30 research outputs found
History of the introduction of a species resembling the benthic foraminifera Nonionella stella in the Oslofjord (Norway): morphological, molecular and paleo-ecological evidences
Specimens resembling the benthic foraminifera Nonionella stella (Cushman and Moyer, 1930), a morphospecies originally described from the San Pedro Basin, California, USA, were observed for the first time in the Oslofjord (Norway) in 2012. This study investigates the Oslofjord Nonionella population in order to confirm its non-indigenous species (NIS) status and assess its introduction time. Morphological characterisation based on SEM imaging complemented by molecular identification using small subunit (SSU) rDNA sequencing and assessment of the recent past record (sediment core), were performed on material collected in the Oslofjord in 2016. Examination of the dead fauna showed that specimens resembling N. stella only appeared recently in the Oslofjord, confirming the NIS status of this population. Moreover, DNA results indicate that the Oslofjord specimens differ genetically from N. stella sampled in the Santa Barbara Basin (California USA). Hence, we propose to use the name Nonionella sp. T1 for the specimens sampled in the Oslofjord for the time being. In the southern part of the Skagerrak, specimens morphologically similar to Nonionella sp. T1 were reported as NIS in the Gullmar fjord (Sweden) in 2011 and in the Skagerrak in 2015. Molecular data indicate that the two populations from Gullmar- and Oslofjords are identical, based on their SSU rDNA sequences. In addition, analyses of foraminiferal dead assemblages suggest that the population from the Gullmar fjord settled prior to the Oslofjord population, i.e. ~ 1985 and about 2010, respectively. This implies that Nonionella sp. T1 may have been transported from Sweden to Norway by northward coastal currents.Publisher PDFPeer reviewe
Is the meiofauna a good indicator for climate change and anthropogenic impacts?
Our planet is changing, and one of the most pressing challenges facing the scientific community revolves around understanding how ecological communities respond to global changes. From coastal to deep-sea ecosystems, ecologists are exploring new areas of research to find model organisms that help predict the future of life on our planet. Among the different categories of organisms, meiofauna offer several advantages for the study of marine benthic ecosystems. This paper reviews the advances in the study of meiofauna with regard to climate change and anthropogenic impacts. Four taxonomic groups are valuable for predicting global changes: foraminifers (especially calcareous forms), nematodes, copepods and ostracods. Environmental variables are fundamental in the interpretation of meiofaunal patterns and multistressor experiments are more informative than single stressor ones, revealing complex ecological and biological interactions. Global change has a general negative effect on meiofauna, with important consequences on benthic food webs. However, some meiofaunal species can be favoured by the extreme conditions induced by global change, as they can exhibit remarkable physiological adaptations. This review highlights the need to incorporate studies on taxonomy, genetics and function of meiofaunal taxa into global change impact research
Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.
RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Sediment reworking of intertidal sediments by the benthic foraminifera Haynesina germanica : the importance of motion behaviour and densities
International audienceThis study aimed to describe for the first time the vertical motion behaviour of the intertidal foraminifera Haynesina germanica and its contribution to bioturbation. Its infaunal behaviour leads to the creation of a one-end tube within the first centimetre of sediment. In addition, a vertical trail following behaviour was described for the first time in foraminifera, which may be linked to the sustainability of the biogenic sedimentary structures. As a consequence, H. germanica produces a vertical transport of both mud and fine sediment fractions similarly to the sediment reworking mode reported for gallery-diffusor benthic species. This finding allows us to refine the bioturbating mode of H. germanica , previously classified as surficial biodiffusor. Furthermore, sediment reworking intensity appeared to be dependent on the foraminiferal density. H. germanica would adapt its motion behaviour to deal with the intra-specific competition for food and space that may occur when density increases. Consequently, this behavioural modification would affect both the species and the individual contribution to sediment reworking processes. In fine , sediment reworking in H. germanica may further contribute to the bioirrigation of intertidal sediments, which has implications for oxygen availability in sediments and on aerobic microbial processes involved in carbon and nutrient cycling at the sediment–water interface
Inter-specific and inter-individual trait variability matter in surface sediment reworking rates of intertidal benthic foraminifera
International audienc
Benthic foraminifera to assess ecological quality statuses: The case of salmon fish farming
International audienceThe “Rade de Cherbourg” (RdC, Cotentin) hosts the only marine salmon fish farm along the French coasts. High hydrodynamic regime would limit, there, organic matter (OM) accumulation directly under the cages, and enhance the transport of OM in the surrounding of the cages. This study was aiming at (1) monitoring the impact of a salmon fish farm on ecological quality statuses (EcoQs) of the RdC based on a benthic foraminiferal biotic index, (2) comparing EcoQs assessment results between foraminifera and macrofauna, and (3) in fine assessing the potential for benthic foraminifera to become an alternate biological quality element. In 2014 and 2015, bottom sediments of the RdC were sampled at 13 stations under and outside the farm for sedimentary (grain size and OM), and living foraminiferal and macrofaunal analyses. For benthic foraminifera, Exp(H’bc) was used to determine EcoQs, while H’, AMBI and BO2A indices were used for benthic macrofauna. Rank-frequency distributions (RFDs) were calculated for both groups. Ecological quality statuses based on foraminifera and macrofauna indicated a moderate degradation of the environmental conditions, shifting from excellent outside the farm to poor under the cages for foraminifera and from excellent to moderate for macrofauna. This study showed that benthic foraminifera are as reliable as macrofauna to assess EcoQs in the RdC. It offers interesting perspectives to monitor the health of marine systems based on benthic foraminifera. Furthermore, results obtained with RFDs suggested that this approach should be considered in the assessment of the good environmental status within the European marine strategic framework directive. Finally, diversity proved to be efficient in monitoring the health of the RdC, suggesting that it should not be set aside for the benefit of sensitivity-based indices
Avoiding late preterm deliveries to reduce neonatal complications: an 11-year cohort study
Abstract Background Late preterm (LPT) newborns, defined as those born between 34 0/7 and 36 6/7 gestational weeks, have higher short- and long-term morbidity and mortality than term infants (≥37 weeks). A categorization to justify a non-spontaneous LPT delivery has been proposed to distinguish evidence-based from non-evidence-based criteria. This study aims to describe rates and temporal trends of non-spontaneous LPT neonates delivered according to evidence-based or non-evidence-based criteria and to evaluate the number of avoidable LPT deliveries, including severe neonatal morbidity rates and associated risk factors. Methods Retrospective cohort study including all LPT neonates born at a Swiss university maternity unit between January 1, 2002 and December 31, 2012. Trends of LPT neonates and neonatal complications were assessed across time using Poisson regression and risk factors for neonatal complications by logistic regression. Results Among 40,609 singleton live births, 4223 (10.5%) were preterm and 2017 (4.9%) LPT. In the latter group, 26.2% were non-spontaneous (evidence-based: 12.0%; non-evidence-based: 14.2%). The most frequent indications for evidence-based non-spontaneous LPT delivery were severe preeclampsia (51.8%) and abnormal fetal tracing (24.7%). Indications