33 research outputs found
Machine Learning and Pathway Analysis-Based Discovery of Metabolomic Markers Relating to Chronic Pain Phenotypes
Recent scientific evidence suggests that chronic pain phenotypes are reflected in metabolomic changes. However, problems associated with chronic pain, such as sleep disorders or obesity, may complicate the metabolome pattern. Such a complex phenotype was investigated to identify common metabolomics markers at the interface of persistent pain, sleep, and obesity in 71 men and 122 women undergoing tertiary pain care. They were examined for patterns in d = 97 metabolomic markers that segregated patients with a relatively benign pain phenotype (low and little bothersome pain) from those with more severe clinical symptoms (high pain intensity, more bothersome pain, and co-occurring problems such as sleep disturbance). Two independent lines of data analysis were pursued. First, a data-driven supervised machine learning-based approach was used to identify the most informative metabolic markers for complex phenotype assignment. This pointed primarily at adenosine monophosphate (AMP), asparagine, deoxycytidine, glucuronic acid, and propionylcarnitine, and secondarily at cysteine and nicotinamide adenine dinucleotide (NAD) as informative for assigning patients to clinical pain phenotypes. After this, a hypothesis-driven analysis of metabolic pathways was performed, including sleep and obesity. In both the first and second line of analysis, three metabolic markers (NAD, AMP, and cysteine) were found to be relevant, including metabolic pathway analysis in obesity, associated with changes in amino acid metabolism, and sleep problems, associated with downregulated methionine metabolism. Taken together, present findings provide evidence that metabolomic changes associated with co-occurring problems may play a role in the development of severe pain. Co-occurring problems may influence each other at the metabolomic level. Because the methionine and glutathione metabolic pathways are physiologically linked, sleep problems appear to be associated with the first metabolic pathway, whereas obesity may be associated with the second.Peer reviewe
Machine Learning and Pathway Analysis-Based Discovery of Metabolomic Markers Relating to Chronic Pain Phenotypes
Recent scientific evidence suggests that chronic pain phenotypes are reflected in metabolomic changes. However, problems associated with chronic pain, such as sleep disorders or obesity, may complicate the metabolome pattern. Such a complex phenotype was investigated to identify common metabolomics markers at the interface of persistent pain, sleep, and obesity in 71 men and 122 women undergoing tertiary pain care. They were examined for patterns in d = 97 metabolomic markers that segregated patients with a relatively benign pain phenotype (low and little bothersome pain) from those with more severe clinical symptoms (high pain intensity, more bothersome pain, and co-occurring problems such as sleep disturbance). Two independent lines of data analysis were pursued. First, a data-driven supervised machine learning-based approach was used to identify the most informative metabolic markers for complex phenotype assignment. This pointed primarily at adenosine monophosphate (AMP), asparagine, deoxycytidine, glucuronic acid, and propionylcarnitine, and secondarily at cysteine and nicotinamide adenine dinucleotide (NAD) as informative for assigning patients to clinical pain phenotypes. After this, a hypothesis-driven analysis of metabolic pathways was performed, including sleep and obesity. In both the first and second line of analysis, three metabolic markers (NAD, AMP, and cysteine) were found to be relevant, including metabolic pathway analysis in obesity, associated with changes in amino acid metabolism, and sleep problems, associated with downregulated methionine metabolism. Taken together, present findings provide evidence that metabolomic changes associated with co-occurring problems may play a role in the development of severe pain. Co-occurring problems may influence each other at the metabolomic level. Because the methionine and glutathione metabolic pathways are physiologically linked, sleep problems appear to be associated with the first metabolic pathway, whereas obesity may be associated with the second.Peer reviewe
Role of the cystathionine beta-synthase / H2S pathway in the development of cellular metabolic dysfunction and pseudohypoxia in down syndrome
