83 research outputs found

    Progressive Myoclonus Epilepsy Caused by a Homozygous Splicing Variant of SLC7A6OS

    Get PDF
    Exome sequencing was performed in 2 unrelated families with progressive myoclonus epilepsy. Affected individuals from both families shared a rare, homozygous c.191A > G variant affecting a splice site in SLC7A6OS. Analysis of cDNA from lymphoblastoid cells demonstrated partial splice site abolition and the creation of an abnormal isoform. Quantitative reverse transcriptase polymerase chain reaction and Western blot showed a marked reduction of protein expression. Haplotype analysis identified a similar to 0.85cM shared genomic region on chromosome 16q encompassing the c.191A > G variant, consistent with a distant ancestor common to both families. Our results suggest that biallelic loss-of-function variants in SLC7A6OS are a novel genetic cause of progressive myoclonus epilepsy. ANN NEUROL 2020Peer reviewe

    Inhibition of G-protein signalling in cardiac dysfunction of intellectual developmental disorder with cardiac arrhythmia (IDDCA) syndrome.

    Get PDF
    BACKGROUND: Pathogenic variants of GNB5 encoding the β5 subunit of the guanine nucleotide-binding protein cause IDDCA syndrome, an autosomal recessive neurodevelopmental disorder associated with cognitive disability and cardiac arrhythmia, particularly severe bradycardia. METHODS: We used echocardiography and telemetric ECG recordings to investigate consequences of Gnb5 loss in mouse. RESULTS: We delineated a key role of Gnb5 in heart sinus conduction and showed that Gnb5-inhibitory signalling is essential for parasympathetic control of heart rate (HR) and maintenance of the sympathovagal balance. Gnb5-/- mice were smaller and had a smaller heart than Gnb5+/+ and Gnb5+/- , but exhibited better cardiac function. Lower autonomic nervous system modulation through diminished parasympathetic control and greater sympathetic regulation resulted in a higher baseline HR in Gnb5-/- mice. In contrast, Gnb5-/- mice exhibited profound bradycardia on treatment with carbachol, while sympathetic modulation of the cardiac stimulation was not altered. Concordantly, transcriptome study pinpointed altered expression of genes involved in cardiac muscle contractility in atria and ventricles of knocked-out mice. Homozygous Gnb5 loss resulted in significantly higher frequencies of sinus arrhythmias. Moreover, we described 13 affected individuals, increasing the IDDCA cohort to 44 patients. CONCLUSIONS: Our data demonstrate that loss of negative regulation of the inhibitory G-protein signalling causes HR perturbations in Gnb5-/- mice, an effect mainly driven by impaired parasympathetic activity. We anticipate that unravelling the mechanism of Gnb5 signalling in the autonomic control of the heart will pave the way for future drug screening

    Mutations in GABRB3

    Get PDF
    Objective: To examine the role of mutations in GABRB3 encoding the b3 subunit of the GABAA receptor in individual patients with epilepsy with regard to causality, the spectrum of genetic variants, their pathophysiology, and associated phenotypes. Methods: We performed massive parallel sequencing of GABRB3 in 416 patients with a range of epileptic encephalopathies and childhood-onset epilepsies and recruited additional patients with epilepsy with GABRB3 mutations from other research and diagnostic programs. Results: We identified 22 patients with heterozygous mutations in GABRB3, including 3 probands frommultiplex families. The phenotypic spectrum of the mutation carriers ranged from simple febrile seizures, genetic epilepsies with febrile seizures plus, and epilepsy withmyoclonic-atonic seizures to West syndrome and other types of severe, early-onset epileptic encephalopathies. Electrophysiologic analysis of 7 mutations in Xenopus laevis oocytes, using coexpression of wild-type or mutant beta(3), together with alpha(5) and gamma(2s) subunits and an automated 2-microelectrode voltage-clamp system, revealed reduced GABA-induced current amplitudes or GABA sensitivity for 5 of 7 mutations. Conclusions: Our results indicate that GABRB3 mutations are associated with a broad phenotypic spectrum of epilepsies and that reduced receptor function causing GABAergic disinhibition represents the relevant disease mechanism

    Evaluation of DNA Methylation Episignatures for Diagnosis and Phenotype Correlations in 42 Mendelian Neurodevelopmental Disorders.

