208 research outputs found

    Engineering zonal cartilaginous tissue by modulating oxygen levels and mechanical cues through the depth of infrapatellar fat pad stem cell laden hydrogels.

    Get PDF
    Engineering tissues with a structure and spatial composition mimicking those of native articular cartilage (AC) remains a challenge. This study examined if infrapatellar fat pad-derived stem cells (FPSCs) can be used to engineer cartilage grafts with a bulk composition and a spatial distribution of matrix similar to the native tissue. In an attempt to mimic the oxygen gradients and mechanical environment within AC, FPSC-laden hydrogels (either 2 mm or 4 mm in height) were confined to half of their thickness and/or subjected to dynamic compression (DC). Confining FPSC-laden hydrogels was predicted to accentuate the gradient in oxygen tension through the depth of the constructs (higher in the top and lower in the bottom), leading to enhanced glycosaminoglycan (GAG) and collagen synthesis in 2 mm high tissues. When subjected to DC alone, both GAG and collagen accumulation increased within 2 mm high unconfined constructs. Furthermore, the dynamic modulus of constructs increased from 0.96 MPa to 1.45 MPa following the application of DC. There was no synergistic benefit of coupling confinement and DC on overall levels of matrix accumulation; however in all constructs, irrespective of their height, the combination of these boundary conditions led to the development of engineered tissues that spatially best resembled native AC. The superficial region of these constructs mimicked that of native tissue, staining weakly for GAG, strongly for type II collagen, and in 4 mm high tissues more intensely for proteoglycan 4 (lubricin). This study demonstrated that FPSCs respond to joint-like environmental conditions by producing cartilage tissues mimicking native AC. Copyright © 2016 John Wiley & Sons, Ltd.European Research Council Starter Grant. Grant Number: 25846

    In vitro development of bioimplants made up of elastomeric scaffolds with peptide gel filling seeded with human subcutaneous adipose tissue-derived progenitor cells

