283 research outputs found

    A Deep Chandra Observation of Kepler's Supernova Remnant: A Type Ia Event with Circumstellar Interaction

    Full text link
    We present initial results of a 750 ks Chandra observation of the remnant of Kepler's supernova of AD 1604. The strength and prominence of iron emission, together with the absence of O-rich ejecta, demonstrate that Kepler resulted from a thermonuclear supernova, even though evidence for circumstellar interaction is also strong. We have analyzed spectra of over 100 small regions, and find that they fall into three classes. (1) The vast majority show Fe L emission between 0.7 and 1 keV and Si and S K alpha emission; we associate these with shocked ejecta. A few of these are found at or beyond the mean blast wave radius. (2) A very few regions show solar O/Fe abundance rations; these we associate with shocked circumstellar medium (CSM). Otherwise O is scarce. (3) A few regions are dominated by continuum, probably synchrotron radiation. Finally, we find no central point source, with a limit about 100 times fainter than the central object in Cas A. The evidence that the blast wave is interacting with CSM may indicate a Ia explosion in a more massive progenitor.Comment: Accepted by ApJ Letter

    Supernova Remnants in the Magellanic Clouds. VI. The DEML316 Supernova Remnants

    Full text link
    The DEML316 system contains two shells, both with the characteristic signatures of supernova remnants (SNRs). We analyze Chandra and XMM-Newton data for DEML316, investigating its spatial and spectral X-ray features. Our Chandra observations resolve the structure of the northeastern SNR (Shell A) as a bright inner ring and a set of "arcs" surrounded by fainter diffuse emission. The spectrum is well fit by a thermal plasma model with temperature ~1.4 keV; we do not find significant spectral differences for different regions of this SNR. The southwestern SNR (Shell B) exhibits an irregular X-ray outline, with a brighter interior ring of emission including a bright knot of emission. Overall the emission of the SNR is well described by a thermal plasma of temperature ~0.6 keV. The Bright Knot, however, is spectrally distinct from the rest of the SNR, requiring the addition of a high-energy spectral component consistent with a power-law spectrum of photon index 1.6--1.8. We confirm the findings of Nishiuchi et al. (2001) that the spectra of these shells are notably different, with Shell A requiring a high iron abundance for a good spectral fit, implying a Type Ia origin. We further explicitly compare abundance ratios to model predictions for Type Ia and Type II supernovae. The low ratios for Shell A (O/Fe of 1.5 and Ne/Fe of 0.2) and the high ratios for Shell B (O/Fe of 30--130 and Ne/Fe of 8--16) are consistent with Type Ia and Type II origins, respectively. The difference between the SNR progenitor types casts some doubt on the suggestion that these SNRs are interacting with one another.Comment: Accepted for ApJ v. 635 (December issue

    The Milky Way in X-rays for an outside observer: Log(N)-Log(S) and Luminosity Function of X-ray binaries from RXTE/ASM data

    Get PDF
    We study the Log(N)-Log(S) and X-ray luminosity function in the 2-10 keV energy band, and the spatial (3-D) distribution of bright, log(L_X) > 34-35 erg/s, X-ray binaries in the Milky Way. In agreement with theoretical expectations and earlier results we found significant differences between the spatial distributions of low (LMXB) and high (HMXB) mass X-ray binaries. The volume density of LMXB sources peaks strongly at the Galactic Bulge. HMXBs tend to avoid the inner 3-4 kpc of the Galaxy, HMXBs are more concentrated towards the Galactic Plane and show clear signatures of the spiral structure in their spatial distribution. LMXB sources have a flatter Log(N)-Log(S) distribution and luminosity function than HMXBs. The integrated 2-10 keV luminosities of X-ray binaries, averaged over 1996--2000, are 2-3 * 10^39 (LMXB) and 2-3 * 10^38 (HMXB) erg/s. Normalised to the stellar mass and the star formation rate, respectively, these correspond to 5 * 10^28 erg/s/M_sol for LMXBs and 5 * 10^37 erg/s/(M_sol/yr) for HMXBs. Due to the shallow slopes of the luminosity functions the integrated emission of X-ray binaries is dominated by the 5-10 most luminous sources which determine the appearance of the Milky Way in the standard X-ray band for an outside observer. In particular variability of individual sources or an outburst of a bright transient source can increase the integrated luminosity of the Milky Way by as much as a factor of ~2. Although the average LMXB luminosity function shows a break near the Eddington luminosity for a 1.4 M_sol neutron star, at least 11 sources showed episodes of super-Eddington luminosity during ASM observations. We provide the maps of distribution of X-ray binaries in the Milky Way in various projections, which can be compared to images of nearby galaxies taken by CHANDRA and XMM-Newton.Comment: 23 pages, 19 figures, accepted by A&