Background: Overexpression of the transsulfuration enzyme cystathionine-beta-synthase (CBS), and overproduction of its product, hydrogen sulfide (H2S) are recognized as potential pathogenetic factors in Down syndrome (DS). The purpose of the study was to determine how the mitochondrial function and core metabolic pathways are affected by DS and how pharmacological inhibition of CBS affects these parameters. Methods: 8 human control and 8 human DS fibroblast cell lines have been subjected to bioenergetic and fluxomic and proteomic analysis with and without treatment with a pharmacological inhibitor of CBS. Results: DS cells exhibited a significantly higher CBS expression than control cells, and produced more H2S. They also exhibited suppressed mitochondrial electron transport and oxygen consumption and suppressed Complex IV activity, impaired cell proliferation and increased ROS generation. Inhibition of H2S biosynthesis with aminooxyacetic acid reduced cellular H2S, improved cellular bioenergetics, attenuated ROS and improved proliferation. C-13 glucose fluxomic analysis revealed that DS cells exhibit a suppression of the Krebs cycle activity with a compensatory increase in glycolysis. CBS inhibition restored the flux from glycolysis to the Krebs cycle and reactivated oxidative phosphorylation. Proteomic analysis revealed no CBS-dependent alterations in the expression level of the enzymes involved in glycolysis, oxidative phosphorylation and the pentose phosphate pathway. DS was associated with the dysregulation of several components of the autophagy network; CBS inhibition normalized several of these parameters. Conclusions: Increased H2S generation in DS promotes pseudohypoxia and contributes to cellular metabolic dysfunction by causing a shift from oxidative phosphorylation to glycolysis.Peer reviewe
CRISPR correction of the Finnish ornithine delta-aminotransferase mutation restores metabolic homeostasis in iPSC from patients with gyrate atrophy
Hyperornithinemia with gyrate atrophy of the choroid and retina (HOGA) is a severe recessive inherited disease, causing muscular degeneration and retinochoroidal atrophy that progresses to blindness. HOGA arises from mutations in the ornithine aminotransferase (OAT) gene, and nearly one-third of the known patients worldwide are homozygous for the Finnish founder mutation OAT c.1205 T > C p.(Leu402Pro). We have corrected this loss of-function OAT mutation in patient-derived induced pluripotent stem cells (iPSCs) using CRISPR/Cas9. The correction restored OAT expression in stem cells and normalized the elevated ornithine levels in cell lysates and cell media. These results show an efficient recovery of OAT function in iPSC, encouraging the possibility of autologous cell therapy for the HOGA disease.Peer reviewe
Inter-organellar and systemic responses to impaired mitochondrial matrix protein import in skeletal muscle
Effective protein import from cytosol is critical for mitochondrial functions and metabolic regulation. We describe here the mammalian muscle-specific and systemic consequences to disrupted mitochondrial matrix protein import by targeted deletion of the mitochondrial HSP70 co-chaperone GRPEL1. Muscle-specific loss of GRPEL1 caused rapid muscle atrophy, accompanied by shut down of oxidative phosphorylation and mitochondrial fatty acid oxidation, and excessive triggering of proteotoxic stress responses. Transcriptome analysis identified new responders to mitochondrial protein import toxicity, such as the neurological disease-linked intermembrane space protein CHCHD10. Besides communication with ER and nucleus, we identified crosstalk of distressed mitochondria with peroxisomes, in particular the induction of peroxisomal Acyl-CoA oxidase 2 (ACOX2), which we propose as an ATF4-regulated peroxisomal marker of integrated stress response. Metabolic profiling indicated fatty acid enrichment in muscle, a shift in TCA cycle intermediates in serum and muscle, and dysregulated bile acids. Our results demonstrate the fundamental importance of GRPEL1 and provide a robust model for detecting mammalian inter-organellar and systemic responses to impaired mitochondrial matrix protein import and folding.Peer reviewe
ANO1 Expression Orchestrates p27Kip1/MCL1-Mediated Signaling in Head and Neck Squamous Cell Carcinoma
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumors that derive from the mucosal epithelium of the upper aerodigestive tract and present high mortality rate. Lack of efficient targeted-therapies and biomarkers towards patients’ stratification are caveats in the disease treatment. Anoctamin 1 (ANO1) gene is amplified in 30% of HNSCC cases. Evidence suggests involvement of ANO1 in proliferation, migration, and evasion of apoptosis; however, the exact mechanisms remain elusive. Aim of this study was to unravel the ANO1-dependent transcriptional programs and expand the existing knowledge of ANO1 contribution to oncogenesis and drug response in HNSCC. We cultured two HNSCC cell lines established from primary tumors harboring amplification and high expression of ANO1 in three-dimensional collagen. Differential expression analysis of ANO1-depleted HNSCC cells demonstrated downregulation of MCL1 and simultaneous upregulation of p27Kip1 expression. Suppressing ANO1 expression led to redistribution of p27Kip1 from the cytoplasm to the nucleus and associated with a cell cycle arrested phenotype. ANO1 silencing or pharmacological inhibition resulted in reduction of cell viability and ANO1 protein levels, as well as suppression of pro-survival BCL2 family proteins. Collectively, these data provide insights of ANO1 involvement in HNSCC carcinogenesis and support the rationale that ANO1 is an actionable drug target
ANO1 Expression Orchestrates p27Kip1/MCL1-Mediated Signaling in Head and Neck Squamous Cell Carcinoma
Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumors that derive from the mucosal epithelium of the upper aerodigestive tract and present high mortality rate. Lack of efficient targeted-therapies and biomarkers towards patients’ stratification are caveats in the disease treatment. Anoctamin 1 (ANO1) gene is amplified in 30% of HNSCC cases. Evidence suggests involvement of ANO1 in proliferation, migration, and evasion of apoptosis; however, the exact mechanisms remain elusive. Aim of this study was to unravel the ANO1-dependent transcriptional programs and expand the existing knowledge of ANO1 contribution to oncogenesis and drug response in HNSCC. We cultured two HNSCC cell lines established from primary tumors harboring amplification and high expression of ANO1 in three-dimensional collagen. Differential expression analysis of ANO1-depleted HNSCC cells demonstrated downregulation of MCL1 and simultaneous upregulation of p27Kip1 expression. Suppressing ANO1 expression led to redistribution of p27Kip1 from the cytoplasm to the nucleus and associated with a cell cycle arrested phenotype. ANO1 silencing or pharmacological inhibition resulted in reduction of cell viability and ANO1 protein levels, as well as suppression of pro-survival BCL2 family proteins. Collectively, these data provide insights of ANO1 involvement in HNSCC carcinogenesis and support the rationale that ANO1 is an actionable drug target. </p
Synergistic Interferon-Alpha-Based Combinations for Treatment of SARS-CoV-2 and Other Viral Infections
Background: There is an urgent need for new antivirals with powerful therapeutic potential and tolerable side effects. Methods: Here, we tested the antiviral properties of interferons (IFNs), alone and with other drugs in vitro. Results: While IFNs alone were insufficient to completely abolish replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), IFNα, in combination with remdesivir, EIDD-2801, camostat, cycloheximide, or convalescent serum, proved to be more effective. Transcriptome and metabolomic analyses revealed that the IFNα–remdesivir combination suppressed SARS-CoV-2-mediated changes in Calu-3 cells and lung organoids, although it altered the homeostasis of uninfected cells and organoids. We also demonstrated that IFNα combinations with sofosbuvir, telaprevir, NITD008, ribavirin, pimodivir, or lamivudine were effective against HCV, HEV, FLuAV, or HIV at lower concentrations, compared to monotherapies. Conclusions: Altogether, our results indicated that IFNα can be combined with drugs that affect viral RNA transcription, protein synthesis, and processing to make synergistic combinations that can be attractive targets for further pre-clinical and clinical development against emerging and re-emerging viral infections
Pharmacological reactivation of MYC-dependent apoptosis induces susceptibility to anti-PD-1 immunotherapy
Correction: Volume: 10 Article Number: 932 DOI: 10.1038/s41467-019-08956-x Published: FEB 20 2019 Accession Number: WOS:000459099300001Elevated MYC expression sensitizes tumor cells to apoptosis but the therapeutic potential of this mechanism remains unclear. We find, in a model of MYC-driven breast cancer, that pharmacological activation of AMPK strongly synergizes with BCL-2/BCL-X-L inhibitors to activate apoptosis. We demonstrate the translational potential of an AMPK and BCL-2/BCL-X-L co-targeting strategy in ex vivo and in vivo models of MYC-high breast cancer. Metformin combined with navitoclax or venetoclax efficiently inhibited tumor growth, conferred survival benefits and induced tumor infiltration by immune cells. However, withdrawal of the drugs allowed tumor re-growth with presentation of PD-1+/CD8+ T cell infiltrates, suggesting immune escape. A two-step treatment regimen, beginning with neoadjuvant metformin+venetoclax to induce apoptosis and followed by adjuvant metformin+venetoclax+anti-PD-1 treatment to overcome immune escape, led to durable antitumor responses even after drug withdrawal. We demonstrate that pharmacological reactivation of MYC-dependent apoptosis is a powerful antitumor strategy involving both tumor cell depletion and immunosurveillance.Peer reviewe
Формирование эмоциональной культуры как компонента инновационной культуры студентов
Homozygosity has long been associated with rare, often devastating, Mendelian disorders1 and Darwin was one of the first to recognise that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity, ROH), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3,4. Here we use ROH to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts and find statistically significant associations between summed runs of homozygosity (SROH) and four complex traits: height, forced expiratory lung volume in 1 second (FEV1), general cognitive ability (g) and educational attainment (nominal p<1 × 10−300, 2.1 × 10−6, 2.5 × 10−10, 1.8 × 10−10). In each case increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing convincing evidence for the first time that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5,6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein (LDL) cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been