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Abstract

Model simulations indicate that the response of growing cell populations on mechanical
stress follows the same functional relationship and is predictable over different cell lines
and growth conditions despite the response curves look largely different. We develop a
hybrid model strategy in which cells are represented by coarse-grained individual units
calibrated with a high resolution cell model and parameterized measurable biophysical
and cell-biological parameters. Cell cycle progression in our model is controlled by
volumetric strain, the latter being derived from a bio-mechanical relation between
applied pressure and cell compressibility. After parameter calibration from experiments
with mouse colon carcinoma cells growing against the resistance of an elastic alginate
capsule, the model adequately predicts the growth curve in i) soft and rigid capsules, ii)
in different experimental conditions where the mechanical stress is generated by osmosis
via a high molecular weight dextran solution, and iii) for other cell types with different
growth kinetics. Our model simulation results suggest that the growth response of cell
population upon externally applied mechanical stress is the same, as it can be
quantitatively predicted using the same growth progression function.

Author summary

The effect of mechanical resistance on the growth of tumor cells remains today largely
unquantified. We studied data from two different experimental setups that monitor the
growth of tumor cells under mechanical compression. The existing data in the first
experiment examined growing CT26 cells in an elastic permeable capsule. In the second
experiment, growth of tumor cells under osmotic stress of the same cell line as well as
other cell lines were studied. We have developed an agent-based model with measurable
biophysical and cell-biological parameters that can simulate both experiments. Cell
cycle progression in our model is a Hill-type function of cell volumetric strain, derived
from a bio-mechanical relation between applied pressure and cell compressibility. After
calibration of the model parameters within the data of the first experiment, we are able
predict the growth rates in the second experiment. We show that that the growth
response of cell populations upon externally applied mechanical stress in the two
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different experiments and over different cell lines can be predicted using the same
growth progression function once the growth kinetics of the cell lines in abscence of
mechanical stress is known.
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Introduction 1

Mechanotransduction is the mechanism by which cells transform an external mechanical 2

stimulus into internal signals. It emerges in many cellular processes, such as embryonic 3

development and tumor growth [1]. Cell growth in a confined environment such as 4

provided by the stroma and surrounding tissues increases cell density and affects the 5

balance between cell proliferation and death in tissue homeostasis [2, 3]. Tumor 6

spheroids have long been considered as appropriate in vitro models for tumors [4]. 7

While the dynamics of freely growing spheroids has been extensively studied both 8

experimentally [5] and numerically (e.g. [6, 7, 18]), more recent experiments have also 9

addressed the growth of spheroids under mechanical stress. 10

Helmlinger et al. (1997) and later Cheng et al. (2009) and Mills et al. (2014) [8–10] 11

experimentally investigated the growth of spheroids embedded in agarose gel pads at 12

varying agarose concentration as a tunable parameter for the stiffness of the 13

surrounding medium. Other approaches such as the application of an osmotic pressure 14

determined by a dextran polymer solution have also been developed to investigate the 15

impact of external pressure on spheroid growth [11]. In all cases mechanical stress was 16

reported to slow down or inhibit spheroid growth. Delarue et al. [12] suggested that 17

growth stagnation is related to a volume decrease of the cells. However, a quantitative 18

relation between pressure and cell fate is not reached yet. The works of Helmlinger et 19

al. [8] and their follow-ups have inspired a number of theoretical papers aiming at 20

explaining the observations, either based on continuum approaches considering locally 21

averaged variables (e.g. for density and momentum, for overview see [13]) [3, 14–17], or 22

by agent-based models (ABMs) representing each individual cell [19, 20] belonging to 23

the class of models, which are extended and refined in the presented work. For example, 24

the growth kinetics of multicellular spheroids (MCS) embedded in agarose gel as 25

observed by Helmlinger et al. [8] could be largely reproduced, if cell cycle progression 26

was assumed to be inhibited either above a certain threshold pressure or below a certain 27

threshold distance between the cell centers, whereby growth inhibition occurred at 28

different spheroid sizes for different densities of extracellular material [19]. However, the 29

model developed in that reference has no notion of cell shape, hence does not permit 30

definition of cell volume, thus pressure and compression cannot be physically correctly 31

related [21]. 32

Here, we first establish a computational model to quantitatively explain the growth 33

kinetics and patterns found for CT26 (mouse colon carcinoma cell line) multi-cellular 34

spheroids constrained by a spherical elastic capsule, partially based on data previously 35

published [26] and partially based on new data introduced below. This novel 36

experimental technique, called the “cellular capsule technology” [26] allows to measure 37

the average pressure exerted by the cell aggregate onto the calibrated capsule by 38

monitoring the radial expansion of the shell once confluence is reached. Pressure can be 39

recorded over periods as long as a week and the histological data collected and analyzed 40

on fixed and sliced spheroids can provide snapshots of the spatial multicellular pattern. 41

We refer to this experimental technique as ”Experiment I”. The thickness, and thus 42

the stiffness of the capsule, was varied to mimic different mechanical resistance 43

conditions. 44

Delarue et al. (2014) [12] investigated the effect of mechanical stress on MCS growth 45

using the same cell line in a different experimental setting. We exploit these results to 46

challenge our model and determine whether the same computational model designed to 47

match experiment I is capable to quantitatively explain also this experiment (referred to 48

as ”experiment II”). In experiment II, mechanical compression was imposed using the 49

osmotic effects induced by a dextran solution. The main difference between those two 50

experiments is that whereas the pressure gradually increases with increasing 51

deformation of the elastic capsule in experiment I, in experiment II a constant stress is 52
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applied due to osmotic forces in the absence of any obstructing tissue (see Figure 1A). 53

In this paper, we aim to decipher and quantify certain mechanisms of spheroid 54

growth altered by mechanical stress. At this stage, we establish a robust computational 55

approach that can be applied to various systems (cell lines and experimental 56

procedures) and that allows to recapitulate the growth dynamics and the observed 57

cellular patterns. We will show that this can be reached with a minimal number of 58

hypotheses without having to explicitly integrate specific molecular pathways. Gaining 59

insight in the molecular mechanisms would require additional challenging experiments 60

in which the pathways are selectively inhibited or enhanced in a three-dimensional 61

environment, and would add further parameters to the model. To the best of our 62

knowledge, a specific mechanotransduction molecular pathway has been highlighted 63

once, demonstrating the impact of cell volume change on the expression of the 64

proliferation inhibitor p27Kip1 [12]. 65

As modeling technique we here developed an agent-based model. Simulations with 66

ABMs provide a computer experiment representing an idealized version of the true 67

wet-lab experiment [77]. ABMs naturally permit accounting for cell to cell variability 68

and inhomogeneities on small spatial scales as they represent each cell individually. 69

Center-Based Models (CBM) are a prominent representative in the class of ABMs in 70

which forces between cells are calculated as forces between their centers. Center-based 71

models for multicellular systems were derived from conceptual anologies to collodial 72

particle dynamics by re-interpretation of parameters and addition of growth and 73

division processes [53, 75]. The model developed here is fully parameterized in terms of 74

physical parameters, which makes each component possible to validate. However, it 75

circumvents difficulties that standard center-based models have at large compression 76

(see [21]) establishing a hybrid modeling strategy to compute the mechanical interaction 77

forces by so-called 3D Deformable Cell Models (DCMs) [70,79]. A DCM displays cell 78

shape explicitly at the expense of high computational cost (see Figure 3). In our hybrid 79

strategy the parameters of the CBM that considers the cell shape only in a statistical, 80

“coarse grained” sense thereby permitting simulations of large cell population sizes, are 81

pre-calibrated from a finer scale DCM. This strategy permits to combine the advantages 82

of the DCM with the short simulation time of the CBM. Both CBM and DCM are 83

parameterized by measurable quantities to identify the possible parameter range of each 84

model parameter and avoid non-physiological parameter choices. 85

We studied the series of experimental settings in the works [26] and [12] as both 86

utilize a common cell line, and exert stress on growing MCS of that cell line in different 87

experimental settings. The model is then further tested with experiments on other cell 88

lines as provided in the second work. 89

To unravel the dynamics of MCS subject to compression, our modeling strategy is to 90

postulate and implement hypotheses on cell growth, quiescence and death, and 91

iteratively adapt or extend them in case the model simulations are falsified by 92

comparison with the experimental data. Pursuing a similar strategy enabled us to 93

obtain predictions of subsequently validated mechanisms in liver regeneration [27,28]. 94

Based upon analysis of the relation between pressure, cell density and cell 95

compressibility in the two different experiments, our findings suggest that contact 96

inhibition can be regarded as a robust continuous process imposed by a reduction of cell 97

volume as a consequence of increasing pressure and individual cell compressibility. In 98

addition, the high-resolution model shows that potential effects of micro-mechanics at 99

the interface with the capsule may depend on the mechanical properties of the cells. 100

For the sake of clarity, we below start to first present the minimal model that was 101

able to explain the data, before discussing in which ways simpler models with other 102

hypotheses failed. 103
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Fig 1. Summary of key experimental and simulation results. (A)Two experiments
setups for growing spheroids considered in this study. In experiment I, the spheroid is in
mechanical contact with a capsule, and the mechanical resistance is determined by the
wall thickness H. In experiment II, the spheroid is immersed in a dextran polymer
solution, and the mechanical resistance originates from the osmotic pressure related to
the dextran concentration. (B) Radial growth curves data of the spheroids in units of
R0 (= 100µm), for experiment I and II and respective model runs. The blue full circles
are the free growth data for CT26, from [26]. The thin blue line indicates theoretical
pure exponential growth with doubling time of 17h. The data starts deviating from an
exponential after 2 days. The other lines are simulation results. The black dashed line
indicates the optimal parameter set for the stress response in experiment I, performed
with final model I. The full black line indicates the same model run for free growth in
Exp.I. After re-calibration of one model parameter in model I for the Exp.II conditions
in absence of dextran (full red line), the model (referred to as model II to stress the
change of the parameter) predicts the stress response in experiment II (red dashed line).
(C) Simulation snapshots of both experiments. The cells are colored according to their
volume (cells at the border are larger than in the interior). (D-G) Model simulations
for Exp.II for the cell lines BC52, AB6, FHI and HT29, respectively. Full red lines
represent the same initial calibration procedure, while red dashed lines represent the
predicted stress conditions. The stress conditions are p = 5 kPa for AB6, FHI and BC52,
and p = 10 kPa for HT29 (see Validation of model for experiment II: same cell lines as
for experiment I).
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Results 104

Experimental observations 105

Experiment I: Following microfluidics-assisted encapsulation of CT26 cells into alginate 106

hollow capsules, the growing aggregates of cells were monitored by phase contrast 107

microscopy (see [26] for details). After the tumor cells reached the inner border of the 108

elastic alginate capsule corresponding to a radius of about 100µm (t = 0d in Figure 1B), 109

they were observed to further induce a dilatation of the capsule, which is an indicator of 110

the exerted pressure. The capsule expansion was measured from the point of confluence 111

over several days, while histological data of the spheroids were collected at the stage of 112

confluence and at 48h past confluence. Capsules have been designed to generate shells 113

with two different thicknesses. The thin ones (H/R0 ≈ 0.08; H = 8µm) are the softer 114

while the thick ones (H/R0 ≈ 0.25; H = 30µm) will mimic a larger mechanical 115

resistance against growth. Besides the data extracted from [26], we have also exploited 116

and analyzed unpublished data corresponding to new sets of experiments in order to 117

critically test the reliability of the method (see Figure 4A). We extract four main 118

observations from these experiments: 119

(EI.OI) In the absence of a capsule, an initial exponential growth stage was 120

observed with doubling time Tcyc = 17h [26]. The growth kinetics however starts to 121

deviate from exponential growth for spheroid size (R ≈ 175µm, see Figure 1B). 122