    Stress factors and stress management interventions: the heuristic of “bottom up” an update from a systematic review

    Get PDF
    Organizations have increasingly sought to adopt innovative interventions to prevent stress-related issues. In the field of manufacturing, however, the effectiveness of these interventions remains unclear because a systematic and specific review of existing primary evidence has not been undertaken. The present systematic literature review sought to address the foregoing limitation in the literature by summarizing the main source of stress and effectiveness of stress management interventions as grounded in the context of manufacturing. Our review was limited to only randomized clinical trials (RCTs) and quasi-experimental studies and concerned employees from the manufacturing sector. Twenty-two studies on primary, secondary and tertiary interventions across four continents (Asia, Europe, USA and South America) were selected and analyzed in terms of stress factors, methodological properties and outcomes. Most of these were RCT studies (68% Vs 32%) with a majority of secondary interventions (N = 11, 50%), followed by primary (N = 5, 22%), tertiary (N = 3, 13%), and two (9%) mixed interventions. The main outcomes included an improvement of psychological wellbeing, decreased stress reactivity and an increment of general health. There was a predominance of interventions utilizing skills programs and/or cognitive-behavioral techniques. The main source of stress reported related to professional identity, organizational deficiencies, interpersonal conflicts, physical complaints and poor work environment. Taken together, the findings provide important theoretical and practical implications for advancing the study of stress factors and the use of stress management interventions in the workplace. The prerequisite for a successful intervention is to address the real problems experienced by professionals and help them to cope with their difficult situations. The strategy of “bottom-up” offers a potential means of enhancing employees’ health and well-being; however, the most effective means of implementing these interventions needs to be understood better

    A Histone-Like Protein of Mycobacteria Possesses Ferritin Superfamily Protein-Like Activity and Protects against DNA Damage by Fenton Reaction

    Get PDF
    Iron is an essential metal for living organisms but its level must be strictly controlled in cells, because ferrous ion induces toxicity by generating highly active reactive oxygen, hydroxyl radicals, through the Fenton reaction. In addition, ferric ion shows low solubility under physiological conditions. To overcome these obstacles living organisms possess Ferritin superfamily proteins that are distributed in all three domains of life: bacteria, archaea, and eukaryotes. These proteins minimize hydroxyl radical formation by ferroxidase activity that converts Fe2+ into Fe3+ and sequesters iron by storing it as a mineral inside a protein cage. In this study, we discovered that mycobacterial DNA-binding protein 1 (MDP1), a histone-like protein, has similar activity to ferritin superfamily proteins. MDP1 prevented the Fenton reaction and protects DNA by the ferroxidase activity. The Km values of the ferroxidase activity by MDP1 of Mycobacterium bovis bacillus Calmette-Guérin (BCG-3007c), Mycobacterium tuberculosis (Rv2986c), and Mycobacterium leprae (ML1683; ML-LBP) were 0.292, 0.252, and 0.129 mM, respectively. Furthermore, one MDP1 molecule directly captured 81.4±19.1 iron atoms, suggesting the role of this protein in iron storage. This study describes for the first time a ferroxidase-iron storage protein outside of the ferritin superfamily proteins and the protective role of this bacterial protein from DNA damage

    The Tetraspanins CD9 and CD81 Regulate CD9P1-Induced Effects on Cell Migration

    Get PDF
    CD9P-1 is a cell surface protein with immunoglobulin domains and an unknown function that specifically associates with tetraspanins CD9 and CD81. Overexpression of CD9P-1 in HEK-293 cells induces dramatic changes in cell spreading and migration on various matrices. Experiments using time-lapse videomicroscopy revealed that CD9P-1 expression has led to higher cell motility on collagen I but lower motility on fibronectin through a β1-integrins dependent mechanism. On collagen I, the increase in cell motility induced by CD9P-1 expression was found to involve integrin α2β1 and CD9P-1 was observed to associate with this collagen receptor. The generation of CD9P-1 mutants demonstrated that the transmembrane and the cytoplasmic domains are necessary for inducing effects on cell motility. On the other hand, expression of tetraspanins CD9 or CD81 was shown to reverse the effects of CD9P-1 on cell motility on collagen I or fibronectin with a concomitant association with CD9P-1. Thus, the ratio of expression levels between CD9P-1 and its tetraspanin partners can regulate cell motility