for non-evidence-based non-spontaneous LPT deliveries were hemorrhage (36.2%) and mild preeclampsia (15.7%). LPT birth rates remained stable over time. The rate of neonatal complications after non-evidence-based LPT birth remained high over time (43.8% vs. 43.5% in 2002 and 2012, respectively; P = 0.645), whereas the annual proportion of neonatal complications overall showed a decreasing trend (from 38.0% in 2002 to 33.5% in 2012; P = 0.051). Conclusions LPT birth rates were stable over time, but neonatal complications remained high, particularly after non-evidence-indicated LPT birth. A total of 287 LPT births could have been potentially avoided if an evidence-based protocol for delivery indications had been used. Efforts should be made to avoid non-spontaneous LPT births in order to reduce neonatal complications
History of the introduction of a species resembling the benthic foraminifera <i>Nonionella stella</i> in the oslofjord (Norway):morphological, molecular and paleo-ecological evidences
Specimens resembling the benthic foraminifera Nonionella stella (Cushman and Moyer, 1930), a morphospecies originally described from the San Pedro Basin, California, USA, were observed for the first time in the Oslofjord (Norway) in 2012. This study investigates the Oslofjord Nonionella population in order to confirm its non-indigenous species (NIS) status and assess its introduction time. Morphological characterisation based on SEM imaging complemented by molecular identification using small subunit (SSU) rDNA sequencing and assessment of the recent past record (sediment core), were performed on material collected in the Oslofjord in 2016. Examination of the dead fauna showed that specimens resembling N. stella only appeared recently in the Oslofjord, confirming the NIS status of this population. Moreover, DNA results indicate that the Oslofjord specimens differ genetically from N. stella sampled in the Santa Barbara Basin (California USA). Hence, we propose to use the name Nonionella sp. T1 for the specimens sampled in the Oslofjord for the time being. In the southern part of the Skagerrak, specimens morphologically similar to Nonionella sp. T1 were reported as NIS in the Gullmar fjord (Sweden) in 2011 and in the Skagerrak in 2015. Molecular data indicate that the two populations from Gullmar- and Oslofjords are identical, based on their SSU rDNA sequences. In addition, analyses of foraminiferal dead assemblages suggest that the population from the Gullmar fjord settled prior to the Oslofjord population, i.e. ~ 1985 and about 2010, respectively. This implies that Nonionella sp. T1 may have been transported from Sweden to Norway by northward coastal currents
Single-celled bioturbators: benthic foraminifera mediate oxygen penetration and prokaryotic diversity in intertidal sediment
International audienceAbstract. Bioturbation processes influence particulate (sediment reworking) and dissolved (bioirrigation) fluxes at the sediment-water interface. Recent works showed that benthic foraminifera largely contribute to sediment reworking in intertidal mudflats; yet their role in bioirrigation processes remains unknown. In a laboratory experiment, we showed that foraminifera motion-behavior increased the oxygen penetration depth and decreased the total organic content. Their activity in the top 5 mm of the sediment also affected prokaryotic community structure. Indeed, in bioturbated sediment, bacterial richness was reduced and sulfate reducing taxa abundance in deeper layers was also reduced, probably inhibited by the larger oxygen penetration depth. Since foraminifera can modify both particulate and dissolved fluxes, their role as bioturbators can no longer be neglected. They are further able to mediate the prokaryotic community, suggesting that they play a major role in the benthic ecosystem functioning and may be the first described single-celled eukaryotic ecosystem engineers
Single-celled bioturbators: benthic foraminifera mediate oxygen penetration and prokaryotic diversity in intertidal sediment
Abstract. Bioturbation processes influence particulate (sediment reworking) and dissolved (bioirrigation) fluxes at the sediment–water interface. Recent works showed that benthic foraminifera largely contribute to sediment reworking in intertidal mudflats, yet their role in bioirrigation processes remains unknown. In a laboratory experiment, we showed that foraminifera motion behaviour increased the oxygen penetration depth and decreased the total organic content. Their activity in the top 5 mm of the sediment also affected prokaryotic community structure. Indeed, in bioturbated sediment, bacterial richness was reduced, and sulfate-reducing taxa abundance in deeper layers was also reduced, probably inhibited by the larger oxygen penetration depth. Since foraminifera can modify both particulate and dissolved fluxes, their role as bioturbators can no longer be neglected. They are further able to mediate the prokaryotic community, suggesting that they play a major role in the benthic ecosystem functioning and may be the first described single-celled eukaryotic ecosystem engineers