(EI.OII) In the presence of a capsule, the exponential growth is maintained until 123

confluence, i.e. (R = R0 ≈ 100µm), which shows that the capsule is permeable to 124

nutrients and allows normal growth. Once confluence is passed, the time evolution of 125

the capsule radius exhibits two regimes: i) an initial “fast” growth stage T1 (t < 1day), 126

crossing over to ii) a ”slow“ quasi-linear residual growth stage T2 (t > 1 day) that at 127

least persists as long as the capsules are monitored, i.e. up to one week. The transition 128

happens roughly at a pressure of ∼ 1.5 kPa, see Figure 4C. The observed long-time 129

growth velocities were ∼ 2µm/day for the thin capsules (Figure 4A) and 0.7µm/d for 130

the thick capsules (see Figure 5). 131

(EI.OIII) The nuclei density, obtained from cryosections, increases from ∼ 1 132

nucleus / 100µm2 before confinement, to roughly 2 nuclei / 100µm2 after confluence, 133

with a relatively higher number near the center of the spheroid (1.2 times more 134

compared to the outer regions), and a local increase at the border of the capsule. The 135

distribution and shape of cell nuclei reported in [26] suggests that cells near the capsule 136

border are deformed thus deviating from a spherical shape cells adopt in isolation, while 137

those in the interior look spherically shaped. 138

(EI.OIV) Most of the cells in the core of the spheroid are necrotic after 48h of 139

confinement, while the cells located in a peripheral viable rim of roughly two cell layers 140

thickness (λI ≈ 20µm), show viability and proliferative activity during the whole time 141

course of the experiment, including period T2. 142

(EI.OV) Fibronectin staining indicates there is ECM present during free growth; 143

staining after 48h indicates more ECM regions near the capsule border and a weak 144

signal inside the spheroid. 145

Experiment II: in the work of Delarue et al. (2014) [12], CT26 spheroids (initial 146

radius ∼ 100µm) were grown in a dextran polymer solution. To recover osmotic 147

balance, water expulsion out of the spheroid generates osmotic forces exerted to the 148

outer cells that are transferred as compressive stresses to the interior (bulk) cells. The 149

concentration of dextran regulates the applied pressure. 150

(EII.OI) The growth rate at p = 5 kPa is significantly lower than in control 151

spheroids where no pressure is exerted. 152

(EII.OII) The spheroid free growth data does not show an initial exponential phase 153

found in (EI.OI) (Figure 1B). This surprising discrepancy might result from the 154
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different culture conditions between both experiments. In experiment I, the medium has 155

repeatedly been refreshed [26], while in experiment II this has not been done so often 156

(private communication), leading to lower concentrations of nutrients and other 157

molecular factors in experiment II. During the whole course of osmotic stress 158

application, an over-expression of the kinase inhibitor p27Kip1 together with an 159

increased number of cells arrested in the G1 phase was observed, but no significant 160

change in apoptosis rates after 3 days was reported. 161

(EII.OIII) Delarue et al. (2014) also considered the stress response for other cell 162

lines (AB6, HT29, BC52, FHI) performing steps EII.OI and EII.OII for each cell line. 163

These data will be used to validate our model despite less information concerning cell 164

size and cycling times is available for these cell lines. 165

Hypotheses for growth and death of tumor cells 166

As a first step we proposed a number of hypotheses for the growth dynamics common to 167

experiments I and II. 168

(H.I) In both experiments a linear growth phase was observed after exposing the 169

MCS to external stress. The growth of the cell population that is not constrained by 170

either mechanically-induced growth inhibition, nutrient, oxygen or growth factor 171

limitations is exponential [4]. We assumed that deviation of growth from an exponential 172

indicates restriction of proliferation to a rim. This may have different reasons, for 173

example necrosis that has been only reported for experiment I (EI.OIV), or of cells 174

being quiescent. Both necrosis and quiescence can result from a lack of nutrients or 175

other factors [6, 29], that may indirectly be promoted by pressure, e.g. in case the 176

compression of the cell layer squeezed between the capsule shell and the inner cell layers 177

leads to the formation of an obstructive barrier for some nutrients (as glucose) to the 178

cells located more deeply in the interior of the tumor. However, cell quiescence (or cell 179

death) may also be a direct consequence of mechanical pressure, e.g. if cells subject to 180

compression cannot advance in cell cycle for too long and then undergo apoptosis [6, 29]. 181

We do not specify the origin the rim here, we take it into account through the definition 182

of a thickness λk (k = I, II is the experiment index). In Exp. I, λI distinguishes the 183

necrotic cells from viable ones. In Exp.II, λII separates the quiescent cells from the ones 184

that can still proliferate. Necrotic cells as observed in experiment I can undergo lysis, in 185

which they steadily lose a part of their fluid mass. The decrease of mass is limited to 186

about 70%− 90% of the total initial mass of the cell [30, 31]. 187

(H.II) Cell growth rate may be declined or inhibited by pressure [8]. The authors of 188

a recent study [12] hypothesized that the growth rate may be down-regulated if the cell 189

volume is reduced as a consequence of pressure. We here test the hypothesis that 190

growth rate is dependent on the volumetric strain (“true strain”, commonly used in case 191

of large strains), 192

εV = − log(V/Vref ), (1)

where V is the actual compressed volume and Vref is the volume of the cell in free 193

suspension. The volumetric strain can be related with the pressure by integration of the 194

relation dp = −KdεV . K is the compression modulus of the cell and depends on the 195

actual volume fraction of water, and the elastic response of the cytoskeleton [42]. It may 196

also be influenced by the permeability of the plasma membrane for water, the presence 197

of caveolae, and active cellular responses [32,78]. As such, the timescale at which K is 198

measured is important. 199

In our simulations, we regarded K as the long timescale modulus of cell, as growth 200

and divisions are slow processes. We studied constant and a volume-dependent 201

compression moduli (the calculation of growth, volume and pressure for each cell in the 202

model is explained in Cell growth, mitosis, and lysis, Equation 8). 203
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On the molecular level, volume reduction correlates with over expression of p27Kip1 204

which progressively decreases the proliferating potential. Other molecular players such 205

as the transcriptional regulators YAP/TAZ were also reported to be 206

mechano-sensitive [33]. In the scope of the present work, these reports suggest that 207

quiescence, and perhaps also apoptosis, may be controlled by either pressure or cell 208

volume. Experimental studies [34–37] mainly measured the growth rate of dry mass or 209

size. These indicate that the growth rate α varies within the cell-cycle, yet a unique 210

relationship is difficult to infer. 211

We propose as general form for growth rate α a Hill-type formula defined as (1 - Hill 212

function): 213

α = α0

εnVtr

εnV + εnVtr

, (2)

where α0 is the growth rate of the unconstrained cell, εVtr is a threshold value1, and n is 214

an integer. The parameter εVtr is the value where the cells have lost 50% of their initial 215

growth rate. Note that for εVtr
→∞ we retrieve a constant growth scenario, whereas 216

increasing n from 1 to ∞ modifies the curve from a linear-like decrease to a sharp 217

pressure threshold (see Figure 2A). The use of a Hill-type function thus makes a variety 218

of growth scenarios possible. Hill formulas have been used in the past to simulate 219

contact inhibition in epithelial tissue and tumors [17,38,39]. We discuss the generality 220

of this approach in the Discussion section. 221

(H.III) It is generally accepted that cells that have passed the G1 checkpoint (also 222

known as restriction point) are committed to divide, else they go into quiescence (G0). 223

In our model we assume this checkpoint is situated after 1/4 of the total cell cycle 224

time [40]. The transition criterion to the quiescence state can be defined as the one at 225

which the growth rate ”stalls”, i.e. α/α0 < αqui (see Figure 2A). 226

”Sizer versus Timer”: According to hypothesis H.II growth rate depends on the 227

compression of the cells, hence the volume doubling time can locally vary and is larger 228

than for uncompressed cells. Limiting cases would be that division occurred after 229

volume doubling at a variable time [6] (”sizer”), or after a pre-defined time (”timer”) 230

often mentioned in developmental biology [41]. We therefore also compared the effect of 231

constant time vs. doubling of volume criterion in cell division on the cell population 232

behavior. Also mentioned in H.II, the unconstrained growth rate α0 itself may vary 233

during the cell cycle. To study the potential effect of these variations we performed 234

comparative runs considering constant growth rate as well as exponential growth rate 235

during the cell cycle (details in Cell growth, mitosis, and lysis). 236

Establishment of the Agent-Based Model and its 237

parameterization 238

For the model development and parameterization we pursued a multi-step strategy 239

sketched in Figure 3 (see also Table 1 and 2). The model parameters for the ”model I” 240

to mimic experiment I, {PM1}, and ”model II” to mimic experiment II, {PM2}, were 241

step-wise calibrated from experiments I and II, and in each case first for growth in 242

absence of external mechanical stress on the growing population, then in presence of 243

stress. They can be categorized by separating between cell line-specific parameters 244

{PC=j}, where j ∈ {CT26, AB6, HT29, BC52, FHI}, determines the cell line, and 245

experiment-specific parameters {PExp=k} with k = I, II characterizing the experimental 246

setting. The simulations were performed with a center-based model (CBM). As the 247

model is parameterized by measurable physical and bio-kinetic parameters, parameter 248

ranges could readily be determined within narrow limits (Table 2, [27] ). 249

1We assume V/Vref ≤ 1 in the experiment meaning the cells are always in a compressive state
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Fig 2. (A) Plot of Hill-type growth rate function as function of the volumetric strain
εV = εV (p), for n = 1, 2 and a large value of n, and for a constant growth scenario (
εVtr →∞). Plot of a linear growth rate function with εVtr such that α/α0 = 1/2. Below
the pink zone indicated by αqui cells become quiescent and growth stalls. In case of a
sharp threshold obtained by the choice of n→∞, any cell with εV < εVtr

would
proliferate with maximal rate α = α0, while any cell with εV ≥ εVtr

would be quiescent.
For finite n, there are also proliferating cells for α < α0. The points on the growth rate
curves below which the cells go into quiescence are indicated by an (*). In this work we
have found that the parameter set n = 1, εVtr = 0.35 and αqui = 0.3 results in good fits
for all cell lines. (B) simulation snapshots of a CT26 spheroid during the initial free
growth, just before confinement (coloring according to cell radius), and at 48h of
confinement in capsule (coloring here indicates necrotic cells (dark) and viable cells
(white)) .

