223 research outputs found
Targeted Immunotherapy with Rituximab Leads to a Transient Alteration of the IgG Autoantibody Profile in Pemphigus Vulgaris
In pemphigus vulgaris (PV), IgG autoantibodies against the ectodomain of desmoglein 3 (Dsg3) have been shown to be directly responsible for the loss of keratinocyteadhesion. The aim of the present study was to study the effect of the B cell depleting anti-CD20 monoclonal antibody, rituximab, on the profile of pathogenic IgG against distinct regions of the Dsg3 ectodomain in 22 PV patients who were followed up clinically and serologically by Dsg3 ELISA over 12-24 months. Prior to rituximab, all the 22 PV patients showed IgG against Dsg3 (Dsc3EC1-5). Specifically, 14/22 showed IgG reactivity against the Dsg3EC1 subdomain, 5/22 patients against Dsg3EC2, 7/22 against Dsg3EC3, 11/22 against Dsg3EC4, and 2/22 against Dsg3EC5. Within 6 months after rituximab, all the patients showed significant clinical improvement and reduced IgG against Dsg3 (5/22) and the various subdomains, that is, Dsg3EC1 (7/22), Dsg3EC2 (3/22), Dsg3EC3 (2/22), sg3EC4 (2/22), and Dsg3EC5 (0/22). During the entire observation period, 6/22 PV patients experienced a clinical relapse which was associated with the reappearance of IgG against previously recognized Dsg3 subdomains, particularly against the Dsg3EC1. Thus, in PV, rituximab only temporarily depletes pathogenic B cell responses against distinct subdomains of Dsg3 which reappear upon clinical relapse
Pathophysiological Mechanisms in Sclerosing Skin Diseases
Sclerosing skin diseases represent a large number of distinct disease entities, which include systemic sclerosis, localized scleroderma, and scleredema adultorum. These pathologies have a common clinical appearance and share histological features. However, the specific interplay between cytokines and growth factors, which activate different mesenchymal cell populations and production of different extracellular matrix components, determines the biomechanical properties of the skin and the clinical features of each disease. A better understanding of the mechanisms underlying these events is prerequisite for developing novel targeted therapeutic approaches
The systemic lupus erythematosus IRF5 risk haplotype is associated with systemic sclerosis
Systemic sclerosis (SSc) is a fibrotic autoimmune disease in which the genetic component plays an important role. One of the strongest SSc association signals outside the human leukocyte antigen (HLA) region corresponds to interferon (IFN) regulatory factor 5 (IRF5), a major regulator of the type I IFN pathway. In this study we aimed to evaluate whether three different haplotypic blocks within this locus, which have been shown to alter the protein function influencing systemic lupus erythematosus (SLE) susceptibility, are involved in SSc susceptibility and clinical phenotypes. For that purpose, we genotyped one representative single-nucleotide polymorphism (SNP) of each block (rs10488631, rs2004640, and rs4728142) in a total of 3,361 SSc patients and 4,012 unaffected controls of Caucasian origin from Spain, Germany, The Netherlands, Italy and United Kingdom. A meta-analysis of the allele frequencies was performed to analyse the overall effect of these IRF5 genetic variants on SSc. Allelic combination and dependency tests were also carried out. The three SNPs showed strong associations with the global disease (rs4728142: P = 1.34×10<sup>−8</sup>, OR = 1.22, CI 95% = 1.14–1.30; rs2004640: P = 4.60×10<sup>−7</sup>, OR = 0.84, CI 95% = 0.78–0.90; rs10488631: P = 7.53×10<sup>−20</sup>, OR = 1.63, CI 95% = 1.47–1.81). However, the association of rs2004640 with SSc was not independent of rs4728142 (conditioned P = 0.598). The haplotype containing the risk alleles (rs4728142*A-rs2004640*T-rs10488631*C: P = 9.04×10<sup>−22</sup>, OR = 1.75, CI 95% = 1.56–1.97) better explained the observed association (likelihood P-value = 1.48×10<sup>−4</sup>), suggesting an additive effect of the three haplotypic blocks. No statistical significance was observed in the comparisons amongst SSc patients with and without the main clinical characteristics. Our data clearly indicate that the SLE risk haplotype also influences SSc predisposition, and that this association is not sub-phenotype-specific
Frequency of disease-associated and other nuclear autoantibodies in patients of the German network for systemic scleroderma: correlation with characteristic clinical features
