23 research outputs found

    High S100B Levels Predict Antidepressant Response in Patients With Major Depression Even When Considering Inflammatory and Metabolic Markers

    Get PDF
    Background: The relationship between antidepressant response and glial, inflammatory, and metabolic markers is poorly understood in depression. This study assessed the ability of biological markers to predict antidepressant response in major depressive disorder (MDD). Methods: We included 31 MDD outpatients treated with escitalopram or sertraline for 8 consecutive weeks. The Montgomery-Åsberg Depression Rating Scale (MADRS) was administered at baseline and at week 4 and 8 of treatment. Concomitantly, blood samples were collected for the determination of serum S100B, C-reactive protein (CRP), and high-density lipoprotein cholesterol (HDL)-C levels. Treatment response was defined as ≥50% improvement in the MADRS score from baseline to either week 4 or 8. Variables associated with treatment response were included in a linear regression model as predictors of treatment response. Results: Twenty-seven patients (87%) completed 8 weeks of treatment; 74% and 63% were responders at week 4 and 8, respectively. High S100B and low HDL-C levels at baseline were associated with better treatment response at both time points. Low CRP levels were correlated with better response at week 4. Multivariate analysis showed that high baseline S100B levels and low baseline HDL-C levels were good predictors of treatment response at week 4 (R2 = 0.457, P =. 001), while S100B was at week 8 (R2 = 0.239, P =. 011). Importantly, baseline S100B and HDL-C levels were not associated with depression severity and did not change over time with clinical improvement. Conclusions: Serum S100B levels appear to be a useful biomarker of antidepressant response in MDD even when considering inflammatory and metabolic markers. © 2022 The Author(s) 2022

    Omalizumab efficacy in cases of chronic spontaneous urticaria is not explained by the inhibition of sera activity in effector cells

    Get PDF
    Omalizumab (OmAb) is a humanized anti-IgE antibody approved for the treatment of chronic spontaneous urticaria (CSU). OmAb's mechanism of action is known to include actions on free IgE and on pre-bound IgE. However, OmAb is equally and rapidly effective against autoimmune and non-autoimmune urticaria where IgE involvement is not clear, suggesting the involvement of additional mechanisms of action. In this study, we sought to investigate the ability of OmAb to inhibit mast cell and basophil degranulation induced by sera from CSU patients. For this purpose, we performed a comparison between the in vitro incubation of sera from CSU patients treated with OmAb and the in vivo administration of OmAb in a clinical trial. We found that OmAb added in vitro to sera from CSU patients did not modify the ability of the sera to induce cell degranulation. Similarly, the sera from patients treated with OmAb in the context of the clinical trial who had a good clinical outcome maintained the capacity to activate mast cells and basophils. Thus, we conclude that the beneficial activity of OmAb does not correlate with the ability of patient sera to induce cell degranulation

    Depression prevalence using the HADS-D compared to SCID major depression classification:An individual participant data meta-analysis