First {PM1} was identified in three steps (1)-(3) (Table 1). 250

(1) As the ”standard” CBMs are inaccurate in case of high compression [21], the 251

cell-cell interaction force in the CBM in this work was calibrated using computer 252

simulations with a deformable cell model (DCM), resulting in an effective stiffness Ẽi in 253

the CBM at high compression, that increases with increasing compression, see 254

Calibration of the CBM contact forces using DCM. Ẽi belongs to {PC=CT26} of the 255

CBM. The DCM could not be directly used for the growth simulations, as it is 256

computationally too expensive to run simulations up to the experimentally observed cell 257

population sizes of ∼ 104 cells. Next, the experimental information was taken into 258

account (Figure 3). 259

(2) Comparing simulations of the CBM with the data from the stress-free growth 260
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control experiment of multicellular CT26 spheroids (MCS) in experiment I permits 261

determining those parameters of {PC=CT26} that were are unaffected by the presence of 262

the elastic capsule (Table 2), see Model setup and parameter determination. 263

(3) Adding a thin elastic capsule specifies the set of experimental parameters 264

{PExp=1} (Young modulus, Poisson ratio and thickness of the capsule etc.), and 265

permits identifying those cell line specific parameters that respond on the presence of 266

the capsule. 267

In experiment I these are the parameters characterizing cell cycle entrance and cell 268

growth (2). Finally, model I is characterized by the conjunction of the cell-specific and 269

the experiment-specific parameter sets {PM1} = {PC=CT26} ∪ {PExp=1}. 270

Replacing the thin by a thick capsule in the simulations by changing the 271

experimentally determined thickness parameter for the thin capsule in {PExp=1} by 272

that for the thick capsule leads to a predicted simulated growth dynamics that matches 273

well with the one experimental data without any additional fit parameters (Figure 5B). 274

Experiment II has been performed with CT26, AB6, HT29, BC52, FHI cells. For 275

CT26 cells, the cell-line specific parameter set remains the same in experiment II as in 276

experiment I. Differently from experiment I, stress-free growth in experiment II is not 277

exponential but linear, reflecting different growth conditions that limit cell proliferating 278

to a “proliferating” rim. This determines the proliferating rim size λII as the 279

experimental parameter of set {PExp=2} that summarizes the impact of growth medium 280

under the conditions of experiment II in stress-free growth. In presence of dextran, 281

{PExp=2} is expanded by only the measured pressure exerted by dextran, which as it is 282

experimentally determined, is no fit parameter (λII remains unchanged). With the 283

parameter set {PM2} = {PC=CT26} ∪ {PExp=2}, the simulation model predicts a 284

growth dynamics that quantitatively agrees with the one experimentally found 285

indicating that the growth response only depends on the exerted pressure, not on any 286

other parameter (Figure 1B). 287

In a last step, the stress responses of the other cell lines, 288

j = {AB6, HT29, BC52, FHI} have been modeled for the experimental setting of 289

experiment II, again in two steps (Figure 1D-G). The first step was to adjust the cell 290

cycle time Tcyc of the cell line to fit the stress-free growth leading to replacement of that 291

one parameter in passing from {PC=CT26} to {PC=j}, the second was predicting the 292

growth subject to dextran-mediated stress without any parameter fitting i.e., using 293

{PExp=2} for the experimental parameters. 294

Summarizing, almost the entire parameter determination is done by adjusting the 295

model parameters to experiment I for a thin capsule. After this step there is only one fit 296

parameter for each cell line, summarizing the cell-line specific effect of growth 297

conditions of experiment II for the stress-free growth (i.e., the control experiment). The 298

step to simulate population growth subject to external stress, both in the thick capsule 299

for CT26 as well as in experiment II with dextran for the cell lines CT26, AB6, HT29, 300

BC52 and FHI is performed without parameter fitting. 301

Parameter set symbol unit value ref
Cortex Young’s modulus Ecor Pa 2400 [42]
Cortex thickness hcor µm 0.1 [42]
Cell compression modulus K kPa [2.5, 10] CS, [12,42–44]

Table 1. Nominal physical parameter values for the DCM to calibrate the CBM.
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Fig 3. Model calibration overview. Simulations were performed with a center-based
model (CBM). In step 1, the contact forces in CBM were calibrated from DCM
simulations with parameters (Ecor, hcor, K), yielding a variable effective contact
stiffness Ẽ of the CBM depending on the compression level. In step 2 the parameters
{PC=CT26} of the CBM for cell line CT26 were determined. Comparing simulations of
the CBM with stress-free growth of multicellular CT26 spheroids in experiment I
determines most parameters of {PC=CT26} (Figure 1B, full black line ). step 3: those
cell-line parameters that are affected by the capsule, are specified by comparison with
the data from experiment I in presence of the thin capsule. The set of
experiment-specific parameters {PExp=1} (Young modulus and thickness of the capsule)
are given by the experimental setting. For the so specified complete set of parameters
the simulation reproduces the experimental data I for the thin capsule (Figure 1B,
dashed black line), and, after replacement of the capsule thickness, predicts the
experimental data for the thick capsule (see Figure 5B). For CT26 cells growing in
experiment setting II the cell parameters remain unchanged {PC=CT26}. The deviation
of the growth dynamics of stress-free growth from an exponential in experiment II
(Figure 1B, full red line) is taken into account by an experiment-specific parameter,
namely the proliferative rim. Without any further fit parameter, the model then
predicts the correct growth dynamics subject to dextran-mediated stress (Figure 1B,
dashed red line). In order to predict the stress-affected growth kinetics of the cell lines
j = {CT26, AB6, HT29, BC52, FHI}, their cell cycle duration is modified to capture
the stress-free growth analogously to that of CT26 cells in experimental setting II
(Figure 1D-G, full red lines). After determining the parameters, the growth kinetics of
these cell lines subject to stress could be predicted (Figure 1D-G, dashed red lines).
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Parameter set symbol unit value ref

PC,CT26

Mean cell cycle time (*) Tcyc hours 17 CS, [26]
Mean cell radius Ri µm 7 Observation [26]
Cell Young’s modulus (*) E Pa 450 [6]
Cell compression modulus (*) K kPa 2.5− 10 CS, [12,42–44]
Cell motility D m2/s 10−16 CS, [19]
Cell Adhesion energy W J/m2 10−4 CS, [6]
Cell-cell friction || γcc,|| Ns/m3 5× 1010 CS, [45,46]
Cell-cell friction, ⊥ γcc,⊥ Ns/m3 5× 1010 CS, [45,46]
Cell-ECM friction, γECM Ns/m3 5× 108 CS, [45]
Cell relaxation time Trel hours 2 [47,48]

Cell effective stiffness Ẽ Pa 450− 106 CS
Stall growth rate αqui - 0.3 CS
Hill exponent n - 1− 2 CS
Hill threshold (*) εVtr - 0.35 CS
Cell lysis time (*) Tlys days 6 CS, [31]
Cell solid mass fraction φ - 0.1− 0.3 [30,31]

PEXPI
Cell-capsule friction γc,cap Ns/m3 2× 1010 CS
Pressure threshold bulk (necrosis) (*) pth kPa 1.5 CS, [26]
Rim thickness (viable) λI µm 20 Observation [26]
Capsule Young modulus Ecap kPa 68 Observation [26]
Capsule Poisson ratio νcap - 0.5 Observation [26]
Capsule Radius Rin µm 100 Observation [26]
Capsule Thickness (thin/thick) H µm 8/30 Observation [26]

PEXPII
Rim thickness (proliferating) λII µm 30 CS
Pressure threshold bulk (necrosis) (*) pth kPa − Not observed [12]

PC,AB6 := PC,CT26

Mean cell cycle time (*) Tcyc hours 12 CS
PC,HT29 := PC,CT26

Mean cell cycle time (*) Tcyc hours 30 CS
PC,BC52 := PC,CT26

Mean cell cycle time (*) Tcyc hours 31 CS
PC,FHI := PC,CT26

Mean cell cycle time (*) Tcyc hours 20 CS

Table 2. Reference physical parameter values for the model. CS indicates a model
choice. If CS shows up with references next to it, the value was chosen from the
parameter range in the references. A reference only means the value is fixed from
literature. An (*) denotes parameter variability meaning that the individual cell
parameters are picked from a Gaussian distribution with ±10% on their mean value.
The Gaussian distribution is clamped to 4 times the standard deviation to avoid
potentially very low values or very high values. Negative values are excluded.
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Model for experiment I with thin capsule 302

Calibration step: 303

Growth without external stress: First, we simulated CT26 cells growing freely 304

in the liquid suspension ((EI.OI), Figure 3) for the parameters, see Table 2). In this 305

situation, CT26 cells grew approximately exponentially indicating absence of growth 306

inhibition. For the simulation we needed to specify a subset of parameter set 307

{PC=CT26}, namely the division time Tcyc, cell radius R, cell Young modulus E and 308

cell compression modulus K, characteristic lysis time Tlys, the diffusion constant D of 309

the cell as it specifies the micro-motility, the perpendicular and tangential cell-cell 310

friction coefficients γcc,‖ and γcc,⊥, the cell-ECM (extra-cellular matrix) friction 311

coefficient γECM , the cell relaxation time Trel, and the growth rate of the cell not 312

subject to mechanical stress α0. For each of these parameters, either estimates from 313

experiment I or literature estimates exist (see Model setup and parameter 314

determination and Table 2). 315

For a constant cell cycle duration of Tcyc = 17h (no inhibition), in the observation 316

period −2 d ≤ t ≤ 1 d, we found a good mutual agreement between the model, the 317

experimental growth curve, and an exponential, see Figure 1B. This determines the 318

intrinsic cell cycle duration Tcyc of a growing cell population subject to neither external 319

mechanical stress nor nutrient limitation. (A movie (Video 1) of this simulation is 320

provided in S2.) 321

Growth in presence of external stress: In the next step, we used the same 322

model to mimic a growing multicellular spheroid in a thin capsule (H = 8µm). In the 323

experiment after confluence, the growth curve crosses over into an approximately linear 324

slope ( t ≥ 1d in Figure 1B) at a measured pressure of pth ≈ 1.5kPa (EI.OII) with a 325

viable rim of size λI ≈ 20µm (see EI.OIV and H1) enclosing a necrotic zone. Necrosis 326

indicates a lack of nutrients. It is possible that at that pressure, border cells may be so 327

compressed that nutrient diffusion becomes inhibited. 328

As the experimental data needed to explicitly model the influence of nutrients is not 329

available and would require knowledge on many parameters (see [29]), we do not model 330

nutrient-dependency explicitly but directly implement the experimental observation 331

that the cells further inside the capsule than at distance λI die at pressure p = pth 332

(observation EI.OII and Figure 4C), see Model setup and parameter determination for 333

more details. 334

In our first attempts all cells in the viable rim were assumed to proliferate with a 335

constant rate α0. This assumption led to a too high spheroid growth speed, hence could 336

not explain the growth kinetics in presence of the capsule (see Model setup and 337

parameter determination, Figure 11A), expressing that λI does not determine the 338

growth speed, but only the size of the viable rim. 339

The constant growth speed for t > 2d, despite increasing pressure experienced with 340

increasing size of the MCS, indicates the viable rim to be of constant size. This was 341

confirmed by visual observation of the spheroids (personal communication). This argues 342

against an increasing limitation of nutrients with tumor size in the linear growth regime, 343

and in favor of a direct impact of pressure on cell cycle progression. 344

In our model this was taken into account by replacing the constant growth rate α0 345

by a compression-dependent growth rate α(εV ) Equation 2 expressing, that cells can 346

enter G0 if the relative growth rate α/α0 falls below a threshold αqui between division 347

and restriction point, see H.III and Figure 2). In our model, cells divide after their 348

volumes have doubled. Consequently, a cell subject to compressive stress has a longer 349

cell cycle duration than an isolated cell. 350

With this model we found a very good agreement between experimental data and 351

simulation results for εVtr
≈ 0.35, n ∈ [1, 2] and αqui ≤ 0.33 (Figure 4A, Figure 4B)). 352
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Fig 4. (A) Time evolution of the radius of the thin capsule for the experimental data
and the simulations using Model I showing the effect of a parameter variation for n with
αqui = 0.33, and n = 1 with αqui = 0.5. (B) Simulation and experimental values of the
radial cell density in the spheroid at T = 0h, and T = 48h for the optimal parameters.
(C) Pressure curves indicating the pressure at the transition point from free spheroid
growth to spheroid growth against the thin capsule in ref. [26] and the simulation.
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Values of n ∈ [1, 2] do hardly discriminate. Choosing n ≥ 4 results in a faster growth in 353

the beginning as here ε < εVtr
, and an experimentally not observed flattening of the 354

residual growth resulting from the sharp decrease of α for εV > εVcr
. n→∞ leads to a 355

plateau. Increasing αqui to 0.5 results in a significant growth stall as cells then already 356

enter quiescence at higher growth rates (Figure 4A). Increasing εVtr results in a faster 357

capsule dilatation over the whole period as then the growth rate decreases only above a 358

larger pressure (noticing that dεV /dp > 0). We selected εVtr
≈ 0.35 as best fit. The 359

effect of εVtr
is shown in the thick capsule experiment (see Validation of model for 360

experiment I with thick capsule data, Figure 5A). The Hill-type function parameters 361

complete parameter set {PC=CT26} (Table 2). 362

We verified that the replacement of α0 by α(εV ) did not result in a disagreement 363

between model simulation and experimental data for stress-free growth (black full line 364

in Figure 1B) indicating that no critical pressure builds up for MCS growth in liquid 365

suspension in absence of the capsule during the experimental observation time period. 366