Introduction In the present study, we analysed in detail nuclear autoantibodies and their associations in systemic sclerosis (SSc) patients included in the German Network for Systemic Scleroderma Registry. Methods Sera of 863 patients were analysed according to a standardised protocol including immunofluorescence, immunoprecipitation, line immunoassay and immunodiffusion. Results Antinuclear antibodies (ANA) were detected in 94.2% of patients. In 81.6%, at least one of the autoantibodies highly associated with SSc or with overlap syndromes with scleroderma features was detected, that is, anti-centromere (35.9%) or anti-topoisomerase I (30.1%), followed in markedly lower frequency by antibodies to PM-Scl (4.9%), U1-ribonucleoprotein (U1-RNP) (4.8%), RNA polymerases (RNAPs) (3.8%), fibrillarin (1.4%), Ku (1.2%), aminoacyl-transfer RNA synthetases (0.5%), To (0.2%) and U11-RNP (0.1%). We found that the simultaneous presence of SSc-associated autoantibodies was rare (1.6%). Furthermore, additional autoantibodies were detected in 55.4% of the patients with SSc, of which anti-Ro/anti-La, anti-mitochondrial and anti-p25/p23 antibodies were most frequent. The coexistence of SSc-associated and other autoantibodies was common (43% of patients). SSc-associated autoantibodies disclosed characteristic associations with clinical features of patients, some of which were previously not acknowledged. Conclusions This study shows that five autoantigens (that is, centromere, topoisomerase I, PM-Scl, U1-RNP and RNAP) detected more than 95% of the known SSc-associated antibody responses in ANA-positive SSc patients and characterise around 79% of all SSc patients in a central European cohort. These data confirm and extend previous data underlining the central role of the determination of ANAs in defining the diagnosis, subset allocation and prognosis of SSc patients
Genome-wide whole blood transcriptome profiling in a large European cohort of systemic sclerosis patients
Objectives The analysis of annotated transcripts
from genome-wide
expression studies may help to
understand the pathogenesis of complex diseases, such
as systemic sclerosis (SSc). We performed a whole blood
(WB) transcriptome analysis on RNA collected in the
context of the European PRECISESADS project, aiming
at characterising the pathways that differentiate SSc
from controls and that are reproducible in geographically
diverse populations.
Methods Samples from 162 patients and 252 controls
were collected in RNA stabilisers. Cases and controls
were divided into a discovery (n=79+163; Southern
Europe) and validation cohort (n=83+89; Central-Western
Europe). RNA sequencing was performed by
an Illumina assay. Functional annotations of Reactome
pathways were performed with the Functional Analysis
of Individual Microarray Expression (FAIME) algorithm.
In parallel, immunophenotyping of 28 circulating cell
populations was performed. We tested the presence
of differentially expressed genes/pathways and the
correlation between absolute cell counts and RNA
transcripts/FAIME scores in regression models. Results
significant in both populations were considered as
replicated.
Results Overall, 15 224 genes and 1277 functional
pathways were available; of these, 99 and 225 were
significant in both sets. Among replicated pathways,
we found a deregulation in type-I
interferon, Toll-like
receptor cascade, tumour suppressor p53 protein
function, platelet degranulation and activation. RNA
transcripts or FAIME scores were jointly correlated with
cell subtypes with strong geographical differences;
neutrophils were the major determinant of gene
expression in SSc-WB
samples.
Conclusions We discovered a set of differentially
expressed genes/pathways validated in two independent
sets of patients with SSc, highlighting a number of
deregulated processes that have relevance for the
pathogenesis of autoimmunity and SSc.EU/EFPIA/Innovative Medicines Initiative Joint Undertaking PRECISESADS
115 56
Complement component C4 structural variation and quantitative traits contribute to sex-biased vulnerability in systemic sclerosis.
Copy number (CN) polymorphisms of complement C4 play distinct roles in many conditions, including immune-mediated diseases. We investigated the association of C4 CN with systemic sclerosis (SSc) risk. Imputed total C4, C4A, C4B, and HERV-K CN were analyzed in 26,633 individuals and validated in an independent cohort. Our results showed that higher C4 CN confers protection to SSc, and deviations from CN parity of C4A and C4B augmented risk. The protection contributed per copy of C4A and C4B differed by sex. Stronger protection was afforded by C4A in men and by C4B in women. C4 CN correlated well with its gene expression and serum protein levels, and less C4 was detected for both in SSc patients. Conditioned analysis suggests that C4 genetics strongly contributes to the SSc association within the major histocompatibility complex locus and highlights classical alleles and amino acid variants of HLA-DRB1 and HLA-DPB1 as C4-independent signals.We would like to thank Guillermo Barturen Briñas and Elena Carnero-Montoro for fruitful discussions and Sofia Vargas and Gema Robledo for their excellent technical assistance. We would like to thank Elena López-Isac for organizing all SSc GWAS datasets and all members of the PRECISESADS consortium, especially Ralf Lesche, Sepideh Babaei, Anne Buttgereit, Suzana Makowska and Martina Runge for preparing the RNA Seq data and Johan Frostegård and Jacques-Olivier Pers for preparing and normalizing the serum C4 data. We greatly appreciate the patients and healthy donors for their essential participation in these studies. This work was supported by grant RTI2018101332-B-100 funded by MCIN/AEI/10.13039/501100011033 by “ERDF A way of making Europe”, Red de Investigación en Inflamación y Enfermedades Reumáticas (RIER) from Instituto de Salud Carlos III (RD16/0012/0013). This work has received funding from the Innovative Medicines Initiative 1 & 2 Joint Undertaking (JU) under grant agreements No 115565 (PRECISESADS) and No 831434 (3TR). The JU receives support from the European Union’s FP7 and Horizon 2020 research and innovation programs and EFPIA. MAH was supported by the Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. This work is dedicated to the memory of Annette Kerick (1945-2020)
