101 research outputs found

    Quantitative agent-based modeling reveals mechanical stress response of growing tumor spheroids is predictable over various growth conditions and cell lines

    Get PDF
    Model simulations indicate that the response of growing cell populations on mechanical stress follows the same functional relationship and is predictable over different cell lines and growth conditions despite the response curves look largely different. We develop a hybrid model strategy in which cells are represented by coarse-grained individual units calibrated with a high resolution cell model and parameterized measurable biophysical and cell-biological parameters. Cell cycle progression in our model is controlled by volumetric strain, the latter being derived from a bio-mechanical relation between applied pressure and cell compressibility. After parameter calibration from experiments with mouse colon carcinoma cells growing against the resistance of an elastic alginate capsule, the model adequately predicts the growth curve in i) soft and rigid capsules, ii) in different experimental conditions where the mechanical stress is generated by osmosis via a high molecular weight dextran solution, and iii) for other cell types with different growth kinetics. Our model simulation results suggest that the growth response of cell population upon externally applied mechanical stress is the same, as it can be quantitatively predicted using the same growth progression function

    Dystrophy-associated caveolin-3 mutations reveal that caveolae couple IL6/STAT3 signaling with mechanosensing in human muscle cells

    Get PDF
    Caveolin-3 is the major structural protein of caveolae in muscle. Mutations in the CAV3 gene cause different types of myopathies with altered membrane integrity and repair, expression of muscle proteins, and regulation of signaling pathways. We show here that myotubes from patients bearing the CAV3P28L and R26Q mutations present a dramatic decrease of caveolae at the plasma membrane, resulting in abnormal response to mechanical stress. Mutant myotubes are unable to buffer the increase in membrane tension induced by mechanical stress. This results in impaired regulation of the IL6/STAT3 signaling pathway leading to its constitutive hyperactivation and increased expression of muscle genes. These defects are fully reversed by reassembling functional caveolae through expression ofcaveolin-3. Our study reveals that under mechanical stress the regulation of mechan-oprotection by caveolae is directly coupled with the regulation of IL6/STAT3 signaling inmuscle cells and that this regulation is absent in Cav3-associated dystrophic patients

    EHD2 is a mechanotransducer connecting caveolae dynamics with gene transcription

    Get PDF
    Caveolae are small invaginated pits that function as dynamic mechanosensors to buffer tension variations at the plasma membrane. Here we show that under mechanical stress, the EHD2 ATPase is rapidly released from caveolae, SUMOylated, and translocated to the nucleus, where it regulates the transcription of several genes including those coding for caveolae constituents. We also found that EHD2 is required to maintain the caveolae reservoir at the plasma membrane during the variations of membrane tension induced by mechanical stress. Metal-replica electron microscopy of breast cancer cells lacking EHD2 revealed a complete absence of caveolae and a lack of gene regulation under mechanical stress. Expressing EHD2 was sufficient to restore both functions in these cells. Our findings therefore define EHD2 as a central player in mechanotransduction connecting the disassembly of the caveolae reservoir with the regulation of gene transcription under mechanical stress

    Reuniting philosophy and science to advance cancer research

    Get PDF
    Cancers rely on multiple, heterogeneous processes at different scales, pertaining to many biomedical fields. Therefore, understanding cancer is necessarily an interdisciplinary task that requires placing specialised experimental and clinical research into a broader conceptual, theoretical, and methodological framework. Without such a framework, oncology will collect piecemeal results, with scant dialogue between the different scientific communities studying cancer. We argue that one important way forward in service of a more successful dialogue is through greater integration of applied sciences (experimental and clinical) with conceptual and theoretical approaches, informed by philosophical methods. By way of illustration, we explore six central themes: (i) the role of mutations in cancer; (ii) the clonal evolution of cancer cells; (iii) the relationship between cancer and multicellularity; (iv) the tumour microenvironment; (v) the immune system; and (vi) stem cells. In each case, we examine open questions in the scientific literature through a philosophical methodology and show the benefit of such a synergy for the scientific and medical understanding of cancer

    Membrane tension regulation and Membrane-mediated mechano-sensing

    No full text
    Institut Pasteu

    Forming, watching and stressing organoids

    No full text
    International audienc

    Forming, watching and stressing organoids

    No full text

    Biomechanical regulation of tumor multicellular spheroid growth and cell invasion

    No full text
    International audienc
    corecore