We have also tested the hypotheses whether cells either have a growth rate α, 367

constant during the cycle, or an exponential increase (see Cell growth, mitosis, and 368

lysis), yet we did not find any significant differences for the spheroid growth, indicating 369

robustness of the results against such variations. 370

As an alternative mechanism to cell division after volume doubling we also tested the 371

assumption that a cell rather divide after a fixed cell cycle time (”timer“). This resulted 372

in smaller daughter cell volumes if the mother cell experienced compressive stress during 373

growth, and as a consequence in a too large nuclei density at 48h (see Figure 11C). 374

Concluding, using Model I a good agreement with data could be obtained whereby 375

the main underlying assumption is that the cell growth rate and thereby the duration of 376

the cell cycle is controlled by the cells’ degree of volumetric compression. (A movie 377

(Video 2) of this simulation is provided in the S3.) 378

Validation of model for experiment I with thick capsule data 379

In the first validation step, we considered the thick capsule experiment (H = 30µm). A 380

thicker capsule provides a stronger resistance against the spheroid expansion. In 381

simulations with model I and the parameter set (n ∈ [1, 2], εVtr = 0.35, αqui = 0.3) that 382

was able to explain the MCS growth against a thin capsule, we obtained a good 383

agreement also for the thick capsule data without any additional fit parameter 384

(Figure 5A). 385

For higher or lower values for the volumetric strain threshold εVtr
, respectively, an 386

overestimation or underestimation for the residual growth would be observed 387

consistently with the thin-capsule data. Values n ≥ 2 resulted in a clear deviation the 388

end of the observation period and were hence rejected. 389

In the work of Alessandri et al., additional experiments were performed using thick 390

capsules with a larger sizes (R0 ∼ 400µm) and thicker walls yet with the same aspect 391

ratio H/R0 ∼ 0.25. The experiments show that the presence of a capsule did not affect 392

the free growth of the MCS. The growth dynamics after confluence for the large thick 393

capsule could not be uniquely determined as the duration of this phase was too small. 394

For this reason we here did not simulate this case (see S1 text). Yet, to permit further 395

validation of the model we also depict simulations for a capsule with thickness 396

H = 60µm. This run predicts a slightly lower dilatation rate (Figure 5G) yet the 397

pressure increase per day in the capsule (Figure 5C) is comparable with the 30µm case, 398

about 250 Pa/day. 399
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Fig 5. (top) (A) Time evolution of the thick capsule radius (H = 30µm), shown for
the experimental data and the simulation with Model I, indicating the effect of the
parameter n and εVtr

. As the number of data sets on the thick capsule did not suffice to
estimate the experimental error, the errors on the thick capsule data (gray zone) were
estimated from the spreading on the thin capsule data, by determining the minimum -
maximum intervals for the thin capsule data. These were then rescaled by the ratio of
thin - thick capsule dilatations and shifted on to the thick capsule curve. (B) Global
view of experiment I and II and respective model runs, including a model prediction for
a capsule wall thickness H = 60µm. (C) Simulated evolution of the average pressure in
a capsule with H = 30µm and H = 60µm.
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Validation of model for experiment II: same cell lines as for experiment I 400

Model II : 401

We challenged the model calibrated for experiment I by studying whether it would 402

be able to predict the observed growth of CT26 multicellular spheroids subject to 403

osmotic stress (Experiment II, [12]). The concentration of dextran regulates the applied 404

pressure. The growth rate at p = 5 kPa here is also significantly lower than those in 405

control spheroids (freely growing in iso-osmotic conditions). Surprisingly however, the 406

control spheroids in experiment II grow slower than in Experiment I, revealing an overall 407

linear but not exponential growth kinetics. Since the cell line is identical, we associate 408

this difference to varying culturing conditions (e.g. less frequent change of medium). 409

Growth without external stress: To take the different culture conditions into 410

account within our simulations, we first simulated again the free growing spheroid. 411

Linear growth is characteristic for a proliferative rim of constant size, with the size and 412

spatial distribution of proliferating cells in the rim determining the speed of spheroid 413

expansion [29,49]. Following the same reasoning as for experiment I, we impose a 414

proliferating rim of size λII measured from the edge of the spheroids inwards to capture 415

the linear growth of the MCS. Here, the edge of the spheroid is computed as the average 416

of the radial positions of the most outer cells plus one mean cell radius (see Figure 6A). 417

We found that for λII = 30µm with cells adopting the same parameter set as in 418

Experiment I, Model I (n = 1, εVtr
= 0.35, αqui = 0.3), matches well with the data for 419

freely growing spheroids (Figure 7A). As in experiment II no increase in cell death, 420

neither by apoptosis nor by necrosis has been reported, cells outside of the proliferating 421

rim are assumed to rapidly enter a quiescent state without undergoing necrosis i.e., they 422

do not shrink. This is referred to as Model II. Notice that λ is the only parameter value 423

by which Model II differs from Model I, reflecting the response on the growth conditions 424

(therefore attributed to the parameter set PEXPII). 425

Growth in presence of external stress: The same parameter values are kept for 426

the growth simulations in the presence of dextran. In another work by Delarue et al. 427

(2014) [43], slight cell elongations were reported towards the tumor center. We neglected 428

here this effect to test whether the experimentally observed response of a growing tumor 429

subject to osmotic stress can already be captured with the model originally developed 430

for the capsule, with the only difference being an adaptation for the free growth 431

conditions. 432

In accordance with the known pressure-exerting effect of dextran, we apply an 433

external force only to a small boundary of outer cells, directed towards the center of the 434

spheroid, mimicking the osmotic effects which induce depletion-induced adhesion and an 435

increase of the contact area between the cells [50]. The magnitude of the applied force 436

on every outer cell reads: 437

Fext = F0
V

Vref
. (3)

The magnitude F0 (fixed parameter) is chosen such that the experimentally observed 438

average cell pressure 〈p〉 is in the simulation maintained in the bulk of the spheroid 439

during growth. The volume-scaling factor is needed to minimize pressure variations as 440

much as possible. As there is no confining volume of the MCS, we use a local 441

calibration approach to compute the contact forces in the agent-based model, see 442

”Local” calibration approach, needed for experiment II. 443

Remarkably, the slope of the growth curve obtained from a simulation with the 444

model without any further adjustment matches very well with the data (Figure 7A and 445

Figure 1B). This indicates that the response of the CT26 cells on compressive stress is 446

robust and reproducible even if the cells are subject to different environmental 447

conditions. Moreover, the surprisingly good agreement between model prediction and 448
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Fig 6. (A) Simulation snapshot at the beginning of a free growing CT26 spheroid
(R = 100µm), indicating quiescent (dark) and proliferating cells (light). (B-D)
Simulation snapshots of growing CT26 spheroids at R = 120µm during dextran
application (p = 5 kPa), indicating quiescent and proliferating cells (B), individual cell
pressure (C), and volume for the cells (D).
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experimental observation suggests that the slight cell elongations observed in [43] might 449

not be a fundamental determinant in the overall response of a growing tumor to 450

external mechanical stress by osmosis. The major contribution to the stress response 451

may be controlled by the proliferating cells that are mainly located close to the border. 452

As proliferating cells, which are on average larger than resting cells, are mainly localized 453

at the border, the nuclei-nuclei distance is larger close to the border of the spheroid 454

than inside (see Figure 6D), consistent with reported experimental observations in [12] 455

and in freely growing spheroids [49]. 456

Within our model we find that i) the pressure distribution in the bulk cells is quite 457

homogeneous, and ii) the pressure is locally lower for the most outer cells because some 458

of these cells are experiencing less contact forces from their neighbors (see Figure 6C). 459

In simulation runs testing parameter sensitivity of the growth kinetics in Experiment 460

II we found for growth parameters αqui > 0.33, εVtr
< 0.2 or n > 2 a significant 461

underestimation of grow (too many cells go into quiescence), in agreement with our 462

simulations for Experiment I. 463

Validation of model for experiment II: other cell lines 464

In order further challenge our model, we also simulated the dextran experiments 465

performed with other cell lines, i.e. AB6 (mouse sarcoma), BC52 (human breast cancer), 466

FHI (Mouse Schwann) all at p = 5 kPa, and the cell line HT29 (human colon carcinoma) 467

at p = 10 kPa. Since these experiments were less documented, our assumptions are that 468

i) in the simulations the experimental conditions are a priori the same, but ii) cell 469

cycling times are different. These doubling times were estimated by calibration of the 470

growth curves without external stress before predicting the growth curves in presence of 471

external stress without any additional fit parameter following the same strategy as for 472

experiment II above for the CT26 cell line. Doing so, we found that the long-term 473

growth speed was again surprisingly well predicted by the model for all three cell lines. 474

Only transients partially deviate from experimental curves (Figure 1D-G, Figure 7A-B ). 475

We here adjusted the cell cycle duration Tcyc to capture the growth kinetics of the 476

MCS in absence of externally exerted mechanical stress but we could also have modified, 477

for example, the thickness of the proliferating rim λII , as the expansion speed vf of the 478

freely growing MCS is vf ∝ λII/Tcyc [51], so that changing λII has the same effect as 479

the opposite change in Tcyc. We emphasize in this context that λII does not determine 480

the growth speed vS under dextran-induced stress, as vS � vf . Thus, our prediction is 481

not dictated by parameter λII . 482

For AB6 (Figure 1E), we found a doubling time of 13h to make the simulated free 483

growth case matching well with the experiment (comparing slopes over period of ∼ 9d ; 484

full red line in Figure 1E). We however, did not have any additional information 485

concerning cell size and doubling time on this cell line. Applying the pressure of 5kPa 486

in the simulations, one still sees that the simulation agree quite well with the 487

experiment (Figure 1E, dashed red line). 488

For HT29 (Figure 1G), a pressure of 10 kPa was applied in the experiment, and 489

hence this puts an extra challenge as the growth model is tested for larger compression. 490

In the simulations, we now had to double the applied forces in the most outer cells to 491

reach the same average pressure. The calibrated doubling time of HT29 for growth in 492

absence of dextran was found to be 46h, in agreement with values in reported in [52] 493

(full red line in Figure 1G). The cell size is comparable to that of CT26 [12]. The 494

simulation results in presence of dextran indicates a significant differences in the 495

beginning of the experiment, yet overall the growth slope matches quite well with the 496

data (Figure 1G, red dashed line). 497

Finally, for BC52 (Figure 1D) and FHI (Figure 1F and 7B), the experimental results 498

show a more complex behavior, as there seem to be two regimes in the growth. In the 499
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Fig 7. (A-B) Detail of the time evolution of radius of the CT26 and FHI spheroid
relative to its initial state. Data from [12] shown for free growth and at p = 5 kPa. Runs
with Model II are for free growth and for p = 5 kPa. In the CT26 cell line an additional
model run is shown assuming a linear cell cycle progression function. In the FHI cell
line the vertical line indicates the presumed changes in experimental conditions for free
growth over time resulting in a lower surface growth (v1 → v2). The gray zones in the
plots indicate the min-max values of the data.
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case of BC52 the spheroid first grows with v1 ∼ 0.41µm/h for the first 9d, then in the 500

subsequent period the growth slows down to v2 ∼ 0.29µm/h (see Figure 1D). We 501

attributed this to a change in growth conditions in the experiment. The model a-priori 502

does take the cross-over effect into account, but we still can test it by imposing ad-hoc 503

changes of experimental conditions after a period of 9d. To do so, we assumed in the 504

simulations for the dextran-free growth that the thickness proliferating rim has 505

decreased during the cross-over by λII → λII × v2/v1 ≈ 0.7λII , which resulted in an 506

overall good calibration curve (full red curve in the Figure 7B ). The same procedure 507

was applied to the FHI cells, with here the factor v2/v1 ≈ 0.35 for the simulation in 508

absence of dextran (see full red line in Figure 7B). The corresponding simulations in 509

presence of dextran for BC52 (Figure 1D, dashed red line) and FHI (Figure 7B, dashed 510

red line) then shows that the model is again able to predict the experimentally observed 511

slopes in both regimes reasonably well. 512

Hence, we conclude that this model is able to predict the effect of mechanical stress 513

on the expansion speed of the MCS in the elastic capsule experiment (experiment I) and 514

the dextran experiment (experiment II) after calibration of the model parameters with 515

experimental growth data in absence of capsule and dextran i.e., with experimental 516

growth kinetic data in absence of externally exerted mechanical stress. 517

Robustness of the proposed cell cycle progression function 518

In our model we have proposed that the cell growth rate decreases according to a 519

general Hill-type function (Equation 2). From the capsule simulations, we observed that 520

neither a constant growth scenario (εVtr
→∞) nor a sharp threshold (n→∞) could 521

explain the data. However, in order to justify the choice of the Hill functional shape as 522

compared to a simpler functions, we have performed comparative simulations with a 523

linear progression function. This function has the same boundary value α = α0 at 524