Consensus statement on the diagnosis and treatment of sclerosing diseases of the skin, Part 2: Scleromyxoedema and scleroedema
The term 'sclerosing diseases of the skin' comprises specific dermatological entities, which have fibrotic changes of the skin in common. These diseases mostly manifest in different clinical subtypes according to cutaneous and extracutaneous involvement and can sometimes be difficult to distinguish from each other. The present consensus provides an update to the 2017 European Dermatology Forum Guidelines, focusing on characteristic clinical and histopathological features, diagnostic scores and the serum autoantibodies most useful for differential diagnosis. In addition, updated strategies for the first- and advanced-line therapy of sclerosing skin diseases are addressed in detail. Part 2 of this consensus provides clinicians with an overview of the diagnosis and treatment of scleromyxoedema and scleroedema (of Buschke)
Comprehensive analysis of the major histocompatibility complex in systemic sclerosis identifies differential HLA associations by clinical and serological subtypes
Objective: The greatest genetic effect reported for systemic sclerosis (SSc) lies in the major histocompatibility complex (MHC) locus. Leveraging the largest SSc genome-wide association study, we aimed to fine-map this region to identify novel human leucocyte antigen (HLA) genetic variants associated with SSc susceptibility and its main clinical and serological subtypes.
Methods: 9095 patients with SSc and 17 584 controls genome-wide genotyped were used to impute and test single-nucleotide polymorphisms (SNPs) across the MHC, classical HLA alleles and their composite amino acid residues. Additionally, patients were stratified according to their clinical and serological status, namely, limited cutaneous systemic sclerosis (lcSSc), diffuse cutaneous systemic sclerosis (dcSSc), anticentromere (ACA), antitopoisomerase (ATA) and anti-RNApolIII autoantibodies (ARA).
Results: Sequential conditional analyses showed nine SNPs, nine classical alleles and seven amino acids that modelled the observed associations with SSc. This confirmed previously reported associations with HLA-DRB1*11:04 and HLA-DPB1*13:01, and revealed a novel association of HLA-B*08:01. Stratified analyses showed specific associations of HLA-DQA1*02:01 with lcSSc, and an exclusive association of HLA-DQA1*05:01 with dcSSc. Similarly, private associations were detected in HLA-DRB1*08:01 and confirmed the previously reported association of HLA-DRB1*07:01 with ACA-positive patients, as opposed to the HLA-DPA1*02:01 and HLA-DQB1*03:01 alleles associated with ATA presentation.
Conclusions: This study confirms the contribution of HLA class II and reveals a novel association of HLA class I with SSc, suggesting novel pathways of disease pathogenesis. Furthermore, we describe specific HLA associations with SSc clinical and serological subtypes that could serve as biomarkers of disease severity and progression.Funding: This work was supported by the Spanish Ministry of Science and Innovation (grant ref. SAF2015-66761-P and RTI20181013 (32-B-100)), Red de Investigación en Inflamación y Enfermedades Reumáticas from Instituto de Salud Carlos III (RD16/0012/0013) and grants from National Institutes of Health (R01AR073284) and DoD (W81XWH-16-1-0296). MAH was funded by the Spanish Ministry of Science and Innovation through the Juan de la Cierva Incorporacion program (ref. IJC2018-035131-I). GO, AB and ALH were supported by the NIHR Manchester Biomedical Research Centre and Versus Arthritis (grant ref 21754)
Immunochip analysis identifies multiple susceptibility loci for systemic sclerosis
In this study, 1,833 systemic sclerosis (SSc) cases and 3,466 controls were genotyped with the Immunochip array. Classical alleles, amino acid residues, and SNPs across the human leukocyte antigen (HLA) region were imputed and tested. These analyses resulted in a model composed of six polymorphic amino acid positions and seven SNPs that explained the observed significant associations in the region. In addition, a replication step comprising 4,017 SSc cases and 5,935 controls was carried out for several selected non-HLA variants, reaching a total of 5,850 cases and 9,401 controls of European ancestry. Following this strategy, we identified and validated three SSc risk loci, including DNASE1L3 at 3p14, the SCHIP1-IL12A locus at 3q25, and ATG5 at 6q21, as well as a suggested association of the TREH-DDX6 locus at 11q23. The associations of several previously reported SSc risk loci were validated and further refined, and the observed peak of association in PXK was related to DNASE1L3. Our study has increased the number of known genetic associations with SSc, provided further insight into the pleiotropic effects of shared autoimmune risk factors, and highlighted the power of dense mapping for detecting previously overlooked susceptibility loci
- …