Cellular transformations which involve a significant phenotypical change of
the cell's state use bistable biochemical switches as underlying decision
systems. In this work, we aim at linking cellular decisions taking place on a
time scale of years to decades with the biochemical dynamics in signal
transduction and gene regulation, occuring on a time scale of minutes to hours.
We show that a stochastic bistable switch forms a viable biochemical mechanism
to implement decision processes on long time scales. As a case study, the
mechanism is applied to model the initiation of follicle growth in mammalian
ovaries, where the physiological time scale of follicle pool depletion is on
the order of the organism's lifespan. We construct a simple mathematical model
for this process based on experimental evidence for the involved genetic
mechanisms. Despite the underlying stochasticity, the proposed mechanism turns
out to yield reliable behavior in large populations of cells subject to the
considered decision process. Our model explains how the physiological time
constant may emerge from the intrinsic stochasticity of the underlying gene
regulatory network. Apart from ovarian follicles, the proposed mechanism may
also be of relevance for other physiological systems where cells take binary
decisions over a long time scale.Comment: 14 pages, 4 figure