11 research outputs found

    Impact of Baseline Characteristics on Geographic Atrophy Progression in the FILLY Trial Evaluating the Complement C3 Inhibitor Pegcetacoplan.

    No full text
    PurposeTo evaluate the effect of select baseline characteristics on geographic atrophy (GA) progression in eyes receiving intravitreal pegcetacoplan or sham.DesignPhase 2 multicenter, randomized, single-masked, sham-controlled trial.MethodsPatients with GA received 15 mg pegcetacoplan monthly or every other month (EOM), or sham injection monthly or EOM for 12 months. Primary efficacy endpoint was change in GA lesion size (square root) from baseline. Post hoc analysis evaluated the effects of age; gender; lesion size, focality, and location (extrafoveal vs foveal); pseudodrusen status; best-corrected visual acuity (BCVA); and low-luminance deficit (LLD) on GA progression at Month 12.ResultsOf 246 randomized patients, 192 with 12-month data were included in this analysis. Overall mean (standard deviation) change in lesion size (mm) was 0.26 (0.17) (P ConclusionsExtrafoveal lesions and larger LLD are potential risk factors for GA progression. Pegcetacoplan treatment significantly controlled GA progression even after accounting for these risk factors

    METformin for the MINimization of Geographic Atrophy Progression (METforMIN): A Randomized Trial

    No full text
    Purpose: Metformin use has been associated with a decreased risk of age-related macular degeneration (AMD) progression in observational studies. We aimed to evaluate the efficacy of oral metformin for slowing geographic atrophy (GA) progression. Design: Parallel-group, multicenter, randomized phase II clinical trial. Participants: Participants aged ≥ 55 years without diabetes who had GA from atrophic AMD in ≥ 1 eye. Methods: We enrolled participants across 12 clinical centers and randomized participants in a 1:1 ratio to receive oral metformin (2000 mg daily) or observation for 18 months. Fundus autofluorescence imaging was obtained at baseline and every 6 months. Main Outcome Measures: The primary efficacy endpoint was the annualized enlargement rate of the square root-transformed GA area. Secondary endpoints included best-corrected visual acuity (BCVA) and low luminance visual acuity (LLVA) at each visit. Results: Of 66 enrolled participants, 34 (57 eyes) were randomized to the observation group and 32 (53 eyes) were randomized to the treatment group. The median follow-up duration was 13.9 and 12.6 months in the observation and metformin groups, respectively. The mean ± standard error annualized enlargement rate of square root transformed GA area was 0.35 ± 0.04 mm/year in the observation group and 0.42 ± 0.04 mm/year in the treatment group (risk difference = 0.07 mm/year, 95% confidence interval = −0.05 to 0.18 mm/year; P = 0.26). The mean ± standard error decline in BCVA was 4.8 ± 1.7 letters/year in the observation group and 3.4 ± 1.1 letters/year in the treatment group (P = 0.56). The mean ± standard error decline in LLVA was 7.3 ± 2.5 letters/year in the observation group and 0.8 ± 2.2 letters/year in the treatment group (P = 0.06). Fourteen participants in the metformin group experienced nonserious adverse events related to metformin, with gastrointestinal side effects as the most common. No serious adverse events were attributed to metformin. Conclusions: The results of this trial as conducted do not support oral metformin having effects on reducing the progression of GA. Additional placebo-controlled trials are needed to explore the role of metformin for AMD, especially for earlier stages of the disease. Financial Disclosure(s): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article

    Genetic studies of body mass index yield new insights for obesity biology

    No full text
    Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10 -8 ), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20 % of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis

    Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma.

    Get PDF
    Concentrations of liver enzymes in plasma are widely used as indicators of liver disease. We carried out a genome-wide association study in 61,089 individuals, identifying 42 loci associated with concentrations of liver enzymes in plasma, of which 32 are new associations (P = 10(-8) to P = 10(-190)). We used functional genomic approaches including metabonomic profiling and gene expression analyses to identify probable candidate genes at these regions. We identified 69 candidate genes, including genes involved in biliary transport (ATP8B1 and ABCB11), glucose, carbohydrate and lipid metabolism (FADS1, FADS2, GCKR, JMJD1C, HNF1A, MLXIPL, PNPLA3, PPP1R3B, SLC2A2 and TRIB1), glycoprotein biosynthesis and cell surface glycobiology (ABO, ASGR1, FUT2, GPLD1 and ST3GAL4), inflammation and immunity (CD276, CDH6, GCKR, HNF1A, HPR, ITGA1, RORA and STAT4) and glutathione metabolism (GSTT1, GSTT2 and GGT), as well as several genes of uncertain or unknown function (including ABHD12, EFHD1, EFNA1, EPHA2, MICAL3 and ZNF827). Our results provide new insight into genetic mechanisms and pathways influencing markers of liver function

    Genetic studies of body mass index yield new insights for obesity biology

    Get PDF
    Note: A full list of authors and affiliations appears at the end of the article. Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P 20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.</p
    corecore