272 research outputs found

    Semiautomatic Assessment of the Terminal Ileum and Colon in Patients with Crohn Disease Using MRI (the VIGOR++ Project)

    Get PDF
    Rationale and Objectives: The objective of this study was to develop and validate a predictive magnetic resonance imaging (MRI) activity score for ileocolonic Crohn disease activity based on both subjective and semiautomatic MRI features. Materials and Methods: An MRI activity score (the “virtual gastrointestinal tract [VIGOR]” score) was developed from 27 validated magnetic resonance enterography datasets, including subjective radiologist observation of mural T2 signal and semiautomatic measurements of bowel wall thickness, excess volume, and dynamic contrast enhancement (initial slope of increase). A second subjective score was developed based on only radiologist observations. For validation, two observers applied both scores and three existing scores to a prospective dataset of 106 patients (59 women, median age 33) with known Crohn disease, using the endoscopic Crohn's Disease Endoscopic Index of Severity (CDEIS) as a reference standard. Results: The VIGOR score (17.1 × initial slope of increase + 0.2 × excess volume + 2.3 × mural T2) and other activity scores all had comparable correlation to the CDEIS scores (observer 1: r = 0.58 and 0.59, and observer 2: r = 0.34–0.40 and 0.43–0.51, respectively). The VIGOR score, however, improved interobserver agreement compared to the other activity scores (intraclass correlation coefficient = 0.81 vs 0.44–0.59). A diagnostic accuracy of 80%–81% was seen for the VIGOR score, similar to the other scores. Conclusions: The VIGOR score achieves comparable accuracy to conventional MRI activity scores, but with significantly improved reproducibility, favoring its use for disease monitoring and therapy evaluation

    Cisplatin administration influences on toxic and non-essential element metabolism in rats

    Get PDF
    Nowadays several papers deal with the effectiveness and side effects of metal complexes, especially cisplatin, in cancer therapy. The excretion of essential metal elements from the body is a serious problem in the treatment, but there are no data concerning the distribution and metabolism of toxic and nonessential elements. Therefore our aim was to study the concentration of some of these elements after treatment with cisplatin. Male Wistar rats (n=20, 175-190 g) were randomly divided into 2 groups (n=10/group). The control group received 1% (w/v) methyl cellulose at 10 mL/kg body weight, p.o. by gastric gavage twice daily for 14 days, while cisplatin was injected i.p. in a single dose of 6.5 mg/kg body weight. Inductively coupled plasma optical emission spectrometry (ICP-OES) was used for measuring Al, B, Ba, Cr, Li, Ni, Pb, Pt, Sb, Si, Sn, Sr and V content in plasma, liver and kidney. Liver total scavenger capacity, diene conjugate content and malondialdehyde concentration were also determined. Cisplatin elevated the free radical reactions in the liver, although redox balance did not change significantly. According to the study it seems that the metabolism of Al, Ba, Cr, Ni, Pb, Sr were changed by the effect of cisplatin, and the most notable alterations were found for Al and Pb. Therefore, besides the toxic effect of and free radical induction by Pt, the side effects of increased levels of other toxic and non-essential elements have to be taken into consideration

    Modulation of TRPM2 by acidic pH and the underlying mechanisms for pH sensitivity

    Get PDF
    TRPM2 is a Ca2+-permeable nonselective cation channel that plays important roles in oxidative stress–mediated cell death and inflammation processes. However, how TRPM2 is regulated under physiological and pathological conditions is not fully understood. Here, we report that both intracellular and extracellular protons block TRPM2 by inhibiting channel gating. We demonstrate that external protons block TRPM2 with an IC50 of pHo = 5.3, whereas internal protons inhibit TRPM2 with an IC50 of pHi = 6.7. Extracellular protons inhibit TRPM2 by decreasing single-channel conductance. We identify three titratable residues, H958, D964, and E994, at the outer vestibule of the channel pore that are responsible for pHo sensitivity. Mutations of these residues reduce single-channel conductance, decrease external Ca2+ ([Ca2+]o) affinity, and inhibit [Ca2+]o-mediated TRPM2 gating. These results support the following model: titration of H958, D964, and E994 by external protons inhibits TRPM2 gating by causing conformation change of the channel, and/or by decreasing local Ca2+ concentration at the outer vestibule, therefore reducing [Ca2+]o permeation and inhibiting [Ca2+]o-mediated TRPM2 gating. We find that intracellular protons inhibit TRPM2 by inducing channel closure without changing channel conductance. We identify that D933 located at the C terminus of the S4-S5 linker is responsible for intracellular pH sensitivity. Replacement of Asp933 by Asn933 changes the IC50 from pHi = 6.7 to pHi = 5.5. Moreover, substitution of Asp933 with various residues produces marked changes in proton sensitivity, intracellular ADP ribose/Ca2+ sensitivity, and gating profiles of TRPM2. These results indicate that D933 is not only essential for intracellular pH sensitivity, but it is also crucial for TRPM2 channel gating. Collectively, our findings provide a novel mechanism for TRPM2 modulation as well as molecular determinants for pH regulation of TRPM2. Inhibition of TRPM2 by acidic pH may represent an endogenous mechanism governing TRPM2 gating and its physiological/pathological functions

    Levels of selected minerals, nitric oxide, and vitamins in aborted Sakis sheep raised under semitropical conditions