εV = 0, and α = 0.5× α0 at εV = 0.35 , but has a steeper decrease further on (dashed 525

line in Figure 2). We found that with this function the experimental data for small and 526

large capsule thickness could still be reproduced with a fair agreement (see Figure A-2G, 527

”Linear I” in S1 text). However using the same function, we could subsequently not 528

match the data of Experiment II, for the CT26 cell lines as well as for the other cell 529

lines. In that case the simulations systematically underestimated the growth (see 530

Figure 7A, black line) indicating the tail of the Hill-type function is important as it 531

controls the still non-negligible contribution to growth at high strains occurring in the 532

dextran experiment. On the other hand, a linear function (boundary value α = α0 at 533

εV = 0) calibrated such that the CT26 dextran experiment could be reproduced, 534

resulted in an overestimation of growth in the capsule experiment (see Figure A-2G, 535

”Linear II” in S1 text). Concluding, a sufficiently long ”tail” in the diagram α versus 536

εV seems to be necessary to explain the residual growth of the cells. This points 537

towards an nonlinear response of inhibition of growth of the cells upon compression, and 538

further shows that the choice of a nonlinear progression function is necessary so that a 539

Hill-type growth function, despite it looks complex, seems the most simple one that is 540

able to explain simultaneously growth of MCS subject to externally applied stress in 541

both experiment types. 542

Discussion 543

By establishing a quantitative model of growing multicellular spheroids (MCS) subject 544

to compressive stress calibrated with data on growth in an elastic capsule we were able 545

to demonstrate that the stress response of a growing tumor is quantitatively robust and 546

reproducible even if cells grow under different conditions and if the pressure is exerted 547
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by different experimental methods. Given the enormous complexity of intracellular 548

processes involved in the control of MCS growth this is fascinating as it might open the 549

possibility that largely separated robust functional modules may be identified and 550

studied in separation without the need to analyze all interactions of the components of 551

one module with the components of other modules, and without incorporating all 552

interactions at the molecular level. In particular, we first developed a model to study 553

CT26 cells grown in an elastic thin and thick capsule, and then modified this model in a 554

minimal way by taking into account the remarkably different growth behavior of freely 555

growing tumor spheroids (i.e. not subject to compressive stress) to simulate the tumor 556

growth response of CT26 and other cell lines in a dextran solution. We show that the 557

mechanical stress response is quantitatively the same despite significantly different 558

culture and protocol conditions. Without the model, it would have been very difficult to 559

identify this equivalence. The key results of our analysis are: 560

(R.I) With increasing compression the cell growth rate decreases. This relation 561

could be well captured by a Hill-type function for the growth rate α that depends on 562

the volumetric strain (Equation 2), and a transition into quiescence if the growth rate 563

dropped below a threshold value. A sharp volume or pressure threshold below which no 564

cell cycle entrance would occur anymore, is not compatible with the data. Together 565

with the strain hardening assumption of cells during compression, this overall points to 566

a nonlinear increasing growth resistance of the cells upon mechanical stress. 567

(R.II) Cells divide when their dry mass has doubled during the cycle. A ”timer“ as 568

a decision mechanism for dividing could not explain the data. 569

A particular point of concern in many studies of spheroids is the appearance of cell 570

death. Our work is based on the observations of Alessandri et al. (2013), who observed 571

necrosis (CT26 cells, using FM4-64) in capsule confined cells, while their free growing 572

spheroids exhibited the normal exponential growth for R < 150µm. Helmlinger et al. 573

(1996) [8] observed a decrease in apoptotic (LS174T cells, using TUNEL) events during 574

compression, and reported little necrosis (not quantified) for spheroids with R < 150µm. 575

They concluded that the haltered growth of the spheroids is mainly due to the 576

increasing compressed state, which can be partially confirmed by our simulations. In 577

the work of Delarue et al. (2014) [12], no increase of apoptosis (HT29 cells, using 578

cleaved-caspase 3) was observed after 3 days for spheroids with R ∼ 100µm. Contrary, 579

earlier Montel et al. (2012) [11] did report increased apoptosis using cleaved-caspase 3 580

for CT26 cells, while Cheng et al. (2009) [9] did observe an increase of necrosis (67NR 581

cells, using propidium iodide) even in very small spheroids R ∼ 50µm, yet mainly for 582

the interior cells. At the periphery, cells were still dividing. Whether necrosis and 583

apoptosis occurs may well be dependent on the cell type and experiment, but overall it 584

seems that the peripheral cells are unaffected. 585

Another issue that deserves attention is that despite recent significant advances in 586

exploring the relations between the cell mechanical parameters and cell responses during 587

an externally applied mechanical stress, a coherent consensus has not been reached. One 588

issue in this discussion is the cell compression (bulk) modulus. For instance, in Delarue 589

et al. (2014) [12], one concludes that cells are compressible reporting a rapid cell volume 590

reduction at the level of the MCS (Multicellular Spheroids) under compressive stress. 591

Another work of Delarue et al. (2014) [43] indicates bulk moduli of the order of 10 kPa. 592

Both works consider the long-term effects (> 1h) of compression on spheroids. 593

The work of Lin et al. (2008) [44] seems to concur with this as they measure cell 594

bulk moduli of about 10 kPa with measurements on a timescale of minutes. 595

On the other hand, the Monnier et al. (2016) [78] report individual cell compression 596

moduli of several orders of magnitude higher (1 MPa) than the ones reported above, 597

also on short time periods of minutes. Yet they state in their paper that on longer 598

timescales, the cell response may become more complex due to intracellular adaptations. 599
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We emphasize that in our paper we are considering timescales of larger than one hour as 600

cells are doubling their volume in about a day so that the rate of percentage of the 601

volume increase is about 0.07%/min. As such, the compression moduli of the cells that 602

we find should be regarded as long-term values, where the cell can respond differently as 603

compared to short timescales. For instance, the cell may respond by expelling fluid 604

through aquaporins. In the work Tinevez et al. (2009) [42], the cytoplasm bulk modulus 605

is estimated as ±2500 Pa. Despite not being the modulus of the whole cell, it indicates 606

that if cells are able to expel water through the aquaporins on longer timescales, their 607

resulting bulk moduli agree with our values. 608

Our modeling strategy is based on in silico experiments i.e., abstracted experiments 609

on the computer, where each individual cell was represented as modeling unit with those 610

properties, actions and interactions that were considered as necessary to quantitatively 611

explain the cellular growth response on mechanical compression. The implementation of 612

cell-cell and cell-environment interaction directly accounts for physical laws with (in 613

principle) measurable physical parameters that permit straightforward limitation of 614

parameter ranges to those physiologically relevant. This made it possible for us to 615

largely confine the parameter values to published or directly observed relatively narrow 616

ranges, and introduce free fit parameters only for the cell cycle progression. A 617

particular challenge was to construct an individual agent-based model that permits 618

stable and robust simulations up to several tens of thousands cells under high 619

compression. Under these conditions cell displacements may have to be minimal, which 620

rules out models operating on lattices unless the lattice size would be chosen a very 621

small fraction of the cell diameter (in which case they would lose their computational 622

advantage). Thus, the requirements of constraining the parameters, and providing 623

realistic simulation trajectories in time favored models operating in lattice-free space 624

implementing a dynamics simulated by equations of motion (as opposed to a Monte 625

Carlo dynamics, which under some condition mimics a master equation). The prototype 626

of lattice free models are center-based models that calculate the forces between cells as 627

forces between cell centers. However, as mentioned above and explained in more detail 628

elsewhere [21] this model type has significant problems in dealing with cell populations 629

under large compressive stress i.e., with exactly the situation we are faced with in this 630

work. To solve this issue, we developed a deformable cell model, which represents each 631

individual cell in much greater detail as in center-based models but at the expense of 632

much longer simulation times. As simulations with that model up to several thousands 633

of cells were not feasible, we performed simulations with this model of characteristic 634

MCS configurations under large compressive stress and used the results to establish a 635

new interaction force model within center-based models that permit to mimic large cell 636

populations under large compression. 637

Furthermore, we mention that despite their limit on cell numbers, simulations with 638

DCM can give valuable information on micro mechanics. In our study, we found that 639

stiffer cells in a scaled capsule model more likely could cause a gradient in cell pressure 640

from the border to the center of the spheroid than soft cells ( Cell deformation and 641

pressure distribution during in a compressed spheroid in DCM). These potential effects 642

are difficult to investigate with center-based models and prove the necessity of further 643

development of high resolution models, and perhaps running them on high performance 644

computers. 645

Finally, we discuss briefly how to include the effect of extracellular matrix (ECM) 646

into the model more explicitly.The quantity of ECM that is produced may depend on 647

the cell type. For instance, fibroblast generally produce more ECM than epithelial cells. 648

As in the capsule experiment by Alessandri et al. (2009) [26] the sparse ECM signal 649

suggests that ECM is sparse in the compressed spheroids. In case ECM would be 650

present at higher volume fractions, a more important part of the compression might be 651
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attributed to ECM, which might change the growth response of multicellular spheroids 652

subject to externally applied mechanical stress. There are several ways how this can be 653

included in our model which, despite it was not in the scope of this paper, would be a 654

natural future step to perform. This can be either a detailed model of ECM [81], taking 655

into account ECM in a global calibration approach similar to the global approach 656

detailed in absence of ECM (see S1 text), or a composite material approach, where 657

instead of considering as basic modeling unit a single cell, it is regarded as a cell plus its 658

embedding ECM (for the concept in agent-based models, see Drasdo et al. (2007) [53]). 659

A more detailed description can be found in S1 text. 660

January 9, 2019 24/44



Models 661

This section summarizes the most important model assumptions and components, and 662

then explains how model parameters were calibrated. More details about the 663

mathematical formulations, can be found in S1 text. 664

We start from a standard center-based model in which cells are represented by 665

spheres. However, this model needs to be extended by calibration with a model that can 666

deal with high compression, the ”deformable cell model”, in order to obtain realistic 667

results for the envisaged in vitro multi-cellular systems (see Calibration of the CBM 668

contact forces using DCM). 669

Center-based model (CBM) 670

In CBMs cells are approximated as simple geometrical objects capable of active 671

migration, growth and division, and interaction with other cells or a medium [53]. In 672

CBMs the precise cell shape is not explicitly modeled but only captured in a statistical 673

sense. Here, the cells are represented by homogeneous isotropic elastic, adhesive spheres. 674

Equation of motion for the cells 675

The center of mass position of each cell i is obtained from a Langevin equation of 676

motion, which summarizes all forces on that cell including a force term mimicking its 677

micro-motility: 678

ΓECM ~vi + Γc,cap~vi +
∑
j

Γcc(~vi − ~vj) =
∑
j

~Fcc,ij + ~Fmig,i + ~Fcap,i + ~Fdext,i (4)

The lhs. describes cell-matrix friction, cell-capsule friction and cell-cell friction, 679

respectively. Accordingly, ΓECM , Γc,cap, and Γcc denote the friction tensors for 680

cell-ECM, cell-capsule, and cell-cell friction. The first term on the rhs. of the equation 681

of motion represents the cell-cell repulsive and adhesive forces ~Fcc, the 2nd term is an 682

active force term ~Fmig, mimicking the cell micro-motility. ~Fmig is mimicked by a 683

