339 research outputs found

    Phylogenetic Analysis Reveals the Global Migration of Seasonal Influenza A Viruses

    Get PDF
    The winter seasonality of influenza A virus in temperate climates is one of the most widely recognized, yet least understood, epidemiological patterns in infectious disease. Central to understanding what drives the seasonal emergence of this important human pathogen is determining what becomes of the virus during the non-epidemic summer months. Herein, we take a step towards elucidating the seasonal emergence of influenza virus by determining the evolutionary relationship between populations of influenza A virus sampled from opposite hemispheres. We conducted a phylogenetic analysis of 487 complete genomes of human influenza A/H3N2 viruses collected between 1999 and 2005 from Australia and New Zealand in the southern hemisphere, and a representative sub-sample of viral genome sequences from 413 isolates collected in New York state, United States, representing the northern hemisphere. We show that even in areas as relatively geographically isolated as New Zealand's South Island and Western Australia, global viral migration contributes significantly to the seasonal emergence of influenza A epidemics, and that this migration has no clear directional pattern. These observations run counter to suggestions that local epidemics are triggered by the climate-driven reactivation of influenza viruses that remain latent within hosts between seasons or transmit at low efficiency between seasons. However, a complete understanding of the seasonal movements of influenza A virus will require greatly expanded global surveillance, particularly of tropical regions where the virus circulates year-round, and during non-epidemic periods in temperate climate areas

    Characterization of co-circulating swine influenza A viruses in North America and the identification of a novel H1 genetic clade with antigenic significance.

    Get PDF
    Multiple genetically and antigenically distinct hemagglutinin genes of the H1 and H3 influenza A virus (IAV) subtypes co-circulate in North American swine. This diversity has evolved by repeated transmission of IAVs from humans to swine and subsequent antigenic drift in swine. To understand the evolutionary dynamics of these diverse HA lineages in North American swine, we undertook a phylogenetic analysis of 1576 H1 and 607 H3 HA gene segments, as well as 834 N1 and 1293 N2 NA gene segments, and 2126 M gene segments. These data revealed yearly co-circulation of H1N1, H1N2, and H3N2 viruses, with three HA clades representing the majority of the HA sequences: of the H1 viruses, 42% were classified as H1δ1 and 40.6% were classified as H1γ; and of the H3 viruses 53% were classified as cluster IV-A H3N2. We detected a genetically distinct minor clade consisting of 37 H1 viruses isolated between 2003 and 2013, which we classified as H1γ-2. We estimated that this clade circulated in swine since approximately 1995, but it was not detected in swine until 2003. Though this clade only represents 1.07% of swine H1 sequences reported over the past 10 years, hemagglutination inhibition (HI) assays demonstrated that representatives of this clade of viruses are antigenically distinct, and, when measured using antigenic cartography, were as many as 7 antigenic units from other H1γ viruses. Therefore vaccines against the contemporary H1γ viruses are not likely to cross-protect against γ-2 viruses. The long-term circulation of these γ-2 viruses suggests that minor populations of viruses may be underreported in the national dataset given the long branch lengths and gaps in detections. The identification of these γ-2 viruses demonstrates the need for robust surveillance to capture the full diversity IAVs in swine in the USA and the importance of antigenic drift in the diversification and emergence of new antigenic variants in swine, which complicates vaccine design.Funding was provided by USDA-ARS and USDA355 APHIS-VS by the Supplemental Appropriations Act of 2009. NSL was funded by USDA-ARS SCA agreement number 58-3625-2-103F and the EC FP7 award number 259949. TKA was funded by USDA ARS SCA agreement number 58-3625-4-070.This is the accepted manuscript. The final version is available at http://www.sciencedirect.com/science/article/pii/S0168170215000799

    Genomic and evolutionary inferences between American and global strains of porcine epidemic diarrhea virus

    Get PDF
    AbstractPorcine epidemic diarrhea virus (PEDV) has caused severe economic losses both recently in the United States (US) and historically throughout Europe and Asia. Traditionally, analysis of the spike gene has been used to determine phylogenetic relationships between PEDV strains. We determined the complete genomes of 93 PEDV field samples from US swine and analyzed the data in conjunction with complete genome sequences available from GenBank (n=126) to determine the most variable genomic areas. Our results indicate high levels of variation within the ORF1 and spike regions while the C-terminal domains of structural genes were highly conserved. Analysis of the Receptor Binding Domains in the spike gene revealed a limited number of amino acid substitutions in US strains compared to Asian strains. Phylogenetic analysis of the complete genome sequence data revealed high rates of recombination, resulting in differing evolutionary patterns in phylogenies inferred for the spike region versus whole genomes. These finding suggest that significant genetic events outside of the spike region have contributed to the evolution of PEDV

    Multiple reassortment events in the evolutionary history of H1N1 influenza A virus since 1918

    Get PDF
    The H1N1 subtype of influenza A virus has caused substantial morbidity and mortality in humans, first documented in the global pandemic of 1918 and continuing to the present day. Despite this disease burden, the evolutionary history of the A/H1N1 virus is not well understood, particularly whether there is a virological basis for several notable epidemics of unusual severity in the 1940s and 1950s. Using a data set of 71 representative complete genome sequences sampled between 1918 and 2006, we show that segmental reassortment has played an important role in the genomic evolution of A/H1N1 since 1918. Specifically, we demonstrate that an A/H1N1 isolate from the 1947 epidemic acquired novel PB2 and HA genes through intra-subtype reassortment, which may explain the abrupt antigenic evolution of this virus. Similarly, the 1951 influenza epidemic may also have been associated with reassortant A/H1N1 viruses. Intra-subtype reassortment therefore appears to be a more important process in the evolution and epidemiology of H1N1 influenza A virus than previously realized

