slides

Supernova Remnants in the Magellanic Clouds. VI. The DEML316 Supernova Remnants

Abstract

The DEML316 system contains two shells, both with the characteristic signatures of supernova remnants (SNRs). We analyze Chandra and XMM-Newton data for DEML316, investigating its spatial and spectral X-ray features. Our Chandra observations resolve the structure of the northeastern SNR (Shell A) as a bright inner ring and a set of "arcs" surrounded by fainter diffuse emission. The spectrum is well fit by a thermal plasma model with temperature ~1.4 keV; we do not find significant spectral differences for different regions of this SNR. The southwestern SNR (Shell B) exhibits an irregular X-ray outline, with a brighter interior ring of emission including a bright knot of emission. Overall the emission of the SNR is well described by a thermal plasma of temperature ~0.6 keV. The Bright Knot, however, is spectrally distinct from the rest of the SNR, requiring the addition of a high-energy spectral component consistent with a power-law spectrum of photon index 1.6--1.8. We confirm the findings of Nishiuchi et al. (2001) that the spectra of these shells are notably different, with Shell A requiring a high iron abundance for a good spectral fit, implying a Type Ia origin. We further explicitly compare abundance ratios to model predictions for Type Ia and Type II supernovae. The low ratios for Shell A (O/Fe of 1.5 and Ne/Fe of 0.2) and the high ratios for Shell B (O/Fe of 30--130 and Ne/Fe of 8--16) are consistent with Type Ia and Type II origins, respectively. The difference between the SNR progenitor types casts some doubt on the suggestion that these SNRs are interacting with one another.Comment: Accepted for ApJ v. 635 (December issue

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020