Brownian motion term with zero mean value and uncorrelated in time (see S1 text). 684

The existence of the 3rd and 4th term depends on the growth condition. In presence of 685

an elastic capsule as in experiment I, the 3rd term denotes the interaction force 686

experienced by the cell from the capsule ~Fcap,i for those cells i that are in physical 687

contact with the capsule. As cells cannot adhere to the capsule, ~Fcap,i is purely 688

repulsive. In absence of a capsule this term is dropped, ~Fcap,i = 0. Analogously, in 689

presence of dextran, ~Fdext,i denotes the body force induced by dextran on the outermost 690

cells i. In absence of dextran, ~Fdext,i = 0. 691

Due to high friction of the cells with their environment, inertia is neglected [54]. 692

Based on the observation that some ECM is produced by the cells (EI.OV), which forms 693

a substrate for the cells to actively migrate before confluence is reached, the first term 694

on the lhs and the 2nd on the rhs express interactions with ECM. The ECM network 695

from fibronectin indicates a mesh size of the order of the cell size [76]. We assume 696

momentum transfer to the ECM by the ECM friction and active micro-motility term 697

but we do not model the ECM explicitly (how ECM could be included more explicitly is 698

discussed in S1 text). After confluence has been reached, the ECM signal declines 699

(EI.OV) and the expansion of the spheroid originates from the volume increase of the 700

cells against the mechanical resistance of the capsule or the osmotic forces, while the 701

active micromotility forces become negligible. This is further confirmed by simulations 702

performing parameter variations in the micromotility forces which do not significantly 703

influence the results (see S1 text). 704
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Adhesive and repulsive forces 705

Interphase cells are approximated by homogeneous, isotropic, elastic and adhesive 706

spheres which split into two adherent cells during mitosis. Under conditions met in this 707

paper [45, 53], the total cell to cell interaction force can be approximated by the sum of 708

a repulsive and an adhesive force : 709

~Fcc = ~Frep + ~Fadh. (5)

The repulsive Hertz contact force reads: 710

Frep,ij = 4/3Eij
√
Rijδ

3/2
ij , (6)

in which Eij and Rij are defined as

Eij =

(
1− ν2

i

Ei
+

1− ν2
j

Ej

)−1

and Rij =

(
1

Ri
+

1

Rj

)−1

,

with Ei and Ej being the cell Young’s moduli, νi and νj the Poisson numbers and Ri 711

and Rj the radii of the cells i and j , respectively. δij = Rj +Ri − dij denotes the 712

overlap of the two undeformed spheres, whereby dij = ||~rj − ~ri|| is the distance of the 713

centers of cells i and j (see S1 text). 714

The original Hertz contact model does not take into account volume compression 715

under large pressure by many surrounding cells. To account for multi-body interactions 716

while using the classical Hertz model, we replace the Young moduli Ei by an ”apparent” 717

contact stiffness Ẽi that increases as function of the cell density (Equation 14), see 718

Calibration of the CBM contact forces using DCM. The modification of the Hertz model 719

is calibrated with a Deformable Cell Model (DCM) that represents cell shape explicitly. 720

The adhesive force term between cells can be estimated as proportional to the 721

contact area and the energy of the adhesive contact W [21]: 722

Fadh,ij = −πWRij . (7)

Cell volume and compressibility 723

In our model, cells are compressible meaning that cell volume is related to pressure by 724

dpi = −Ki
dVi
Vi

= − Ei
3(1− 2ν)

dVi
Vi
, (8)

in case the cells’ properties are largely controlled by the elastic properties of its 725

cytoskeleton and other cytoplasmic constituents. Ki is the bulk modulus of the cell. 726

The observed volume change in general depends on the speed of compression. For slow 727

compression, water can be squeezed out of cells (and tissues), while for fast compression, 728

it would result in a nearly incompressible resistance [78]. In case Ki = K0,i is a 729

constant, integration of the above equation yields the cell volume Vi as a function of the 730

pressure on cell i, εV,i = (pi − p0)/K0,i with p(Vref ) = p0. Here, εV,i = − log(Vi/Vref,i) 731

is the logarithmic strain permitting to capture large strains and Vref,i = 4/3πR3
ref,i is 732

the uncompressed cell volume the cell would have in isolation, with Rref,i being 733

considered as constant for a quiescent cell. For small deviations V ≈ Vref the known 734

relation εV = log(V/Vref ) ≈ (V − Vref )/Vref is recovered. 735

Several authors have reported strain hardening effects leading to an increased elastic 736

modulus upon mechanical stress [55–57]. Stiffening of the cells can occur as the 737
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cytoskeleton gets denser [58]. In case of strain hardening, K increases with decreasing 738

volume. We mimicked this by [58]: 739

Ki(Vi) = K0,i
Vref,i
Vi

(9)

with K0,i the compression modus of cell i in absence of stress. In this case, 740

εV,i = log ((pi − p0)/K0,i + 1). The quantity of interest is the volume response on a 741

pressure change pi − p0, whereby throughout this paper we set pi ≡ pi − p0. 742

Now we assume that as a consequence of internal friction and by remodeling of the 743

cytoskeleton, a cell subject to pressure adapts its volume with a certain delay according 744

to the equation 745

γint,i
dεV,i
dt

+K0,iεV,i = g(pi) (10)

where γint,i is a lumped parameter expressing the relaxation behavior after an imposed 746

change of the pressure. It is related to the relaxation time by γint,i = KiTrel for a single 747

cell (an analogous argument applies to the whole spheroid). The relaxation period may 748

range from several seconds or minutes up to hours, depending on how long the stress 749

has been applied [12,47,59]. This is related to both intracellular and intercellular 750

reorganizations. In our simulations, we assume Trel ∼ O(1h) for viable cells motivated 751

by observations of relaxation times in compression experiments [48]. For Ki = K0,i we 752

have g(pi) = pi, while in case of a dependency as by Equation it is 753

g(pi) = K0,i log(pi/K0,i + 1). 754

Measures for stress and pressure 755

The external pressure pi on a cell i is derived from the viral stress and given by: 756

pi =
1

3
tr(σi) with σi =

1

Vi

∑
j

(
~Fij ⊗ ~rij

)
(11)

being the stress tensor quantifying the stresses cell i experiences subject to contact 757

forces ~Fij with other cells j [21]. Here, ~rij is the vector pointing from the center of cell i 758

to the cell j with ||~rij || = dij/2 and Vi is the sampling volume which can be taken as 759

the cell volume. The stress tensor can be diagonalized in order to find the principal 760

direction of stress. 761

Cell growth, mitosis, and lysis 762

Our basic model assumes constant growth rate during the cell cycle and updates the 763

volume Vref,i of cell i in time as 764

dVref,i(t)

dt
= αi(t), (12)

where αi(t) is the growth rate. We studied both, a constant volume growth rate 765

(αi(t) = C1) and an exponentially increasing cell volume mimicked by 766

αi(t) = C2 × Vref,i(t) [34–37] . The cell cycle times in both cases are equal for 767

C2 = log 2× C1/V0,i. However, on the time scale (several days) of growth considered 768

here, growth rate variations on time scales of an hour turned out to be negligible. After 769

a cell has doubled its reference volume, it splits into to spherical cells (see S1 text). 770

Cells dying either by apoptosis or necrosis eventually undergo lysis. During lysis 771

they gradually shrink. In experiment I the necrotic core appeared very solid like, 772

indicating that the water was drained as a consequence of the high pressure. We mimic 773
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the lysing process by setting first Vref,i → φVref,i after necrosis, where φ is the 774

volumetric solid mass fraction. 775

The cell volume change rate is mimicked by Equation 10 and controlled by γint. 776

This effectively mimics plastic deformation of the cells during water loss (for more 777

sophisticated models on cell elasticity and remodeling, we refer to Koppenol et al. 778

(2017) [80]). We assumed that lysis times Tlys have a physiological range of 5h to 15 779

days [31], and we set γint ∼ KTlys in Equation 10 during lysis. 780

Deformable Cell Model (DCM) 781

Agent-based models permitting large deformations and representing cell shape explicitly 782

are generally called Deformable Cell Models (DCMs) [21–23,25,60,71,74]. In a basic 783

DCM the cell surface is discretized with nodes which are connected by viscoelastic 784

elements. Nodes and their connecting elements represent a flexible scaffolding structure. 785

The discretization can be extended to the entire cell cytoplasm and even organelles be 786

represented, yet here we regard the cell interior as a homogeneous matter. The nodes at 787

the boundary form a triangulated structure, accounting for the mechanical response of 788

the membrane and cortical cytoskeleton. The total force on each node consists of 789

cell-cell interaction and intracellular interaction forces, the latter describing membrane 790

and cortex mechanical behavior, and cell volumetric compressibility. 791

The basic equations of motion in DCM is formally the same as for the center-based 792

model (Equation 4), but is now applied to each node i of a cell2: 793

Γns,i~vi+
∑
j

Γnn,ij(~vi−~vj) =
∑
j

~Fe,ij︸ ︷︷ ︸
in-plane

+
∑
m

~Fm,i︸ ︷︷ ︸
bending

+ ~Fvol,i︸ ︷︷ ︸
volume change

+
∑
T

~FT,i︸ ︷︷ ︸
area correction

+ ~Frep,i + ~Fadh,i︸ ︷︷ ︸
contact

(13)
with the matrices Γns and Γnn representing node-substrate friction and node-node 794

friction, respectively. ~vi denotes the velocity of node i. The first and the 2nd term on 795

the rhs represent the in-plane elastic forces and bending force, the third term on the rhs 796

a volume force controlled by the cell compressibility. The fourth term is a force that 797

avoids excessive triangle distortion. The two last terms (~Fadh,i, ~Frep,i ) describe the 798

adhesion and repulsion forces on the local surface element in presence of nearby objects 799

as e.g. another cell or the capsule in experiment I (for details see S1 text). Different 800

from CBMs, the cell bodies in contact do not overlap and therefore triangles belonging 801

to different cells will be repelled upon approaching each other. For consistency with the 802

CBM we chose the model components of the DCM such that cells are inherently 803

isotropic. As the DCM directly represents cell compartments, the range of its 804

parameters can readily be determined (Table 1. For further details see S1 text). 805

Calibration of the CBM contact forces using DCM 806

During the process of compression, cells rearrange and deform to a closer packing. As 807

discussed above, common models to model the interactions between cells (such as Hertz, 808

JKR, extended Hertz, Lennard-Jones, etc.) base on pair-wise interaction force 809

calculations and do not take into account the effect of volume compression emerging 810

from the simultaneous interaction of many cells [21, 53]. In simulations using these 811

interaction force models, the apparent volume (as seen in the simulation) that the 812

spheroid occupies upon strong compression, may become much smaller than consistent 813

with the material parameters; even incompressible cells having Poisson ratio ν = 0.5 814

2The cell index has been dropped here for clarity.
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reduce their volume [21,62]. Simulations of spheroid growth in a capsule performed with 815

an uncalibrated model result in an unrealistic capsule dilatation (see S1 text). 816

The deformable cell model (DCM) does not suffer from such shortcomings, but is 817

not amenable to the amount of cells observed in experiments I and II in reasonable 818

computing time on standard desktop computers. For this reason we here chose a hybrid 819

strategy: we corrected the interaction force in the CBM based upon numerical 820

compression experiments performed with the DCM, and used the so calibrated CBM to 821

perform simulations reminiscent of virtual computer experiments in the experimental 822

settings I and II (Figure 8). 823

In order to estimate the repulsive contact forces in case of many cell contacts, we 824

have constructed a DCM spheroid computer experiment with ∼ 400 cells initially 825

positioned in a closest sphere packing. In this computer experiment, the outer cells were 826

then pushed towards the spheroid center quasi-statically to avoid friction effects, using a 827

shrinking large hollow rigid sphere encompassing the cells (see Figure 8A). All cells have 828

the same size but taking into account a moderate variable cells size were found to not 829

affect the results significantly. Interestingly we observed in the calibration simulations, 830

that cell shape of isotropic cells in the calibration compression simulations with the 831

deformable cell model appear distorted near the capsule border in agreement with the 832

shapes one would infer from the position of the cell nuclei in the capsule 833

experiments [26]. 834

”Local” calibration approach, needed for experiment II 835

For the DCM simulations we adopted Ecor ≈ 2400 Pa, hcor ≈ 100 nm and 836

νcor ≈ 0.5 [42] as fixed elastic properties of the cortex. The cortical stiffness 837