    Get PDF
    The serum levels of calcium, phosphorus, magnesium, copper, zinc and iron and of nitric oxide, retinol, and β-carotene were determined in Sakiz ewes that had experienced an abortion and in healthy controls. Ten healthy and 25 aborted Sakiz sheep were selected from Afyon zone in western Turkey. Their ages ranged between 2 and 4 years weighing between 40 and 60 kg at the time of experiment. All of the abortions occurred in October. The concentrations of retinol, β-carotene, phosphorus, and zinc were significantly lower and those of calcium and nitric oxide were increased in aborted ewes relative to healthy controls. The serum levels of iron, copper, and magnesium were not significantly different among the two groups. In conclusion, abortion is an important problem in commercially important species of ruminants in many regions in the tropics including of western Turkey. Deficiencies of retinol, β-carotene, phosphorus and zinc, and the increase of calcium and nitric oxide concentration may play an important role in the etiology of abortion in ewes. Prophylactic measures such as vitamin and mineral supplementation may be of help to prevent or reduce the incidence of abortion in sheep

    Novel role for the transient receptor potential channel TRPM2 in prostate cancer cell proliferation

    Get PDF
    We have identified a novel function for a member of the transient receptor potential (TRP) protein super-family, TRPM2, in prostate cancer cell proliferation. TRPM2 encodes a non-selective cation-permeable ion channel. We found that selectively knocking down TRPM2 with the small interfering RNA technique inhibited the growth of prostate cancer cells but not of non-cancerous cells. The subcellular localization of this protein is also remarkably different between cancerous and non-cancerous cells. In BPH-1 (benign), TRPM2 protein is homogenously located near the plasma membrane and in the cytoplasm, whereas in the cancerous cells (PC-3 and DU-145), a significant amount of the TRPM2 protein is located in the nuclei in a clustered pattern. Furthermore, we have found that TRPM2 inhibited nuclear ADP-ribosylation in prostate cancer cells. However, TRPM2 knockdown-induced inhibition of proliferation is independent of the activity of poly(ADP-ribose) polymerases. We conclude that TRPM2 is essential for prostate cancer cell proliferation and may be a potential target for the selective treatment of prostate cancer

    Selenium in reproduction

    Get PDF
    Selenium is an essential trace element of importance to human biology and health. Increasing evidence suggests that this mineral plays an important role in normal growth and reproduction in animals and humans, and selenium supplementation is now recommended as part of public health policy in geographical areas with severe selenium deficiency in soil. This review addresses the biological functions of selenium followed by a detailed review of associations between selenium status and reproductive health. In many countries, selenium dietary intake falls below the recommended nutrient intakes and is inadequate to support maximal expression of the selenoenzymes. Numerous reports implicate selenium deficiency in several reproductive and obstetric complications including male and female infertility, miscarriage, preeclampsia, fetal growth restriction, preterm labor, gestational diabetes, and obstetric cholestasis. Currently, there is inadequate information from the available small intervention studies to inform public health strategies. Larger intervention trials are required to reinforce or refute a beneficial role of selenium supplementation in disorders of reproductive health

    Mechanisms of Cisplatin Nephrotoxicity

    Get PDF
    Cisplatin is a widely used and highly effective cancer chemotherapeutic agent. One of the limiting side effects of cisplatin use is nephrotoxicity. Research over the past 10 years has uncovered many of the cellular mechanisms which underlie cisplatin-induced renal cell death. It has also become apparent that inflammation provoked by injury to renal epithelial cells serves to amplify kidney injury and dysfunction in vivo. This review summarizes recent advances in our understanding of cisplatin nephrotoxicity and discusses how these advances might lead to more effective prevention

    TRPM2 channel-mediated cell death: an important mechanism linking oxidative stress-inducing pathological factors to associated pathological conditions

    Get PDF
    Oxidative stress resulting from the accumulation of high levels of reactive oxygen species is a salient feature of, and a well-recognised pathological factor for, diverse pathologies. One common mechanism for oxidative stress damage is via the disruption of intracellular ion homeostasis to induce cell death. TRPM2 is a non-selective Ca2+-permeable cation channel with a wide distribution throughout the body and is highly sensitive to activation by oxidative stress. Recent studies have collected abundant evidence to show its important role in mediating cell death induced by miscellaneous oxidative stress-inducing pathological factors, both endogenous and exogenous, including ischemia/reperfusion and the neurotoxicants amyloid-β peptides and MPTP/MPP+ that cause neuronal demise in the brain, myocardial ischemia/reperfusion, proinflammatory mediators that disrupt endothelial function, diabetogenic agent streptozotocin and diabetes risk factor free fatty acids that induce loss of pancreatic β-cells, bile acids that damage pancreatic acinar cells, renal ischemia/reperfusion and albuminuria that are detrimental to kidney cells, acetaminophen that triggers hepatocyte death, and nanoparticles that injure pericytes. Studies have also shed light on the signalling mechanisms by which these pathological factors activate the TRPM2 channel to alter intracellular ion homeostasis leading to aberrant initiation of various cell death pathways. TRPM2-mediated cell death thus emerges as an important mechanism in the pathogenesis of conditions including ischemic stroke, neurodegenerative diseases, cardiovascular diseases, diabetes, pancreatitis, chronic kidney disease, liver damage and neurovascular injury. These findings raise the exciting perspective of targeting the TRPM2 channel as a novel therapeutic strategy to treat such oxidative stress-associated diseases
    • …
    corecore