    Get PDF
    Objectives: Validated diagnostic interviews are required to classify depression status and estimate prevalence of disorder, but screening tools are often used instead. We used individual participant data meta-analysis to compare prevalence based on standard Hospital Anxiety and Depression Scale – depression subscale (HADS-D) cutoffs of ≥8 and ≥11 versus Structured Clinical Interview for DSM (SCID) major depression and determined if an alternative HADS-D cutoff could more accurately estimate prevalence. Methods: We searched Medline, Medline In-Process & Other Non-Indexed Citations via Ovid, PsycINFO, and Web of Science (inception-July 11, 2016) for studies comparing HADS-D scores to SCID major depression status. Pooled prevalence and pooled differences in prevalence for HADS-D cutoffs versus SCID major depression were estimated. Results: 6005 participants (689 SCID major depression cases) from 41 primary studies were included. Pooled prevalence was 24.5% (95% Confidence Interval (CI): 20.5%, 29.0%) for HADS-D ≥8, 10.7% (95% CI: 8.3%, 13.8%) for HADS-D ≥11, and 11.6% (95% CI: 9.2%, 14.6%) for SCID major depression. HADS-D ≥11 was closest to SCID major depression prevalence, but the 95% prediction interval for the difference that could be expected for HADS-D ≥11 versus SCID in a new study was −21.1% to 19.5%. Conclusions: HADS-D ≥8 substantially overestimates depression prevalence. Of all possible cutoff thresholds, HADS-D ≥11 was closest to the SCID, but there was substantial heterogeneity in the difference between HADS-D ≥11 and SCID-based estimates. HADS-D should not be used as a substitute for a validated diagnostic interview.This study was funded by the Canadian Institutes of Health Research (CIHR, KRS-144045 & PCG 155468). Ms. Neupane was supported by a G.R. Caverhill Fellowship from the Faculty of Medicine, McGill University. Drs. Levis and Wu were supported by Fonds de recherche du Québec - Santé (FRQS) Postdoctoral Training Fellowships. Mr. Bhandari was supported by a studentship from the Research Institute of the McGill University Health Centre. Ms. Rice was supported by a Vanier Canada Graduate Scholarship. Dr. Patten was supported by a Senior Health Scholar award from Alberta Innovates, Health Solutions. The primary study by Scott et al. was supported by the Cumming School of Medicine and Alberta Health Services through the Calgary Health Trust, and funding from the Hotchkiss Brain Institute. The primary study by Amoozegar et al. was supported by the Alberta Health Services, the University of Calgary Faculty of Medicine, and the Hotchkiss Brain Institute. The primary study by Cheung et al. was supported by the Waikato Clinical School, University of Auckland, the Waikato Medical Research Foundation and the Waikato Respiratory Research Fund. The primary study by Cukor et al. was supported in part by a Promoting Psychological Research and Training on Health-Disparities Issues at Ethnic Minority Serving Institutions Grants (ProDIGs) awarded to Dr. Cukor from the American Psychological Association. The primary study by De Souza et al. was supported by Birmingham and Solihull Mental Health Foundation Trust. The primary study by Honarmand et al. was supported by a grant from the Multiple Sclerosis Society of Canada. The primary study by Fischer et al. was supported as part of the RECODEHF study by the German Federal Ministry of Education and Research (01GY1150). The primary study by Gagnon et al. was supported by the Drummond Foundation and the Department of Psychiatry, University Health Network. The primary study by Akechi et al. was supported in part by a Grant-in-Aid for Cancer Research (11−2) from the Japanese Ministry of Health, Labour and Welfare and a Grant-in-Aid for Young Scientists (B) from the Japanese Ministry of Education, Culture, Sports, Science and Technology. The primary study by Kugaya et al. was supported in part by a Grant-in-Aid for Cancer Research (9–31) and the Second-Term Comprehensive 10-year Strategy for Cancer Control from the Japanese Ministry of Health, Labour and Welfare. The primary study Ryan et al. was supported by the Irish Cancer Society (Grant CRP08GAL). The primary study by Keller et al. was supported by the Medical Faculty of the University of Heidelberg (grant no. 175/2000). The primary study by Love et al. (2004) was supported by the Kathleen Cuningham Foundation (National Breast Cancer Foundation), the Cancer Council of Victoria and the National Health and Medical Research Council. The primary study by Love et al. (2002) was supported by a grant from the Bethlehem Griffiths Research Foundation. The primary study by Löwe et al. was supported by the medical faculty of the University of Heidelberg, Germany (Project 121/2000). The primary study by Navines et al. was supported in part by the Spanish grants from the Fondo de Investigación en Salud, Instituto de Salud Carlos III (EO PI08/90869 and PSIGEN-VHC Study: FIS-E08/00268) and the support of FEDER (one way to make Europe). The primary study by O'Rourke et al. was supported by the Scottish Home and Health Department, Stroke Association, and Medical Research Council. The primary study by Sanchez-Gistau et al. was supported by a grant from the Ministry of Health of Spain (PI040418) and in part by Catalonia Government, DURSI 2009SGR1119. The primary study by Gould et al. was supported by the Transport Accident Commission Grant. The primary study by Rooney et al. was supported by the NHS Lothian Neuro-Oncology Endowment Fund. The primary study by Schwarzbold et al. was supported by PRONEX Program (NENASC Project) and PPSUS Program of Fundaçao de Amparo a esquisa e Inovacao do Estado de Santa Catarina (FAPESC) and the National Science and Technology Institute for Translational Medicine (INCT-TM). The primary study by Simard et al. was supported by IDEA grants from the Canadian Prostate Cancer Research Initiative and the Canadian Breast Cancer Research Alliance, as well as a studentship from the Canadian Institutes of Health Research. The primary study by Singer et al. (2009) was supported by a grant from the German Federal Ministry for Education and Research (no. 01ZZ0106). The primary study by Singer et al. (2008) was supported by grants from the German Federal Ministry for Education and Research (# 7DZAIQTX) and of the University of Leipzig (# formel. 1–57). The primary study by Meyer et al. was supported by the Federal Ministry of Education and Research (BMBF). The primary study by Stone et al. was supported by the Medical Research Council, UK and Chest Heart and Stroke, Scotland. The primary study by Turner et al. was supported by a bequest from Jennie Thomas through Hunter Medical Research Institute. The primary study by Walterfang et al. was supported by Melbourne Health. Drs. Benedetti and Thombs were supported by FRQS researcher salary awards. No other authors reported funding for primary studies or for their work on this study. No funder had any role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication

    Neural response to the observable self in social anxiety disorder

    Get PDF
    The fulltext of this publication will be made publicly available after relevant embargo periods have lapsed and associated copyright clearances obtained.BACKGROUND: Distorted images of the observable self are considered crucial in the development and maintenance of social anxiety. We generated an experimental situation in which participants viewed themselves from an observer's perspective when exposed to scrutiny and evaluation by others. Method Twenty patients with social anxiety disorder (SAD) and 20 control subjects were assessed using functional magnetic resonance imaging (fMRI) during the public exposure of pre-recorded videos in which they were each shown performing a verbal task. The examiners acted as the audience in the experiment and rated performance. Whole-brain functional maps were computed using Statistical Parametric Mapping. RESULTS: Robust activation was observed in regions related to self-face recognition, emotional response and general arousal in both study groups. Patients showed significantly greater activation only in the primary visual cortex. By contrast, they showed significant deactivation or smaller activation in dorsal frontoparietal and anterior cingulate cortices relevant to the cognitive control of negative emotion. Task-related anxiety ratings revealed a pattern of negative correlation with activation in this frontoparietal/cingulate network. Importantly, the relationship between social anxiety scores and neural response showed an inverted-U function with positive correlations in the lower score range and negative correlations in the higher range. CONCLUSIONS: Our findings suggest that exposure to scrutiny and evaluation in SAD may be associated with changes in cortical systems mediating the cognitive components of anxiety. Disorder severity seems to be relevant in shaping the neural response pattern, which is distinctively characterized by a reduced cortical response in the most severe cases

    Chronic inflammation in hepatitis C patients is associated with increased perceived stress and abnormal connectivity between insula and basal ganglia

    No full text
    Background: Sickness Behavior(SB) is an organized adaptive strategy to support the organism's defense against pathogens [1]. Nevertheless,when the pathogen cannot be removed and is persistent,SB may become prolonged and dysfunctional,as in chronic hepatitis C(CHC) [2].The presence of chronic inflammation,beside vulnerability factors,seems to be crucial for the development of major depressive disorder(MDD),while impacting neuroimmune circuits or oxidative and nitrosative(O&NS) pathways [3]. Neuroimaging studies have pointed out the role of brain structures relevant to the SB,helping to identify those areas sensitive to peripheral inflammation such as basal ganglia or insula [4,5]. Aim: To elucidate clinical and neurobiological aspects of inflammation in CHC patients without current MDD diagnosis. Methods: Case-control study compared 35 CHC patients with 30 healthy controls,age(18-52 years old) and sex matched.Exclusion criteria were any active inflammatory condition,current anti-inflammatory treatment and MDD diagnosis(DSM-IV,MINI assessment).Physical health questionnaire for depression(PHQ-9) and perceived stress scale(PSS) were used for clinical assessment. Serum levels(sl) of inflammatory markers interleukin-6(IL-6) and prostaglandin-E2(PGE2), oxidative stress marker malonyl-dialdehyde(MDA) and anti-oxidant enzymes superoxide-dismutase(SOD) and catalase(CAT) were measured.Resting-state functional MRI(fMRI) was used to assess the changes in intrinsic brain networks in all participants. Functional connectivity maps were generated for a priori selected regions-of-interest(ROIs), including the bilateral insula, subgenual anterior cingulate(sgACC) cortex and bilateral putamen. Voxel-wise analyses in SPM served to assess the association between functional connectivity and clinical/biological variables. Results: Table 1 shows sociodemographics, biological markers and clinical characteristics of both samples. CHC patients showed increased PSS and PHQ-9 scores, IL-6 and PGE2 sl, and antioxidant system activation compared to controls. Subtle case-control differences in functional connectivity were also observed with patients showing decreased connectivity between insula and cingulate cortex, caudate nucleus and anterior prefrontal cortex; between sgACC and orbitofrontal cortex; between putamen, thalamus and temporal regions. By contrast, patients showed increased connectivity between insula and temporal cortex; sgACC and precuneus and temporal cortex; putamen, supramarginal gyrus and postcentral cortex. PHQ-9 and PSS scores were positive correlated only with PGE2 sl(r = 0.298, p = 0.019 and r = 0.245, p = 0.055 respectively).Interestingly, PSS and PHQ-9 scores were positively associated with connectivity between putamen and insula(peak correlation at MNI x = 32,y = 20,z = −20; cluster size = 11.9 ml; T = 4.8, p<0.0001; and x = 44,y = −8,z = −4;cluster size = 2.9 ml; T = 5.0, p<0.0001,respectively). PGE2 was also correlated with functional connectivity between putamen and insula (peak correlation at MNI x = 28,y = −6,z = 6; cluster size = 9.6 ml; T = 3.5, p<0.0001). Nevertheless, PGE2 did not mediate the correlation between PSS nor PHQ-9 and connectivity (t = 1.47,p = 0.141 and t = 1.37,p = 0.171,respectively). Conclusions: Patients with CHC exhibited increased perceived stress and depressive symptoms,which were associated with inflammatory markers together with alterations in connectivity between the insula to putamen,areas involved in interoceptive integration,emotional awareness, and orientation of motivational state. The absence of MDD in the study sample may explain the lack of oxidative stress in CHC patients

