14 research outputs found

    Performance of First Pacemaker to Use Smart Device App for Remote Monitoring

    Get PDF
    BACKGROUND: High adherence to remote monitoring (RM) in pacemaker (PM) patients improves outcomes; however, adherence remains suboptimal. Bluetooth low-energy (BLE) technology in newer-generation PMs enables communication directly with patient-owned smart devices using an app without a bedside console. OBJECTIVE: To evaluate the success rate of scheduled RM transmissions using the app compared to other RM methods. METHODS: The BlueSync Field Evaluation was a prospective, international cohort evaluation, measuring the success rate of scheduled RM transmissions using a BLE PM or cardiac resynchronization therapy PM coupled with the MyCareLink Heart app. App transmission success was compared to 3 historical “control” groups from the Medtronic de-identified CareLink database: (1) PM patients with manual communication using a wand with a bedside console (PM manual transmission), (2) PM patients with wireless automatic communication with the bedside console (PM wireless); (3) defibrillator patients with similar automatic communication (defibrillator wireless). RESULTS: Among 245 patients enrolled (age 64.8±15.6 years, 58.4% men), 953 transmissions were scheduled through 12 months, of which 902 (94.6%) were successfully completed. In comparison, transmission success rates were 56.3% for PM manual transmission patients, 77.0% for PM wireless patients, and 87.1% for defibrillator wireless patients. Transmission success with the app was superior across matched cohorts based on age, sex, and device type (single vs dual vs triple chamber). CONCLUSION: The success rate of scheduled RM transmissions was higher among patients using the smart device app compared to patients using traditional RM using bedside consoles. This novel technology may improve patient engagement and adherence to RM

    Solving patients with rare diseases through programmatic reanalysis of genome-phenome data.

    Get PDF
    Funder: EC | EC Seventh Framework Programm | FP7 Health (FP7-HEALTH - Specific Programme "Cooperation": Health); doi: https://doi.org/10.13039/100011272; Grant(s): 305444, 305444Funder: Ministerio de Economía y Competitividad (Ministry of Economy and Competitiveness); doi: https://doi.org/10.13039/501100003329Funder: Generalitat de Catalunya (Government of Catalonia); doi: https://doi.org/10.13039/501100002809Funder: EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj); doi: https://doi.org/10.13039/501100008530Funder: Instituto Nacional de Bioinformática ELIXIR Implementation Studies Centro de Excelencia Severo OchoaFunder: EC | EC Seventh Framework Programm | FP7 Health (FP7-HEALTH - Specific Programme "Cooperation": Health)Reanalysis of inconclusive exome/genome sequencing data increases the diagnosis yield of patients with rare diseases. However, the cost and efforts required for reanalysis prevent its routine implementation in research and clinical environments. The Solve-RD project aims to reveal the molecular causes underlying undiagnosed rare diseases. One of the goals is to implement innovative approaches to reanalyse the exomes and genomes from thousands of well-studied undiagnosed cases. The raw genomic data is submitted to Solve-RD through the RD-Connect Genome-Phenome Analysis Platform (GPAP) together with standardised phenotypic and pedigree data. We have developed a programmatic workflow to reanalyse genome-phenome data. It uses the RD-Connect GPAP's Application Programming Interface (API) and relies on the big-data technologies upon which the system is built. We have applied the workflow to prioritise rare known pathogenic variants from 4411 undiagnosed cases. The queries returned an average of 1.45 variants per case, which first were evaluated in bulk by a panel of disease experts and afterwards specifically by the submitter of each case. A total of 120 index cases (21.2% of prioritised cases, 2.7% of all exome/genome-negative samples) have already been solved, with others being under investigation. The implementation of solutions as the one described here provide the technical framework to enable periodic case-level data re-evaluation in clinical settings, as recommended by the American College of Medical Genetics

    Solve-RD: systematic pan-European data sharing and collaborative analysis to solve rare diseases.

    Get PDF
    For the first time in Europe hundreds of rare disease (RD) experts team up to actively share and jointly analyse existing patient's data. Solve-RD is a Horizon 2020-supported EU flagship project bringing together >300 clinicians, scientists, and patient representatives of 51 sites from 15 countries. Solve-RD is built upon a core group of four European Reference Networks (ERNs; ERN-ITHACA, ERN-RND, ERN-Euro NMD, ERN-GENTURIS) which annually see more than 270,000 RD patients with respective pathologies. The main ambition is to solve unsolved rare diseases for which a molecular cause is not yet known. This is achieved through an innovative clinical research environment that introduces novel ways to organise expertise and data. Two major approaches are being pursued (i) massive data re-analysis of >19,000 unsolved rare disease patients and (ii) novel combined -omics approaches. The minimum requirement to be eligible for the analysis activities is an inconclusive exome that can be shared with controlled access. The first preliminary data re-analysis has already diagnosed 255 cases form 8393 exomes/genome datasets. This unprecedented degree of collaboration focused on sharing of data and expertise shall identify many new disease genes and enable diagnosis of many so far undiagnosed patients from all over Europe

    Solving unsolved rare neurological diseases-a Solve-RD viewpoint.