Ecorhcor = 0.24 mN/m, is close to values deduced from other experiments performed on 838

fibroblasts [63]. As the cell compression modulus K maybe variable and further plays a 839

significant role in this work, we constructed the calibration method such that it works 840

for different values of K. 841

During the simulated DCM compression experiment (Figure 8A) we ”measure” all 842

the contact forces between a bulk cell i and the surrounding cells j in our simulation, 843

which gives us the force, pressure and volumes change on that cell, as a function of their 844

relative positions, d̃ij = 1− dij/(Rref,i +Rref,j). The distance dij is computed as the 845

length of the vector connecting the two center of masses of the two cells i, j. Rref,k is 846

computed as ( 3
4πVref,k)1/3, with k = i, j. The average contact force of the central cell i 847

with its neighbors j as a function of the cell-to-cell average distance d̃i =
∑Nc

j=1 d̃ij/Nc 848

(Nc = number of contacts) is depicted in Figure 8C, for K = 2500 Pa, 5000 Pa, and a 849

variable K = K0(V ) using K0 = 5000 Pa due to strain hardening (see Cell volume and 850

compressibility). Overall we find that this contact force curve still can be characterized 851

as initial Hertzian contact for d̃i < 0.08, but is after a transition zone followed by a 852

steep increase (d̃i > 0.12). The first part in this curve is largely determined by the 853

mechanical properties of the cortex and the changing contact area of the cells, whereas 854

the behavior at larger compression is determined by the bulk modulus of the cells. 855

We have developed a CBM calibration approach where we keep the original Hertz 856

contact law (Equation 6) but replaced the Young modulus Ei by an apparent contact 857

stiffness Ẽi (i.e., Ei → Ẽi) of the cells as they get nearer to each other. In other words, 858

Ẽi gradually increases in Equation 6 as the cells get more packed, based on the 859

reasoning that indenting a piece of material with another object gets more difficult 860

when confined. The total strain of the cell is composed of a deformation of the cortex 861

largely determined by the apparent stiffness Ẽi, and the volumetric compression 862

determined by Ki. The volume (and radii) of the cells are adapted using Equation 10. 863

It is important to stress here that Ẽi only reflects the contact stiffness of the cell 864
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Fig 8. (A) Cartoon illustrating the compression experiment using deformable cells in a
capsule to calibrate the center-based model. (A, bottom) Equivalent compression
experiment using the center-based model with indication of the maximal principal stress
directions of the cells in the capsule during compression using Equation (11). (B)
Cartoon showing the volume compartments Vi, Vint and Vcaps in a capsule with

thickness H. (C) Average contact force vs. d̃ij = 1− dij/(Rref,i +Rref,j) for different
K values simulated using DCM (diamonds), and CBM with corrected Hertz contact
force (full colored lines) replacing E by Ẽ, see Equation 14. dij is the distance between
the centers of cells i and j, Rref,k the radius of a free cell k ∈ {i, j}. The modified
Hertz force shows the same evolution as the force in the DCM, while an uncorrected
Hertz force (gray line, Equation 6) strongly underestimates the interaction force for
strong volumetric compression. (D) Pressure curves during compression of the spheroid
as a function of the inter-cellular volume fraction simulated with the DCM and the
CBM with modified Hertz force. The pressure for CBM was computed using both the
capsule pressure and average virial stress per cell calculated from Equation (11). A
representative movie (Video 3) of these simulations is provided in S4)
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through Equation 6, while the bulk modulus (Equation 8) is determined by the original 865

cell Young’s modulus Ei. 866

To take into account the limited cell volume compressibility in a pairwise cell-cell 867

interaction force, we fitted Ẽi by a function that depends on the local average distance 868

d̃ij for a bulk (i.e., interior) cell in the simulated experiment in Figure 8A: 869

Ẽi(d̃i,K,Ecor, hcor) =

{
Ei 0 ≤ d̃i ≤ 0.08,

a0 + a1d̃i + ...+ a6d̃
6
i 0.08 < d̃i.

(14)

Here, the akwith k ∈ [0, 6] are fit constants (see S1 text). They are calibrated such that 870

the function is monotonically increasing and results in an optimal fit to the average 871

force a cell i experiences upon compression of the cell aggregate (see Figure 8A) as 872

function of the distance between the center of cell i and its neighboring cells j in the 873

DCM simulations (see Figure 8C). The higher the compression, the higher gets the 874

contact stiffness, so that at strong compression, the contact forces only result in a very 875

small increase of indention, yet the cell volume decreases (Equation 10). 876

At the point of confluence when outer cells touch the capsule wall, the DCM cells 877

exert a total interaction force Fcap =
∑
i Fcap,i on the capsule wall. The capsule 878

pressure was then computed by pcap = Fcap/Acap where Acap is the inner surface area 879

of the capsule. On the other hand we defined the intercellular volume fraction, as 880

εint = Vint/Vcap (see Figure 8C). Here Vint = Vcap −
∑
i Vcell,i is the volume of the 881

space in between the cells, Vcap is the total capsule volume. We then compared for the 882

DCM simulations and calibrated CBM the resulting pressure versus intercellular volume 883

fractions. These curves do not match exactly, but follow each other closely (Figure 8D). 884

We further complemented this study by pursuing a ”global” approach where we 885

estimated the forces and pressure exerted by the MCS on the capsule as a function of 886

the total intercellular space fraction occupied by cells within the elastic capsule (see S1 887

text), obtaining the same results. Both calibration approaches can be used for arbitrary 888

values of K. 889

Cell deformation and pressure distribution during in a compressed 890

spheroid in DCM 891

The DCM simulations of a small spheroid compression experiment show that the cells 892

have a flattened shape at the border of the capsule, see Figure 9. As a consequence of 893

compression forces acting on the cells at the border normal to the capsule border, those 894

cells are observed to extend in the DCM simulation tangentially to the capsule (and 895

shrink along the direction to the capsule border normal vector) elevating the force 896

exerted on their neighbor cells in the same layer. In the CBM simulation, cell shape is 897

not explicitly given hence this effect is missed out3. In order to balance normal stress 898

from the capsule cells close to the capsule need to rearrange as they cannot deform, 899

while in the DCM they can both deform and re-arrange. 900

We further considered whether the apparent boundary effect (EI.OIII) could be 901

attributed purely to mechanical effects. For this, we used a spheroid compression 902

experiment with a scaled capsule system using 400 (quiescent) DCM cells with different 903

cortex properties (i.e. cells that have the reference Ecor and cells with 10 times this 904

value). It is shown in Figure 9 that there can be a small mechanical effect in the case 905

for a “high” stiffness of the cortex, as the simulations show that the cells near the 906

3In the CBM the lack of cell deformation is reflected in the principal stresses (indicated in Figure 8A
by arrows) that can be computed from the stress tensor Equation 11. One observes that the direction
of maximal compressive stress points radially to the border cells, while minimal stress direction points
tangential to the capsule wall. CBM cells cannot deform to relax the radial stress component hence
need to re-arrange in position.
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Fig 9. (A) Simulation snapshots of DCM cells within a scaled capsule model, for the
cases of cells with a reference cortex stiffness (top) and a “stiff” cortex stiffness
(bottom). The coloring is according to pressure (B) Internal cell pressure for deformable
cells in a shrunk capsule for nominal cells and stiff cells, as function of distance to the
capsule center. The stiff cell types show a gradient in cell pressure if moving from the
spheroid center towards the edge (indicated by dashed red line), while a higher
variability as compared to the softer types. Notice that like in the calibration
simulations we use cells of equal volume prior to compression but the method can
equally be applied to any prior volume distribution.

boundary acquire higher pressures as compared to the bulk cells and a weak gradient 907

from the center to the spheroid edge can be observed. This can be attributed to arching 908

effects (a phenomenon frequently observed in grannular mechanics), where outer layers 909

of cells bear more stress and form a shield for the inner layers. The effect increases with 910

increasing cortex stiffness. Contrary, reference parametrized cells spread out more easily, 911

diminishing the pressure differences. 912

To investigate the boundary mechanics in a more realistic system with dividing cells, 913

the DCM could be extended with the capability to mimic mitosis. In our simple 914

compression experiment with cells having estimated cortex properties, the boundary 915

effect appears acceptable. 916

Elastic Capsule Model 917

The capsule is made of an quasi-incompressible alginate gel exhibiting a strain 918

hardening behavior. The stress-strains relationship was measured in a stretching 919

experiment of an thin alginate cylinder. Strain hardening behavior was observed for 920

strains > 15%. In case of a thick walled capsule, the expansion strain is low and hence 921

linear elasticity can be applied. We refer to the hollow sphere example as described 922

in [64] to compute the radial displacement of the capsule from the internal pressure. If 923

on the other hand the capsule has a thin wall, strains can become large, and the linear 924

elasticity hypothesis fails. For this case, in line with ref. [26] the original young modulus 925

is modified instead of employing nonlinear elasticity theory. The nonlinear relationship 926

in stress and strain (εcap) was phenomenologically characterized in ref. [26]: 927

Ecap = Ecap,0(1 + aεcap) (15)

where εcap is the strain and a = 1.5 to obtain an optimal fit with the experiment. 928

The capsules have an initial inner and outer radius Rin,0 and Rout,0 respectively, 929

whereby typically H = Rout,0 −Rin,0 > 0.2Rin,0 for thick capsules, H being the capsule 930

thickness. The pressure difference along the capsule wall can be related to the change in 931

radii by [26]: 932

pcap =
4

3
EcapsR

′u(Rin)

Rin
(16)

Where Ecaps is the Young modulus of the capsule material, Rout is the outer radius, 933

and u(Rin) = Rin −Rin,0 is the displacement at the outer radius. Furthermore, 934

R′ =
(

1 + 1
1+∆R3

0/R
3
in

)
, in which the outer radius is related to the inner radius Rin by 935

∆R3 = R3
out −R3

in = R3
out,0 −R3

in,0, assuming incompressibility of the elastic shell. To 936

simulate the radius evolution of the capsule, one computes pressure pcap by dividing the 937

sum of all contact forces of the cells with the capsule by the actual inner surface area. 938

Taking into account the damping by the alginate material, we arrive at an ODE, 939
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formally similar to Equation 10: 940

γcap
Rin(t)

dRin(t)

dt
= pcap(t)−

4

3
EcapsR

′u(Rin(t))

Rin
, (17)

with a lumped material damping parameter γcap. It was shown in [48] that the viscosity 941

of the capsule material is low and does not influence the much slower dynamics of the 942

spheroid. Accordingly, in our model γcap was chosen low to reflects the material’s 943

ability to rapidly adapt to a change in spheroid radius while not affecting the slow 944

growth dynamics. 945

Model setup and parameter determination 946

We here explain the determination of the mechanical model parameters starting from 947

the thin capsule experiment. A large fraction of the parameters are fixed from direct 948

observations or published references, see Table 2 for more details. 949

Within parameter sensitivity analysis simulations the parameters that could not be 950

fixed by experimental observations, were varied within their physiological ranges to 951

study their impact on the simulation results. Some parameters turned out to only 952

negligibly affect the simulations results, see S1 text. 953

As the simulation time was too long to determine the parameters within their 954

physiological ranges based on a maximization of a likelihood function, or to perform a 955

parameter identifiability analysis, we identified plausible parameters by a two-step 956

procedure. 957

We first determined those model parameters that determine the simulated growth 958

behavior in case of free growth by comparison to the experimental data for CT26 in 959

experiment I. In the next step the parameters relevant for the specific experiment were 960

fixed. After this, two remaining parameters, namely K and Tlys were calibrated by the 961

thin capsule simulations, yielding a model without a growth rate adaptation (see 962