    Get PDF
    Genetic syndromes frequently present with overlapping clinical features and inconclusive or ambiguous genetic findings which can confound accurate diagnosis and clinical management. An expanding number of genetic syndromes have been shown to have unique genomic DNA methylation patterns (called episignatures ). Peripheral blood episignatures can be used for diagnostic testing as well as for the interpretation of ambiguous genetic test results. We present here an approach to episignature mapping in 42 genetic syndromes, which has allowed the identification of 34 robust disease-specific episignatures. We examine emerging patterns of overlap, as well as similarities and hierarchical relationships across these episignatures, to highlight their key features as they are related to genetic heterogeneity, dosage effect, unaffected carrier status, and incomplete penetrance. We demonstrate the necessity of multiclass modeling for accurate genetic variant classification and show how disease classification using a single episignature at a time can sometimes lead to classification errors in closely related episignatures. We demonstrate the utility of this tool in resolving ambiguous clinical cases and identification of previously undiagnosed cases through mass screening of a large cohort of subjects with developmental delays and congenital anomalies. This study more than doubles the number of published syndromes with DNA methylation episignatures and, most significantly, opens new avenues for accurate diagnosis and clinical assessment in individuals affected by these disorders

    NEXMIF encephalopathy:an X-linked disorder with male and female phenotypic patterns

    Get PDF
    Purpose Pathogenic variants in the X-linked gene NEXMIF (previously KIAA2022) are associated with intellectual disability (ID), autism spectrum disorder, and epilepsy. We aimed to delineate the female and male phenotypic spectrum of NEXMIF encephalopathy. Methods Through an international collaboration, we analyzed the phenotypes and genotypes of 87 patients with NEXMIF encephalopathy. Results Sixty-three females and 24 males (46 new patients) with NEXMIF encephalopathy were studied, with 30 novel variants. Phenotypic features included developmental delay/ID in 86/87 (99%), seizures in 71/86 (83%) and multiple comorbidities. Generalized seizures predominated including myoclonic seizures and absence seizures (both 46/70, 66%), absence with eyelid myoclonia (17/70, 24%), and atonic seizures (30/70, 43%). Males had more severe developmental impairment; females had epilepsy more frequently, and varied from unaffected to severely affected. All NEXMIF pathogenic variants led to a premature stop codon or were deleterious structural variants. Most arose de novo, although X-linked segregation occurred for both sexes. Somatic mosaicism occurred in two males and a family with suspected parental mosaicism. Conclusion NEXMIF encephalopathy is an X-linked, generalized developmental and epileptic encephalopathy characterized by myoclonic-atonic epilepsy overlapping with eyelid myoclonia with absence. Some patients have developmental encephalopathy without epilepsy. Males have more severe developmental impairment. NEXMIF encephalopathy arises due to loss-of-function variants

    Phenotypic spectrum and transcriptomic profile associated with germline variants in TRAF7

    Get PDF
    PURPOSE: Somatic variants in tumor necrosis factor receptor-associated factor 7 (TRAF7) cause meningioma, while germline variants have recently been identified in seven patients with developmental delay and cardiac, facial, and digital anomalies. We aimed to define the clinical and mutational spectrum associated with TRAF7 germline variants in a large series of patients, and to determine the molecular effects of the variants through transcriptomic analysis of patient fibroblasts. METHODS: We performed exome, targeted capture, and Sanger sequencing of patients with undiagnosed developmental disorders, in multiple independent diagnostic or research centers. Phenotypic and mutational comparisons were facilitated through data exchange platforms. Whole-transcriptome sequencing was performed on RNA from patient- and control-derived fibroblasts. RESULTS: We identified heterozygous missense variants in TRAF7 as the cause of a developmental delay-malformation syndrome in 45 patients. Major features include a recognizable facial gestalt (characterized in particular by blepharophimosis), short neck, pectus carinatum, digital deviations, and patent ductus arteriosus. Almost all variants occur in the WD40 repeats and most are recurrent. Several differentially expressed genes were identified in patient fibroblasts. CONCLUSION: We provide the first large-scale analysis of the clinical and mutational spectrum associated with the TRAF7 developmental syndrome, and we shed light on its molecular etiology through transcriptome studies

    Missense variants in ANKRD11 cause KBG syndrome by impairment of stability or transcriptional activity of the encoded protein

    Get PDF
    Purpose Although haploinsufficiency of ANKRD11 is among the most common genetic causes of neurodevelopmental disorders, the role of rare ANKRD11 missense variation remains unclear. We characterized clinical, molecular, and functional spectra of ANKRD11 missense variants. Methods We collected clinical information of individuals with ANKRD11 missense variants and evaluated phenotypic fit to KBG syndrome. We assessed pathogenicity of variants through in silico analyses and cell-based experiments. Results We identified 20 unique, mostly de novo, ANKRD11 missense variants in 29 individuals, presenting with syndromic neurodevelopmental disorders similar to KBG syndrome caused by ANKRD11 protein truncating variants or 16q24.3 microdeletions. Missense variants significantly clustered in repression domain 2 at the ANKRD11 C-terminus. Of the 10 functionally studied missense variants, 6 reduced ANKRD11 stability. One variant caused decreased proteasome degradation and loss of ANKRD11 transcriptional activity. Conclusion Our study indicates that pathogenic heterozygous ANKRD11 missense variants cause the clinically recognizable KBG syndrome. Disrupted transrepression capacity and reduced protein stability each independently lead to ANKRD11 loss-of-function, consistent with haploinsufficiency. This highlights the diagnostic relevance of ANKRD11 missense variants, but also poses diagnostic challenges because the KBG-associated phenotype may be mild and inherited pathogenic ANKRD11 (missense) variants are increasingly observed, warranting stringent variant classification and careful phenotyping

