23 research outputs found

    Changes in synaptic transmission and protein expression in the brains of adult offspring after prenatal inhibition of the kynurenine pathway

    Get PDF
    During early brain development, N-methyl-d-aspartate (NMDA) receptors are involved in cell migration, neuritogenesis, axon guidance and synapse formation, but the mechanisms which regulate NMDA receptor density and function remain unclear. The kynurenine pathway of tryptophan metabolism includes an agonist (quinolinic acid) and an antagonist (kynurenic acid) at NMDA receptors and we have previously shown that inhibition of the pathway using the kynurenine-3-monoxygenase inhibitor Ro61-8048 in late gestation produces rapid changes in protein expression in the embryos and effects on synaptic transmission lasting until postnatal day 21 (P21). The present study sought to determine whether any of these effects are maintained into adulthood. After prenatal injections of Ro61-8048 the litter was allowed to develop to P60 when some offspring were euthanized and the brains removed for examination. Analysis of protein expression by Western blotting revealed significantly reduced expression of the GluN2A subunit (32%) and the morphogenetic protein sonic hedgehog (31%), with a 29% increase in the expression of doublecortin, a protein associated with neurogenesis. No changes were seen in mRNA abundance using quantitative real-time polymerase chain reaction. Neuronal excitability was normal in the CA1 region of hippocampal slices but paired-pulse stimulation revealed less inhibition at short interpulse intervals. The amount of long-term potentiation was decreased by 49% in treated pups and recovery after low-frequency stimulation was delayed. The results not only strengthen the view that basal, constitutive kynurenine metabolism is involved in normal brain development, but also show that changes induced prenatally can affect the brains of adult offspring and those changes are quite different from those seen previously at weaning (P21). Those changes may be mediated by altered expression of NMDAR subunits and sonic hedgehog

    Re-exploration of the PHCCC Scaffold: Discovery of Improved Positive Allosteric Modulators of mGluR4

    No full text
    [Image: see text] This paper describes a detailed structure−activity relationship (SAR) analysis of the metabotropic glutamate receptor 4 (mGluR4) positive allosteric modulator, (−)-N-phenyl-7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxamide (PHCCC). We have now developed compounds with improved potency and efficacy; in addition, compounds are presented that show selectivity for mGluR4 versus the other mGluR subtypes

    Synthesis and SAR of a novel positive allosteric modulator (PAM) of the metabotropic glutamate receptor 4 (mGluR4)

    No full text
    This Letter describes the synthesis and SAR of the novel positive allosteric modulator, VU0155041, a compound that has shown in vivo efficacy in rodent models of Parkinson's disease. The synthesis takes advantage of an iterative parallel synthesis approach to rapidly synthesize and evaluate a number of analogs of VU0155041

    Discovery and Development of a Potent and Highly Selective Small Molecule Muscarinic Acetylcholine Receptor Subtype I (mAChR 1 or M-1) Antagonist In Vitro and In Vivo Probe

    No full text
    This article describes the discovery and development of the first highly selective, small molecule antagonist of the muscarinic acetylcholine receptor subtype I (mAChR1 or M(1)). An M(1) functional, cell-based calcium-mobilization assay identified three distinct chemical series with initial selectivity for M(1) versus M(4). An iterative parallel synthesis approach was employed to optimize all three series in parallel, which led to the development of novel microwave-assisted chemistry and provided important take home lessons for probe development projects. Ultimately, this effort produced VU0255035, a potent (IC(50) = 130 nM) and selective (>75-fold vs. M(2)-M(5) and > 10 μM vs. a panel of 75 GPCRs, ion channels and transporters) small molecule M(1) antagonist. Further profiling demonstrated that VU0255035 was centrally penetrant (Brain(AUC)/Plasma(AUC) of 0.48) and active in vivo, rendering it acceptable as both an in vitro and in vivo MLSCN/ MLPCN probe molecule for studying and dissecting M(1) function

    Histological characteristics of the corpus luteum of Nelore cows in the first, second and third trimester of pregnancy

    No full text
    Foram avaliadas características morfológicas do corpo lúteo de 48 vacas Nelore gestantes obtidos de abatedouros. Os ovários com o corpo lúteo foram coletados, identificados e divididos em três grupos, considerando o estágio da gestação determinado pelo tamanho do feto: Grupo I - onze animais com gestação até 90 dias; Grupo 2 - vinte animais com gestação de 90 a 180 dias, e Grupo 3 - 17 animais com gestação de 180 a 261 dias. Todos os corpos lúteos foram dissecados, submetidos a processamento histológico e avaliados utilizando microscopia de luz. As características morfológicas das células luteais esteroidogênicas não mudou durante a gestação. Porém, foi observado um aumento de tecido conjuntivo, fibroblastos e matriz extracelular durante o final da gestação. Células em degeneração foram observadas em todos os períodos da gestação, mas com maior intensidade no fim do terceiro trimestre. Grânulos foram observados após a coloração com Tricrômico de Gomory e Xylidine Ponceau, caracterizados como grânulos de proteína. Nenhuma explicação foi encontrada na literatura para coloração de grânulos pelo Tricrômico de Gomory
    corecore