Cell-specific parameters K and Tlys during stress conditions). 963

Each simulation result was compared to the experimentally observed spheroid 964

diameter of the growing spheroid prior to confluence, and the slope of the residual 965

growth curves after 48h, thereby retaining the parameters that are physically plausible 966

and can best explain the data at the same time. 967

Cell-specific parameters {PC=j} to obtain the initial spheroid configuration 968

and free growth 969

Starting from the calibrated model (step 1), a single run was performed with a small 970

aggregate of 10 CBM cells, all at the beginning of their cell cycle, to grow a spheroid up 971

to the size of R = 100µm, which corresponds to the size before confluence, see 972

Figure 2B. A cell cycle time of Tcyc = 17h was assigned to each of the cells as this 973

matches the experimental observation. Cells increased their radius from ∼ 6µm until 974

their radius reached the division size (7.5µm). After each cell division, a new cell cycle 975

time was assigned to each of the daughter cells, randomly chosen from a Gaussian 976

distribution with 〈Tcyc〉 = 17h and standard deviation of ±10/%. The intrinsic free 977

growth cell cycle time defines the growth rate α0 = 1/Tcyc. 978

The cell-cell adhesion energy W determines how close the cells approach each other 979

in aggregates not subject to compression by external forces, and has been chosen such 980

that the area density, measured in a cryosection of width 10µm of the resulting 981

spheroid with R = 100µm, matches that of the experiments (∼ 0.85 /100µm2) [26]. In 982

these simulations the cells have a fixed Young’s modulus of E ∼ 450 Pa and a cell 983

motility coefficient D of 10−16 m2/s [19]. The compression modulus was here set to 984

K = 5 kPa inferred as an average from values reported in literature, see Table 2. For 985
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MCS grown in absence of external stress, K, if varied in the range of experimentally 986

observed values, had no significant effect on the growth simulation results. 987

The physical parameters responsible for the inter-and intracellular friction are in the 988

CBM represented by γint, γcc,⊥, γcc,|| ∈ {PC=j}. Mechanical relaxation time of 989

spheroids compressed over a longer time period indicate relaxation times of 1 to 5 hours 990

in experiments [47, 48]. We have calibrated the friction parameters in the model from a 991

relaxation experiment starting from a compressed spheroid (see Figure 8A) such that 992

Trel ∼ 2 h, lying well in the reported range [1h, 5h], was obtained using as observable 993

the spheroid size as function of time. The calibrated coefficients correspond to those 994

found in [45,46]. 995

The parameter set as determined above resulted in a good agreement for free growth 996

simulation with data from experiment I. The model robustness was finally tested by 997

varying these parameters to see how they affected the simulation results of the thin 998

capsule (see S1 text). 999

Experiment specific parameters {PEXP } 1000

Here, we determined the parameters that are exclusively related to the experiments. See 1001

Table 2 for an overview. 1002

Experiment I: From the data for the capsule radius at which the curve is in the 1003

transition stage T1 to T2 (Figure 10, t = 1d) and using Equation 16, a pressure of 1004

pth ∼ 1500 Pa could be inferred (Figure 4C), at which bulk (interior) cells further away 1005

from the border than λI are experimentally observed to become necrotic. To express 1006

the variability in the cells’ response on pressure we chose pth from a Gaussian 1007

distribution with mean 1500 Pa and standard deviation of 150 Pa (10%) in all 1008

simulations. A variation of ±300 Pa on the mean value reduced the agreement with 1009

data in all simulations. The rim thickness λI within which the cells remain viable is 1010

fixed during the simulations as it did not change during the experiment. Notice 1011

however, that the value of λI does not explain the MCS expansion speed that differs for 1012

the thick capsule from that for the thin capsule, as it is demonstrated below (Figure 1013

10A). We further assumed that cell-capsule friction coefficients γc,cap are similar to 1014

those of cell-cell friction. However, the simulation results are robust with respect to 1015

wide variations on friction parameters, see S1 text. The elastic properties of the capsule 1016

are fixed to the values measured in [26]. 1017

Experiment II: In Experiment II, λII was calibrated to match the growth rate 1018

kinetics of the spheroid in the absence of dextran (see EII.OII). Contrary to Experiment 1019

I, after adding external mechanical stress via dextran, no increase of necrosis was 1020

observed (EII.0II). This was formally captured by setting pth →∞ in the model. The 1021

magnitude of the osmotic forces to obtain the desired bulk spheroid pressure was 1022

computed from Equation 3, fixed for each experiment. 1023

Cell-specific parameters K and Tlys during stress conditions 1024

In the next step the compression modulus and the cell specific lysis time have been 1025

specified. To acquire the most realistic parameters within their physiological range, we 1026

consider the spheroid growth in the capsule, first with the constant growth rate α0 of 1027

the cells as determined from free spheroid growth in Experiment I. 1028

Compression modulus of the cells: The compression modulus of the cells 1029

influences the volumetric strain and hence through Equation 10 the growth rate α. First 1030

we tested the hypothesis that K remains constant during the experiment, varying K in 1031

the range K ∈ [2.5 kPa, 150 kPa] in simulations for Experiment I. K ∼ 2.5 kPa has been 1032

measured for quasi uncompressed L929 fibroblasts [42], K ∼ 10kPa for compressed 1033

CT26 cells [12]. 1034
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Fig 10. (A) Time evolution of the radius of the thin capsule, shown for the
experimental data and the simulation using Model I, with parameter variation on the
individual cell compressibility (K(V ) means strain hardening). (B) Time evolution of
the simulated cell density. The dashed horizontal line indicates the experimentally
observed cell density at 48h. (C) Pressure in the capsule versus time.
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Simulations with K = 10 kPa resulted in a cell density increase at 48h by only a 1035

factor of 1.5, while experimentally a factor of two is observed (Figure 10B), suggesting 1036

that this value of K is too high. Moreover, a significant overestimation of both the 1037

initial and the residual radial growth could be observed (Figure 10A). We further tested 1038

two extremes for K. For K = 150 kPa the cell density at 48h is now only 1.3 times the 1039

original one (Figure 10B), with a largely overestimated initial radial growth. By 1040

contrast, for a much smaller value K ∼ 2.5 kPa, the cell density is strongly 1041

overestimated (increase by 3-fold at 48h), hence we reject such low values. 1042

In a next step we tested the consequence of strain hardening ( Cell volume and 1043

compressibility, [55–57]). K(V ) can be initially relatively small, leading to a higher 1044

overall cell nuclei density (Figure 10B), yet gradually increasing during compression. 1045

For an applied pressure of 5 kPa, we find K(V ) = 10 kPa while for an applied pressure 1046

of 10 kPa we have K(V ) = 15 kPa, comparable to the values reported in [12,43]. The 1047

simulations with strain stiffening show a better estimation of the cell density at 48h. 1048

However, the stiffening alone did not solve the discrepancy between data and model 1049

simulation results. It allows a rapid nuclei density increase in a spheroid for low 1050

pressure but at the same time leads to higher mechanical resistance with increasing 1051

pressure. The capsule pressure generally shows a highly nonlinear behavior with a 1052

maximum (Figure 10C). This is typical because the mechanical stiffness of a capsule 1053

drops at high dilatation [65] as confirmed in the experiment by the observation of cells 1054

sometimes breaking through the capsule at later stages [26]. 1055

Note further that all the simulations of the capsule radius upon deformation by the 1056

growing MCS with time exhibit a short initial lag, in where the capsule dilatation is 1057

small (Figure 10A). In this stage, the spheroid touches the capsule border but cells are 1058

mainly pushed inwards, filling up intercellular spaces. This is less visible in the 1059

experiment, yet there the exact point of confluence is difficult to determine. After this 1060

period, cells are becoming more and more compressed and the mechanical resistance of 1061

the spheroid increases. 1062

Overall, these results demonstrate that the viable rim with λI = 20µm, constant 1063

growth rate and neither constant nor strain-dependent growth rate cannot explain the 1064

velocity of the growing spheroid in the linear phase, as it is not possible to 1065

simultaneously fit the nuclei density and the long-time radius expansion. For any value 1066

that would be capable of fitting the nuclei density, the slope of the radius expansion 1067

would be too high. 1068

Lysis time: In a next step we studied whether incorporating the effect of intrinsic 1069

volume loss of necrotic cells due to lysis would lower the radius expansion and establish 1070

agreement between model and data. Lysis as defined in ref. [31] induces an irreversible 1071

water loss and decrease of cell volume (see Cell volume and compressibility) limited to 1072

the solid volume of the cell. Contrary to in vivo experiments, there are no macrophages 1073

present to phagocytose the remaining cell bodies, and phagocytosis by neighbor cells is 1074

very slow [29]. In line with [31], we studied lysis times Tlys ∈ [5h, 14d] using Model I. 1075

We notice that the shorter Tlys, the more the curves bend off in the beginning. However, 1076

because lysis results in more compression and thus gradually leads to stiffer cells, the 1077

numerical growth curves largely fail to reproduce the observed linear behavior (see 1078

Figure 11). The effect becomes striking at very low lysis times (Tlys = 5h). Here, the 1079

initial behavior of the spheroid is determined by cells quickly loosing their volume 1080

(hence a low resistance against pressure). Further in time, a large stiff core develops 1081

which will eventually overcome the mechanical resistance of the thin capsule. 1082

Nevertheless, adopting Tlys ≈ 5d yields a good agreement with the cell nuclei density at 1083

48h (Figure 11B), which is in line with values found in an in silico model for ductal 1084

carcinoma in situ [31] and is relatively close to the apoptosis time found by fitting 1085

phenomenological growth laws for spheroids (∼ few days) [12,66]. Note that the lysing 1086
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Fig 11. (top) (A) Time evolution of the radius of the thin capsule, shown for the
experimental data and simulations using Model I, showing the effect of a parameter
variation for the lysis time Tlys. (B) Time evolution of the simulated cell density. (C)
Cell density at 48h obtained from final model run with optimal parameters, but in
which cells divide after a fixed cycle time (”timer“) instead of a fixed size.
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cells in the bulk tend to move very slowly towards the center of the spheroid (see S3, 1087

Video 2). 1088

Non-constant growth rate: Even including lysis it was still not possible to 1089

simultaneously fit growth and density curves as improvement of growth kinetics was 1090

accompanied by increasing mismatch of density and vice-versa. This prompted us to 1091

study non-constant growth rates, decreasing with increasing volumetric strain as 1092

explained in the main text. 1093

Supporting information 1094

S1 Text. Supplementary information. This text contains more information about 1095

the model algorithms and parameters, model calibration and parameter sensitivity. 1096

S2 Video. Free growth simulation. CT26 free growth.avi shows the 1097

simulated evolution of pressure a free growing CT26 spheroid. Note that a gradient in 1098

cell pressure gradually builds up from the center to the border of the spheroid. 1099

S3 Video. Capsule growth simulation. CT26 spheroid capsule.avi shows 1100

the simulated evolution of pressure and cell volume of the CT26 spheroid growing in a 1101

thin capsule. The pressure increases gradually but remains approximately uniform over 1102

the spheroid. 1103

S4 Video. DCM compression experiment simulation. 1104

DCM spheroid compression.avi shows the simulation of a compression experiment 1105

of a spheroid in a capsule containing 400 deformable cells. Cell pressure and global 1106

volume fraction of the cell volume is indicated. The capsule radius shrinks gradually so 1107

that equilibrium pressures are measured. The cell pressure may be slightly higher at the 1108

spheroid border due to arching effects of the outer cells. 1109

S5 Experimental Data. All Experimental data.xlsx (sheet 1) provides the 1110

capsule data from [26] plus new data. Sheet 2 provides the dextran data that was 1111

extracted from [12]. 1112
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