of the total mass of the shell to be 0.86 M_sun, consisting of 0.54 M_sun of ionized gas, 0.12 M_sun of atomic gas, 0.2 M_sun of molecular gas, and 4 x 10^-3 M_sun of dust grains. These estimates also suggest that the central star of about 1.5 M_sun initial mass is terminating its PN evolution onto the white dwarf cooling track.Comment: 27 pages, 16 figures, accepted for publication in A&

    VLTI observations of the dust geometry around R Coronae Borealis stars

    Get PDF
    We are investigating the formation and evolution of dust around the hydrogen-deficient supergiants known as R Coronae Borealis (RCB) stars. We aim to determine the connection between the probable merger past of these stars and their current dust-production activities. We carried out high-angular resolution interferometric observations of three RCB stars, namely RY Sgr, V CrA, and V854 Cen with the mid-IR interferometer, MIDI on the VLTI, using two telescope pairs. The baselines ranged from 30 to 60 m, allowing us to probe the dusty environment at very small spatial scales (~ 50 mas or 400 stellar radii). The observations of the RCB star dust environments were interpreted using both geometrical models and one-dimensional radiative transfer codes. From our analysis we find that asymmetric circumstellar material is apparent in RY Sgr, may also exist in V CrA, and is possible for V854 Cen. Overall, we find that our observations are consistent with dust forming in clumps ejected randomly around the RCB star so that over time they create a spherically symmetric distribution of dust. However, we conclude that the determination of whether there is a preferred plane of dust ejection must wait until a time series of observations are obtained.Comment: Accepted for publication in MNRAS; 14 pages, 10 figures, 6 table

    Direct detection of a magnetic field in the photosphere of the single M giant EK Boo: How common is magnetic activity among M giants?

    Full text link
    We study the fast rotating M5 giant EK Boo by means of spectropolarimetry to obtain direct and simultaneous measurements of both the magnetic field and activity indicators, in order to infer the origin of the activity in this fairly evolved giant. We used the new spectropolarimeter NARVAL at the Bernard Lyot Telescope (Observatoire du Pic du Midi, France) to obtain a series of Stokes I and Stokes V profiles for EK Boo. Using the Least Square Deconvolution technique we were able to detect the Zeeman signature of the magnetic field. We measured its longitudinal component by means of the averaged Stokes V and Stokes I profiles. The spectra also permitted us to monitor the CaII K&H chromospheric emission lines, which are well known as indicators of stellar magnetic activity. From ten observations obtained between April 2008 and March 2009, we deduce that EK Boo has a magnetic field, which varied in the range of -0.1 to -8 G. We also determined the initial mass and evolutionary stage of EK Boo, based on up-to-date stellar evolution tracks. The initial mass is in the range of 2.0-3.6 M_sun, and EK Boo is either on the asymptotic giant branch (AGB), at the onset of the thermal pulse phase, or at the tip of the first (or red) giant branch (RGB). The fast rotation and activity of EK Boo might be explained by angular momentum dredge-up from the interior, or by the merging of a binary. In addition, we observed eight other M giants, which are known as X-ray emitters, or to be rotating fast for their class. For one of these, beta And, presumably also an AGB star, we have a marginal detection of magnetic field, and a longitudinal component Bl of about 1G was measured. More observations like this will answer the question whether EK Boo is a special case, or whether magnetic activity is, rather, more common among M giants than expected.Comment: Accepted for publication in Astronomy & Astrophysics, 10 pages, 8 figure

    Evolution, nucleosynthesis and yields of low mass AGB stars at different metallicities (II): the FRUITY database

    Full text link
    By using updated stellar low mass stars models, we can systematically investigate the nucleosynthesis processes occurring in AGB stars, when these objects experience recurrent thermal pulses and third dredge-up episodes. In this paper we present the database dedicated to the nucleosynthesis of AGB stars: the FRUITY (FRANEC Repository of Updated Isotopic Tables & Yields) database. An interactive web-based interface allows users to freely download the full (from H to Bi) isotopic composition, as it changes after each third dredge-up episode and the stellar yields the models produce. A first set of AGB models, having masses in the range 1.5 < M/Msun < 3.0 and metallicities 1e-3 < Z < 2e-2, is discussed here. For each model, a detailed description of the physical and the chemical evolution is provided. In particular, we illustrate the details of the s-process and we evaluate the theoretical uncertainties due to the parametrization adopted to model convection and mass loss. The resulting nucleosynthesis scenario is checked by comparing the theoretical [hs/ls] and [Pb/hs] ratios to those obtained from the available abundance analysis of s-enhanced stars. On the average, the variation with the metallicity of these spectroscopic indexes is well reproduced by theoretical models, although the predicted spread at a given metallicity is substantially smaller than the observed one. Possible explanations for such a difference are briefly discussed. An independent check of the third dredge-up efficiency is provided by the C-stars luminosity function. Consequently, theoretical C-stars luminosity functions for the Galactic disk and the Magellanic Clouds have been derived. We generally find a good agreement with observations.Comment: Accepted for Publication on The Astrophysical Journal Supplement

    Post-Crisis Lesson for EMU Governance from the Principal-Agent Approach

    Full text link
    This paper contributes to the ongoing debate on fiscal consolidation and the questionable effectiveness of the Stability and Growth Pact by addressing the problem of economic governance in the EMU with a game-theoretic principal-agent approach. Following the theory of delegation, we develop a principal-multi agent model where the EMU authorities act as a collective principal that designs contracts for each of two agents that reflect Europe's "South" and "North". We investigate what happens when agents face hidden-information moral hazard problem and when they are able to coordinate their actions. Bearing in mind the applicability of incentive mechanisms, we discuss the optimal contracts for the principal and each of the agents. We prove that the most efficient solution consists of tailor-made contracts, according to which highly indebted countries must be offered strong incentive mechanisms in the form of substantial penalties but also rewards (e.g., preferential loans). We also stress the importance of taking into account positive spillover effects, which could be facilitated by economic integration and fiscal policy coordination between the EMU Members
    corecore