    Remaniements chromosomiques complexes : de la caractérisation aux conséquences fonctionnelles

    No full text
    Human cytogenetics is a discipline aimed at studying the structure and function of the chromosomes of our species. In the early 2010's, genome sequencing revealed chromosomal rearrangements of as yet unknown complexity, termed chromoanagenesis. While a significant proportion of tumour genomes present such anomalies, descriptions of constitutional cases are rare and the underlying mechanisms poorly understood. We report here the genome sequencing of 20 new cases of constitutional chromoanagenesis (6 balanced and 14 unbalanced), constituting the largest cohort to date. In several patients, loci of less than one kilobase appear several times in the reshuffled chromosome in what we call a "hub". The analysis of the distribution of breakpoints of these chromoanagenesis and those in the literature showed that late chromatin replication was the main "risk factor" for chromosomal breakage. This result provides an orthogonal demonstration of the premature condensation of a chromosome hypothesis at the origin of these rearrangements and shows for the first time a common origin of constitutional and tumoral chromoanagenesis. At the same time, breakpoint distribution of simple rearrangements appears to be biased towards the center of the nucleus, opening up important avenues of research. To better understand the consequences of these complex reshuffles on the functioning of the genome, we studied the transcriptome of the 6 balanced chromoanagenesis. We have not detected any massive deregulation of the genome. Even locally, near the breakpoints, there does not appear to be any deregulation of gene expression, again raising important questions about the mechanisms of "resistance" to structural variants. The detection of chromosomal rearrangements is (almost) no longer limited by technology (short-read , long-read, linked-read sequencing, optical mapping). Understanding the mechanisms at their origin, knowledge of their pathogenicity and more generally the mastering of genome biology are the new limits to the genotype/phenotype correlation. By studying chromoanagenesis, an exceptional fusion transcript in a hemophiliac patient and describing poorly known transposable elements (retrocopies) we are bringing important new information to the fieldLa cytogénétique humaine est une discipline visant à l’étude de la structure et de la fonction des chromosomes de notre espèce. Au début des années 2010, le séquençage de génome a révélé des remaniements chromosomiques d’une complexité encore inconnue, dénommés chromoanagenesis. Si une importante proportion de génomes tumoraux présentent ce type d’anomalies, les descriptions de cas constitutionnels sont rares et les mécanismes sous-jacents mal compris. Nous rapportons ici le séquençage de génome de 20 nouveaux cas de chromoanagenesis constitutionnels (6 équilibrés et 14 déséquilibrés), constituant la plus large cohorte à ce jour. Chez plusieurs patients, des loci de moins d’un kilobase apparaissent plusieurs fois dans le remaniement dans ce que nous nommons un « hub ». L’étude de la distribution des points de cassure de ces chromoanagenesis et de ceux de la littérature a montré que la réplication tardive de la chromatine était le « facteur de risque » principal de cassure chromosomique. Ce résultat vient apporter une démonstration orthogonale à l’hypothèse de condensation prématurée d’un chromosome à l’origine de ces remaniements et montre pour la première fois une origine commune aux chromoanagenesis constitutionnels et tumoraux. Parallèlement, la distribution des points de cassure de remaniements simples apparaît biaisée vers le centre du noyau ouvrant d’importantes voies de recherche. Pour mieux comprendre les conséquences de ces remaniements complexes sur le fonctionnement du génome nous avons étudié le transcriptome des 6 cas de chromoanagenesis équilibrés. Nous n’avons pas mis en évidence de dérégulation massive du génome. Même localement, à proximité des points de cassure, il n’apparaît pas de dérégulation de l’expression génique posant là encore d’importantes questions sur les mécanismes de « résistance » aux remaniements. La détection de remaniements chromosomiques n’est aujourd’hui (presque) plus limitée par la technologie (séquençage short-read, long-read, linked-read, cartographie optique). La compréhension des mécanismes à leur origine, la connaissance de leur pouvoir pathogène et plus généralement la maîtrise de la biologie du génome sont les nouvelles limites à la corrélation génotype/phénotype. Par l’étude des chromoanagenesis, d’un exceptionnel transcrit de fusion chez un patient hémophile et la description d’éléments transposables méconnus (rétrocopies) nous apportons d’importants nouveaux élément
    corecore