1,278 research outputs found

    Testing a Complex, Real-Time Management Information System

    Get PDF
    Engineerin

    Ly-alpha emitters: blue dwarfs or supermassive ULIRGs? Evidence for a transition with redshift

    Full text link
    The traditional view that Ly-alpha emission and dust should be mutually exclusive has been questioned more and more often; most notably, the observations of Ly-alpha emission from ULIRGs seem to counter this view. In this paper we seek to address the reverse question. How large a fraction of Ly-alpha selected galaxies are ULIRGs? Using two samples of 24/25 Ly-alpha emitting galaxies at z = 0.3/2.3, we perform this test, including results at z = 3.1, and find that, whereas the ULIRG fraction at z = 3.1 is very small, it systematically increases towards lower redshifts. There is a hint that this evolution may be quite sudden and that it happens around a redshift of z ~ 2.5. After measuring the infrared luminosities of the Ly-alpha emitters, we find that they are in the normal to ULIRG range in the lower redshift sample, while the higher redshift galaxies all have luminosities in the ULIRG category. The Ly-alpha escape fractions for these infrared bright galaxies are in the range 1-100 % in the z = 0.3 galaxies, but are very low in the z = 2.3 galaxies, 0.4 % on average. The unobscured star formation rates are very high, ranging from 500 to more than 5000 M_sun/yr, and the dust attenuation derived are in the range 0.0 < A_V < 3.5.Comment: 5 pages, 5 figures, 1 table, published in A&A, 508, L2

    Cone-setting in spruce is regulated by conserved elements of the age-dependent flowering pathway

    Get PDF
    Reproductive phase change is well characterized in angiosperm model species, but less studied in gymnosperms. We utilize the early cone-setting acrocona mutant to study reproductive phase change in the conifer Picea abies (Norway spruce), a gymnosperm. The acrocona mutant frequently initiates cone-like structures, called transition shoots, in positions where wild-type P. abies always produces vegetative shoots. We collect acrocona and wild-type samples, and RNA-sequence their messenger RNA (mRNA) and microRNA (miRNA) fractions. We establish gene expression patterns and then use allele-specific transcript assembly to identify mutations in acrocona. We genotype a segregating population of inbred acrocona trees. A member of the SQUAMOSA BINDING PROTEIN-LIKE (SPL) gene family, PaSPL1, is active in reproductive meristems, whereas two putative negative regulators of PaSPL1, miRNA156 and the conifer specific miRNA529, are upregulated in vegetative and transition shoot meristems. We identify a mutation in a putative miRNA156/529 binding site of the acrocona PaSPL1 allele and show that the mutation renders the acrocona allele tolerant to these miRNAs. We show co-segregation between the early cone-setting phenotype and trees homozygous for the acrocona mutation. In conclusion, we demonstrate evolutionary conservation of the age-dependent flowering pathway and involvement of this pathway in regulating reproductive phase change in the conifer P. abies

    Bridging Time Scales in Cellular Decision Making with a Stochastic Bistable Switch

    Get PDF
    Cellular transformations which involve a significant phenotypical change of the cell's state use bistable biochemical switches as underlying decision systems. In this work, we aim at linking cellular decisions taking place on a time scale of years to decades with the biochemical dynamics in signal transduction and gene regulation, occuring on a time scale of minutes to hours. We show that a stochastic bistable switch forms a viable biochemical mechanism to implement decision processes on long time scales. As a case study, the mechanism is applied to model the initiation of follicle growth in mammalian ovaries, where the physiological time scale of follicle pool depletion is on the order of the organism's lifespan. We construct a simple mathematical model for this process based on experimental evidence for the involved genetic mechanisms. Despite the underlying stochasticity, the proposed mechanism turns out to yield reliable behavior in large populations of cells subject to the considered decision process. Our model explains how the physiological time constant may emerge from the intrinsic stochasticity of the underlying gene regulatory network. Apart from ovarian follicles, the proposed mechanism may also be of relevance for other physiological systems where cells take binary decisions over a long time scale.Comment: 14 pages, 4 figure