    Depression prevalence using the HADS-D compared to SCID major depression classification: An individual participant data meta-analysis

    No full text
    Objectives: Validated diagnostic interviews are required to classify depression status and estimate prevalence of disorder, but screening tools are often used instead. We used individual participant data meta-analysis to compare prevalence based on standard Hospital Anxiety and Depression Scale – depression subscale (HADS-D) cutoffs of ≥8 and ≥11 versus Structured Clinical Interview for DSM (SCID) major depression and determined if an alternative HADS-D cutoff could more accurately estimate prevalence. Methods: We searched Medline, Medline In-Process &amp; Other Non-Indexed Citations via Ovid, PsycINFO, and Web of Science (inception-July 11, 2016) for studies comparing HADS-D scores to SCID major depression status. Pooled prevalence and pooled differences in prevalence for HADS-D cutoffs versus SCID major depression were estimated. Results: 6005 participants (689 SCID major depression cases) from 41 primary studies were included. Pooled prevalence was 24.5% (95% Confidence Interval (CI): 20.5%, 29.0%) for HADS-D ≥8, 10.7% (95% CI: 8.3%, 13.8%) for HADS-D ≥11, and 11.6% (95% CI: 9.2%, 14.6%) for SCID major depression. HADS-D ≥11 was closest to SCID major depression prevalence, but the 95% prediction interval for the difference that could be expected for HADS-D ≥11 versus SCID in a new study was −21.1% to 19.5%. Conclusions: HADS-D ≥8 substantially overestimates depression prevalence. Of all possible cutoff thresholds, HADS-D ≥11 was closest to the SCID, but there was substantial heterogeneity in the difference between HADS-D ≥11 and SCID-based estimates. HADS-D should not be used as a substitute for a validated diagnostic interview. © 2020 Elsevier Inc

    Dragon 1 Protocol Manuscript: Training, Accreditation, Implementation and Safety Evaluation of Portal and Hepatic Vein Embolization (PVE/HVE) to Accelerate Future Liver Remnant (FLR) Hypertrophy.

    No full text
    The DRAGON 1 trial aims to assess training, implementation, safety and feasibility of combined portal- and hepatic-vein embolization (PVE/HVE) to accelerate future liver remnant (FLR) hypertrophy in patients with borderline resectable colorectal cancer liver metastases. The DRAGON 1 trial is a worldwide multicenter prospective single arm trial. The primary endpoint is a composite of the safety of PVE/HVE, 90-day mortality, and one year accrual monitoring of each participating center. Secondary endpoints include: feasibility of resection, the used PVE and HVE techniques, FLR-hypertrophy, liver function (subset of centers), overall survival, and disease-free survival. All complications after the PVE/HVE procedure are documented. Liver volumes will be measured at week 1 and if applicable at week 3 and 6 after PVE/HVE and follow-up visits will be held at 1, 3, 6, and 12 months after the resection. Not applicable. DRAGON 1 is a prospective trial to assess the safety and feasibility of PVE/HVE. Participating study centers will be trained, and procedures standardized using Work Instructions (WI) to prepare for the DRAGON 2 randomized controlled trial. Outcomes should reveal the accrual potential of centers, safety profile of combined PVE/HVE and the effect of FLR-hypertrophy induction by PVE/HVE in patients with CRLM and a small FLR. Clinicaltrials.gov: NCT04272931 (February 17, 2020). Toestingonline.nl: NL71535.068.19 (September 20, 2019)
    corecore