    Get PDF
    Funder: Durch Princess Beatrix Muscle Fund Durch Speeren voor Spieren Muscle FundFunder: University of Tübingen Medical Faculty PATE programFunder: European Reference Network for Rare Neurological Diseases | 739510Funder: European Joint Program on Rare Diseases (EJP-RD COFUND-EJP) | 44140962

    Twist exome capture allows for lower average sequence coverage in clinical exome sequencing

    Get PDF
    Background Exome and genome sequencing are the predominant techniques in the diagnosis and research of genetic disorders. Sufficient, uniform and reproducible/consistent sequence coverage is a main determinant for the sensitivity to detect single-nucleotide (SNVs) and copy number variants (CNVs). Here we compared the ability to obtain comprehensive exome coverage for recent exome capture kits and genome sequencing techniques. Results We compared three different widely used enrichment kits (Agilent SureSelect Human All Exon V5, Agilent SureSelect Human All Exon V7 and Twist Bioscience) as well as short-read and long-read WGS. We show that the Twist exome capture significantly improves complete coverage and coverage uniformity across coding regions compared to other exome capture kits. Twist performance is comparable to that of both short- and long-read whole genome sequencing. Additionally, we show that even at a reduced average coverage of 70× there is only minimal loss in sensitivity for SNV and CNV detection. Conclusion We conclude that exome sequencing with Twist represents a significant improvement and could be performed at lower sequence coverage compared to other exome capture techniques

    A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing

    Get PDF
    Purpose Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the “ClinVar low-hanging fruit” reanalysis, reasons for the failure of previous analyses, and lessons learned. Methods Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted. Results We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency). Conclusion The “ClinVar low-hanging fruit” analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock

    Genetic diagnosis of Duchenne and Becker muscular dystrophy through mRNA analysis : New splicing events

    Get PDF
    Background Up to 7% of patients with Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) remain genetically undiagnosed after routine genetic testing. These patients are thought to carry deep intronic variants, structural variants or splicing alterations not detected through multiplex ligation-dependent probe amplification or exome sequencing. Methods RNA was extracted from seven muscle biopsy samples of patients with genetically undiagnosed DMD/BMD after routine genetic diagnosis. RT-PCR of the DMD gene was performed to detect the presence of alternative transcripts. Droplet digital PCR and whole-genome sequencing were also performed in some patients. Results We identified an alteration in the mRNA level in all the patients. We detected three pseudoexons in DMD caused by deep intronic variants, two of them not previously reported. We also identified a chromosomal rearrangement between Xp21.2 and 8p22. Furthermore, we detected three exon skipping events with unclear pathogenicity. Conclusion These findings indicate that mRNA analysis of the DMD gene is a valuable tool to reach a precise genetic diagnosis in patients with a clinical and anatomopathological suspicion of dystrophinopathy that remain genetically undiagnosed after routine genetic testing

    Chemical and Biological Analyses of the Essential Oils and Main Constituents of Piper Species

    No full text
    The essential oils obtained from leaves of Piper duckei and Piper demeraranum by hydrodistillation were analyzed by gas chromatography-mass spectrometry. The main constituents found in P. demeraranum oil were limonene (19.3%) and β-elemene (33.1%) and in P. duckei oil the major components found were germacrene D (14.7%) and trans-caryophyllene (27.1%). P. demeraranum and P. duckei oils exhibited biological activity, with IC50 values between 15 to 76 μg mL−1 against two Leishmania species, P. duckei oil being the most active. The cytotoxicity of the essential oils on mice peritoneal macrophage cells was insignificant, compared with the toxicity of pentamidine. The main mono- and sesquiterpene, limonene (IC50 = 278 μM) and caryophyllene (IC50 = 96 μM), were tested against the strains of Leishmania amazonensis, and the IC50 values of these compounds were lower than those found for the essential oils of the Piper species. The HET-CAM test was used to evaluate the irritation potential of these oils as topical products, showing that these oils can be used as auxiliary medication in cases of cutaneous leishmaniasis, with less side effects and lower costs
    corecore