    Isolation of a matrix that binds medial Golgi enzymes

    Full text link

    An Ordered Inheritance Strategy for the Golgi Apparatus: Visualization of Mitotic Disassembly Reveals a Role for the Mitotic Spindle

    Get PDF
    During mitosis, the ribbon of the Golgi apparatus is transformed into dispersed tubulo-vesicular membranes, proposed to facilitate stochastic inheritance of this low copy number organelle at cytokinesis. Here, we have analyzed the mitotic disassembly of the Golgi apparatus in living cells and provide evidence that inheritance is accomplished through an ordered partitioning mechanism. Using a Sar1p dominant inhibitor of cargo exit from the endoplasmic reticulum (ER), we found that the disassembly of the Golgi observed during mitosis or microtubule disruption did not appear to involve retrograde transport of Golgi residents to the ER and subsequent reorganization of Golgi membrane fragments at ER exit sites, as has been suggested. Instead, direct visualization of a green fluorescent protein (GFP)-tagged Golgi resident through mitosis showed that the Golgi ribbon slowly reorganized into 1–3-μm fragments during G2/early prophase. A second stage of fragmentation occurred coincident with nuclear envelope breakdown and was accompanied by the bulk of mitotic Golgi redistribution. By metaphase, mitotic Golgi dynamics appeared to cease. Surprisingly, the disassembly of mitotic Golgi fragments was not a random event, but involved the reorganization of mitotic Golgi by microtubules, suggesting that analogous to chromosomes, the Golgi apparatus uses the mitotic spindle to ensure more accurate partitioning during cytokinesis

    Relating data—parallelism and (and—) parallelism in logic programs

    Get PDF
    Much work has been done in the áreas of and-parallelism and data parallelism in Logic Programs. Such work has proceeded to a certain extent in an independent fashion. Both types of parallelism offer advantages and disadvantages. Traditional (and-) parallel models offer generality, being able to exploit parallelism in a large class of programs (including that exploited by data parallelism techniques). Data parallelism techniques on the other hand offer increased performance for a restricted class of programs. The thesis of this paper is that these two forms of parallelism are not fundamentally different and that relating them opens the possibility of obtaining the advantages of both within the same system. Some relevant issues are discussed and solutions proposed. The discussion is illustrated through visualizations of actual parallel executions implementing the ideas proposed

    Differences in the haematological profile of healthy 70 year old men and women: normal ranges with confirmatory factor analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Reference ranges are available for different blood cell counts. These ranges treat each cell type independently and do not consider possible correlations between cell types.</p> <p>Methods</p> <p>Participants were identified from the Community Health Index as survivors of the 1947 Scottish Mental Survey, all born in 1936, who were resident in Lothian (potential n = 3,810) and invited to participate in the study. Those who consented were invited to attend a Clinical Research Facility where, amongst other assessments, blood was taken for full blood count. First we described cell count data and bivariate correlations. Next we performed principal components analysis to identify common factors. Finally we performed confirmatory factor analysis to evaluate suitable models explaining relationships between cell counts in men and women.</p> <p>Results</p> <p>We examined blood cell counts in 1027 community-resident people with mean age 69.5 (range 67.6-71.3) years. We determined normal ranges for each cell type using Q-Q plots which showed that these ranges were significantly different between men and women for all cell types except basophils. We identified three principal components explaining around 60% of total variance of cell counts. Varimax rotation indicated that these could be considered as erythropoietic, leukopoietic and thrombopoietic factors. We showed that these factors were distinct for men and women by confirmatory factor analysis: in men neutrophil count was part of a 'thrombopoietic' trait whereas for women it was part of a 'leukopoietic' trait.</p> <p>Conclusions</p> <p>First, normal ranges for haematological indices should be sex-specific; at present this only pertains to those associated with erythrocytes. Second, differences between individuals across a range of blood cell counts can be explained to a considerable extent by three major components, but these components are not the same in men and women.</p
    corecore