97 research outputs found
Intermediate to felsic middle crust in the accreted Talkeetna arc, the Alaska Peninsula and Kodiak Island, Alaska : an analogue for low-velocity middle crust in modern arcs
Author Posting. © American Geophysical Union, 2010. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Tectonics 29 (2010): TC3001, doi:10.1029/2009TC002541.Seismic profiles of several modern arcs have identified thick, low-velocity midcrustal layers (Vp = 6.0–6.5 km/s) that are interpreted to represent intermediate to felsic plutonic crust. The presence of this silicic crust is surprising given the mafic composition of most primitive mantle melts and could have important implications for the chemical evolution and bulk composition of arcs. However, direct studies of the middle crust are limited by the restricted plutonic exposures in modern arcs. The accreted Talkeetna arc, south central Alaska, exposes a faulted crustal section from residual subarc mantle to subaerial volcanic rocks of a Jurassic intraoceanic arc and is an ideal place to study the intrusive middle crust. Previous research on the arc, which has provided insight into a range of arc processes, has principally focused on western exposures of the arc in the Chugach Mountains. We present new U-Pb zircon dates, radiogenic isotope data, and whole-rock geochemical analyses that provide the first high-precision data on large intermediate to felsic plutonic exposures on Kodiak Island and the Alaska Peninsula. A single chemical abrasion–thermal ionization mass spectrometry analysis from the Afognak pluton yielded an age of 212.87 ± 0.19 Ma, indicating that the plutonic exposures on Kodiak Island represent the earliest preserved record of Talkeetna arc magmatism. Nine new dates from the extensive Jurassic batholith on the Alaska Peninsula range from 183.5 to 164.1 Ma and require a northward shift in the Talkeetna arc magmatic axis following initial emplacement of the Kodiak plutons, paralleling the development of arc magmatism in the Chugach and Talkeetna mountains. Radiogenic isotope data from the Alaska Peninsula and the Kodiak archipelago range from Nd(t) = 5.2 to 9.0 and 87Sr/86Srint = 0.703515 to 0.703947 and are similar to age-corrected data from modern intraoceanic arcs, suggesting that the evolved Alaska Peninsula plutons formed by extensive differentiation of arc basalts with little or no involvement of preexisting crustal material. The whole-rock geochemical data and calculated seismic velocities suggest that the Alaska Peninsula represents an analogue for the low-velocity middle crust observed in modern arcs. The continuous temporal record and extensive exposure of intermediate to felsic plutonic rocks in the Talkeetna arc indicate that evolved magmas are generated by repetitive or steady state processes and play a fundamental role in the growth and evolution of intraoceanic arcs
Low-volume intraplate volcanism in the Early/Middle Jurassic Pacific basin documented by accreted sequences in Costa Rica
Countless seamounts occur on Earth that can provide important constraints on intraplate volcanism and plate tectonics in the oceans, yet their nature and origin remain poorly known due to difficulties in investigating the deep ocean. We present here new lithostratigraphic, age and geochemical data from Lower/Middle Jurassic and Lower Cretaceous sequences in the Santa Rosa accretionary complex, Costa Rica, which offer a valuable opportunity to study a small-sized seamount from a subducted plate segment of the Pacific basin. The seamount is characterized by very unusual lithostratigraphic sequences with sills of potassic alkaline basalt emplaced within thick beds of radiolarite, basaltic breccia and hyaloclastite. An integration of new geochemical, biochronological and geochronological data with lithostratigraphic observations suggests that the seamount formed ~175 Ma ago on thick oceanic crust away from subduction zones and mid-ocean ridges. This seamount travelled ~65 Ma in the Pacific before accretion. It resembles lithologically and compositionally “petit-spot” volcanoes found off Japan, which form in response to plate flexure near subduction zones. Also, the composition of the sills and lava flows in the accreted seamount closely resembles that of potassic alkaline basalts produced by lithosphere cracking along the Line Islands chain. We hypothesize based on these observations, petrological constraints and formation of the accreted seamount coeval with the early stages of development of the Pacific plate that the seamount formed by extraction of small volumes of melt from the base of the lithosphere in response to propagating fractures at the scale of the Pacific basin
Сучасний стан і проблеми управління залізничним транспортом України
Проаналізовано стан і тенденції розвитку залізничного транспорту. Розглянуті основні завдання державного регулювання галузі.Проанализировано состояние и тенденции развития железнодорожного транспорта. Рассмотренны основные задания государственного регулирования отрасли.The condition and trends of railway transport has been anilized. The main tasks of state regulation of railway transport has been considereted
Subglacial drilling at Black Rapids Glacier, Alaska, U.S.A.: drilling method and sample descriptions
Middle Cretaceous silicic metavolcanic rocks in the Kings Canyon area, central Sierra Nevada, California
Metamorphosed silicic volcanic and hypabyssal rocks of middle Cretaceous (110 to 100 Ma) age occur in two roof pendants in the Kings Canyon area of the central Sierra Nevada. The metavolcanic remnants are similar in age to or are only slightly older than the voluminous enclosing batholithic rocks. Thus, high to surface levels of the batholith are implied for this region. This is interesting considering that deep-level (∼25 km) batholithic rocks of the same age as the metavolcanic rocks occur at the southern end of the range. Apparent structural continuity between these two regions suggests that the southern half of the range offers an oblique section through young (˜100 Ma) sialic crust.
The middle Cretaceous ages of the two volcanic sequences are indicated by U/Pb zircon and Rb/Sr bulk-rock isochron data. The two isotopic systems agree very closely with one another. Some of the U/Pb systems within the Boyden Cave pendant are discordant due to the inheritance or entrainment of Proterozoic zircon. This is a common phenomenon in volcanic or plutonic rocks erupted or emplaced within the Kings sequence metamorphic framework, a belt of distinct pendants with abundant continent-derived sedimentary protoliths. In conjunction with other petrochemical parameters, lavas and magmas of this framework domain are shown to be contaminated with sedimentary admixtures. The contaminated domain of the batholith reflects the bounds of the Kings sequence framework, which along its eastern margin probably represents a major pre-batholith to early batholith tectonic break.
The middle Cretaceous metavolcanic sequences were apparently built on two distinctly different early Mesozoic substrates separated by a major tectonic break. In the Boyden Cave pendant, the substrate may be represented by the shallow to deep-marine Kings sequence; to the east in the Oak Creek pendant, the substrate consists of a thick silicic ignimbrite sequence. In both areas the middle Cretaceous rocks and adjacent sequences share intense ductile deformation fabrics. Earlier views that considered these fabrics as an expression of Jurassic orogenic deformation are in error. Structural and age relations indicate that the fabrics developed between 105 and 100 Ma and during the medial phases of Cretaceous composite batholith growth
- …