    Time-Lapse Analysis and Mathematical Characterization Elucidate Novel Mechanisms Underlying Muscle Morphogenesis

    Get PDF
    Skeletal muscle morphogenesis transforms short muscle precursor cells into long, multinucleate myotubes that anchor to tendons via the myotendinous junction (MTJ). In vertebrates, a great deal is known about muscle specification as well as how somitic cells, as a cohort, generate the early myotome. However, the cellular mechanisms that generate long muscle fibers from short cells and the molecular factors that limit elongation are unknown. We show that zebrafish fast muscle fiber morphogenesis consists of three discrete phases: short precursor cells, intercalation/elongation, and boundary capture/myotube formation. In the first phase, cells exhibit randomly directed protrusive activity. The second phase, intercalation/elongation, proceeds via a two-step process: protrusion extension and filling. This repetition of protrusion extension and filling continues until both the anterior and posterior ends of the muscle fiber reach the MTJ. Finally, both ends of the muscle fiber anchor to the MTJ (boundary capture) and undergo further morphogenetic changes as they adopt the stereotypical, cylindrical shape of myotubes. We find that the basement membrane protein laminin is required for efficient elongation, proper fiber orientation, and boundary capture. These early muscle defects in the absence of either lamininβ1 or lamininγ1 contrast with later dystrophic phenotypes in lamininα2 mutant embryos, indicating discrete roles for different laminin chains during early muscle development. Surprisingly, genetic mosaic analysis suggests that boundary capture is a cell-autonomous phenomenon. Taken together, our results define three phases of muscle fiber morphogenesis and show that the critical second phase of elongation proceeds by a repetitive process of protrusion extension and protrusion filling. Furthermore, we show that laminin is a novel and critical molecular cue mediating fiber orientation and limiting muscle cell length

    Remodeling of extracellular matrix by normal and tumor-associated fibroblasts promotes cervical cancer progression

    Get PDF
    Background: Comparison of tissue microarray results of 29 cervical cancer and 27 normal cervix tissue samples using immunohistochemistry revealed considerable reorganization of the fibrillar stroma of these tumors. Preliminary densitometry analysis of laminin-1, α -smooth muscle actin (SMA) and fibronectin immunostaining demonstrated 3.8-fold upregulation of laminin-1 and 5.2-fold increase of SMA in the interstitial stroma, indicating that these proteins and the activated fibroblasts play important role in the pathogenesis of cervical cancer. In the present work we investigated the role of normal and tumor-associated fibroblasts. Methods: In vitro models were used to throw light on the multifactorial process of tumor-stroma interaction, by means of studying the cooperation between tumor cells and fibroblasts. Fibroblasts from normal cervix and cervical cancers were grown either separately or in co-culture with CSCC7 cervical cancer cell line. Changes manifest in secreted glycoproteins, integrins and matrix metallo-proteases (MMPs) were explored. Results: While normal fibroblasts produced components of interstitial matrix and TGF- β 1 that promoted cell proliferation, cancer-associated fibroblasts (CAFs) synthesized ample amounts of laminin-1. The following results support the significance of laminin-1 in the invasion of CSCC7 cells: 1.) Tumor-associated fibroblasts produced more laminin-1 and less components of fibrillar ECM than normal cells; 2.) The production of laminin chains was further increased when CSCC7 cells were grown in co-culture with fibroblasts; 3.) CSCC7 cells were capable of increasing their laminin production; 4.) Tumor cells predominantly expressed integrin α 6 β 4 laminin receptors and migrated towards laminin. The integrin profile of both normal and tumor-associated fibroblasts was similar, expressing receptors for fibronectin, vitronectin and osteopontin. MMP-7 secreted by CSCC7 cells was upregulated by the presence of normal fibroblasts, whereas MMP-2 produced mainly by fibroblasts was activated in the presence of CSCC7 cells. Conclusions: Our results indicate that in addition to degradation of the basement membrane, invasion of cervical cancer is accomplished by the remodeling of the interstitial stroma, which process includes decrease and partial replacement of fibronectin and collagens by a laminin-rich matrix
    corecore