    What does "good" community and public engagement look like? Developing relationships with community members in global health research

    Get PDF
    Community and public engagement (CPE) is increasingly becoming a key component in global health research. The National Institute for Health Research (NIHR) is one of the leading funders in the UK of global health research and requires a robust CPE element in the research it funds, along with CPE monitoring and evaluation. But what does "good" CPE look like? And what factors facilitate or inhibit good CPE? Addressing these questions would help ensure clarity of expectations of award holders, and inform effective monitoring frameworks and the development of guidance. The work reported upon here builds on existing guidance and is a first step in trying to identify the key components of what "good" CPE looks like, which can be used for all approaches to global health research and in a range of different settings and contexts. This article draws on data collected as part of an evaluation of CPE by 53 NIHR-funded award holders to provide insights on CPE practice in global health research. This data was then debated, developed and refined by a group of researchers, CPE specialists and public contributors to explore what "good" CPE looks like, and the barriers and facilitators to good CPE. A key finding was the importance, for some research, of investing in and developing long term relationships with communities, perhaps beyond the life cycle of a project; this was regarded as crucial to the development of trust, addressing power differentials and ensuring the legacy of the research was of benefit to the community. [Abstract copyright: Copyright © 2022 Hickey, Porter, Tembo, Rennard, Tholanah, Beresford, Chandler, Chimbari, Coldham, Dikomitis, Dziro, Ekiikina, Khattak, Montenegro, Mumba, Musesengwa, Nelson, Nhunzvi, Ramirez and Staniszewska.

    What Does “Good” Community and Public Engagement Look Like? Developing Relationships With Community Members in Global Health Research

    Get PDF
    Community and public engagement (CPE) is increasingly becoming a key component in global health research. The National Institute for Health Research (NIHR) is one of the leading funders in the UK of global health research and requires a robust CPE element in the research it funds, along with CPE monitoring and evaluation. But what does “good” CPE look like? And what factors facilitate or inhibit good CPE? Addressing these questions would help ensure clarity of expectations of award holders, and inform effective monitoring frameworks and the development of guidance. The work reported upon here builds on existing guidance and is a first step in trying to identify the key components of what “good” CPE looks like, which can be used for all approaches to global health research and in a range of different settings and contexts. This article draws on data collected as part of an evaluation of CPE by 53 NIHR-funded award holders to provide insights on CPE practice in global health research. This data was then debated, developed and refined by a group of researchers, CPE specialists and public contributors to explore what “good” CPE looks like, and the barriers and facilitators to good CPE. A key finding was the importance, for some research, of investing in and developing long term relationships with communities, perhaps beyond the life cycle of a project; this was regarded as crucial to the development of trust, addressing power differentials and ensuring the legacy of the research was of benefit to the community

    Global Influenza Seasonality: Reconciling Patterns across Temperate and Tropical Regions

    Get PDF
    Bac k g r o u n d: Despite the significant disease burden of the influenza virus in humans, our understanding of the basis for its pronounced seasonality remains incomplete. Past observations that influenza epidemics occur in the winter across temperate climates, combined with insufficient knowledge about the epidemiology of influenza in the tropics, led to the perception that cool and dry conditions were a necessary, and possibly sufficient, driver of influenza epidemics. Recent reports of substantial levels of influenza virus activity and well-defined seasonality in tropical regions, where warm and humid conditions often persist year-round, have rendered previous hypotheses insufficient for explaining global patterns of influenza. Objectiv e: In this review, we examined the scientific evidence for the seasonal mechanisms that potentially explain the complex seasonal patterns of influenza disease activity observed globally. Me t h o d s: In this review we assessed the strength of a range of hypotheses that attempt to explain observations of influenza seasonality across different latitudes and how they relate to each other. We reviewed studies describing population-scale observations, mathematical models, and ecological, laboratory, and clinical experiments pertaining to influenza seasonality. The literature review includes studies that directly mention the topic of influenza seasonality, as well as other topics w

    Stochastic Processes Are Key Determinants of Short-Term Evolution in Influenza A Virus

    Get PDF
    Understanding the evolutionary dynamics of influenza A virus is central to its surveillance and control. While immune-driven antigenic drift is a key determinant of viral evolution across epidemic seasons, the evolutionary processes shaping influenza virus diversity within seasons are less clear. Here we show with a phylogenetic analysis of 413 complete genomes of human H3N2 influenza A viruses collected between 1997 and 2005 from New York State, United States, that genetic diversity is both abundant and largely generated through the seasonal importation of multiple divergent clades of the same subtype. These clades cocirculated within New York State, allowing frequent reassortment and generating genome-wide diversity. However, relatively low levels of positive selection and genetic diversity were observed at amino acid sites considered important in antigenic drift. These results indicate that adaptive evolution occurs only sporadically in influenza A virus; rather, the stochastic processes of viral migration and clade reassortment play a vital role in shaping short-term evolutionary dynamics. Thus, predicting future patterns of influenza virus evolution for vaccine strain selection is inherently complex and requires intensive surveillance, whole-genome sequencing, and phenotypic analysis
    corecore