    Full text link
    [EN] Myocardial tissue lacks the ability to regenerate itself significantly following a myocardial infarction. Thus, new strategies that could compensate this lack are of high interest. Cardiac tissue engineering (CTE) strategies are a relatively new approach that aims to compensate the tissue loss using combination of biomaterials, cells and bioactive molecules. The goal of the present study was to evaluate cell survival and growth, seeding capacity and cellular phenotype maintenance of subcutaneous adipose tissue-derived progenitor cells in a new synthetic biomaterial scaffold platform. Specifically, here we tested the effect of the RAD16-I peptide gel in microporous poly(ethyl acrylate) polymers using two-dimensional PEA films as controls. Results showed optimal cell adhesion efficiency and growth in the polymers coated with the self-assembling peptide RAD16-I. Importantly, subATDPCs seeded into microporous PEA scaffolds coated with RAD16-I maintained its phenotype and were able to migrate outwards the bioactive patch, hopefully toward the infarcted area once implanted. These data suggest that this bioimplant (scaffold/RAD16-I/cells) can be suitable for further in vivo implantation with the aim to improve the function of affected tissue after myocardial infarction. (c) 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 103A: 3419-3430, 2015.Contract grant sponsor: European Union Seventh Framework Programme; contract grant number: 229239Castells-Sala, C.; Martínez Ramos, C.; Vallés Lluch, A.; Monleón Pradas, M.; Semino, C. (2015). In vitro development of bioimplants made up of elastomeric scaffolds with peptide gel filling seeded with human subcutaneous adipose tissue-derived progenitor cells. Journal of Biomedical Materials Research Part A. 103(11):3419-3430. https://doi.org/10.1002/jbm.a.35482S3419343010311Persidis, A. (1999). Tissue engineering. Nature Biotechnology, 17(5), 508-510. doi:10.1038/8700Venugopal, J. R., Prabhakaran, M. P., Mukherjee, S., Ravichandran, R., Dan, K., & Ramakrishna, S. (2011). Biomaterial strategies for alleviation of myocardial infarction. Journal of The Royal Society Interface, 9(66), 1-19. doi:10.1098/rsif.2011.0301Castells-Sala, C., & Semino, C. E. (2012). Biomaterials for stem cell culture and seeding for the generation and delivery of cardiac myocytes. Current Opinion in Organ Transplantation, 17(6), 681-687. doi:10.1097/mot.0b013e32835a34a6Nunes, S. S., Song, H., Chiang, C. K., & Radisic, M. (2011). Stem Cell-Based Cardiac Tissue Engineering. Journal of Cardiovascular Translational Research, 4(5), 592-602. doi:10.1007/s12265-011-9307-xFernandes, S., Kuklok, S., McGonigle, J., Reinecke, H., & Murry, C. E. (2012). Synthetic Matrices to Serve as Niches for Muscle Cell Transplantation. Cells Tissues Organs, 195(1-2), 48-59. doi:10.1159/000331414Murry, C. E., Field, L. J., & Menasché, P. (2005). Cell-Based Cardiac Repair. Circulation, 112(20), 3174-3183. doi:10.1161/circulationaha.105.546218Wang, F., & Guan, J. (2010). Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy☆. Advanced Drug Delivery Reviews, 62(7-8), 784-797. doi:10.1016/j.addr.2010.03.001Patel, A. N., & Genovese, J. A. (2007). Stem cell therapy for the treatment of heart failure. Current Opinion in Cardiology, 22(5), 464-470. doi:10.1097/hco.0b013e3282c3cb2aPendyala, L., Goodchild, T., Gadesam, R., Chen, J., Robinson, K., Chronos, N., & Hou, D. (2008). Cellular Cardiomyoplasty and Cardiac Regeneration. Current Cardiology Reviews, 4(2), 72-80. doi:10.2174/157340308784245748Li, Z., Guo, X., & Guan, J. (2012). A Thermosensitive Hydrogel Capable of Releasing bFGF for Enhanced Differentiation of Mesenchymal Stem Cell into Cardiomyocyte-like Cells under Ischemic Conditions. Biomacromolecules, 13(6), 1956-1964. doi:10.1021/bm300574jHuang, C.-C., Wei, H.-J., Yeh, Y.-C., Wang, J.-J., Lin, W.-W., Lee, T.-Y., … Sung, H.-W. (2012). Injectable PLGA porous beads cellularized by hAFSCs for cellular cardiomyoplasty. Biomaterials, 33(16), 4069-4077. doi:10.1016/j.biomaterials.2012.02.024Liu, Z., Wang, H., Wang, Y., Lin, Q., Yao, A., Cao, F., … Wang, C. (2012). The influence of chitosan hydrogel on stem cell engraftment, survival and homing in the ischemic myocardial microenvironment. Biomaterials, 33(11), 3093-3106. doi:10.1016/j.biomaterials.2011.12.044Kadner, K., Dobner, S., Franz, T., Bezuidenhout, D., Sirry, M. S., Zilla, P., & Davies, N. H. (2012). The beneficial effects of deferred delivery on the efficiency of hydrogel therapy post myocardial infarction. Biomaterials, 33(7), 2060-2066. doi:10.1016/j.biomaterials.2011.11.031Naderi, H., Matin, M. M., & Bahrami, A. R. (2011). Review paper: Critical Issues in Tissue Engineering: Biomaterials, Cell Sources, Angiogenesis, and Drug Delivery Systems. Journal of Biomaterials Applications, 26(4), 383-417. doi:10.1177/0885328211408946Ptaszek, L. M., Mansour, M., Ruskin, J. N., & Chien, K. R. (2012). Towards regenerative therapy for cardiac disease. The Lancet, 379(9819), 933-942. doi:10.1016/s0140-6736(12)60075-0Song, H., Yoon, C., Kattman, S. J., Dengler, J., Massé, S., Thavaratnam, T., … Zandstra, P. W. (2009). Interrogating functional integration between injected pluripotent stem cell-derived cells and surrogate cardiac tissue. Proceedings of the National Academy of Sciences, 107(8), 3329-3334. doi:10.1073/pnas.0905729106Liu, J., Zhang, Z., Liu, Y., Guo, C., Gong, Y., Yang, S., … He, Z. (2012). Generation, Characterization, and Potential Therapeutic Applications of Cardiomyocytes from Various Stem Cells. Stem Cells and Development, 21(12), 2095-2110. doi:10.1089/scd.2012.0031Abdelli, L. S., Merino, H., Rocher, C. M., & Singla, D. K. (2012). Cell therapy in the heart. Canadian Journal of Physiology and Pharmacology, 90(3), 307-315. doi:10.1139/y11-130Hoover-Plow, J., & Gong, Y. (2012). Challenges for heart disease stem cell therapy. Vascular Health and Risk Management, 99. doi:10.2147/vhrm.s25665Chachques, J. C., Trainini, J. C., Lago, N., Cortes-Morichetti, M., Schussler, O., & Carpentier, A. (2008). Myocardial Assistance by Grafting a New Bioartificial Upgraded Myocardium (MAGNUM Trial): Clinical Feasibility Study. The Annals of Thoracic Surgery, 85(3), 901-908. doi:10.1016/j.athoracsur.2007.10.052Karam, J.-P., Muscari, C., & Montero-Menei, C. N. (2012). Combining adult stem cells and polymeric devices for tissue engineering in infarcted myocardium. Biomaterials, 33(23), 5683-5695. doi:10.1016/j.biomaterials.2012.04.028Clifford, D. M., Fisher, S. A., Brunskill, S. J., Doree, C., Mathur, A., Clarke, M. J., … Martin-Rendon, E. (2012). Long-Term Effects of Autologous Bone Marrow Stem Cell Treatment in Acute Myocardial Infarction: Factors That May Influence Outcomes. PLoS ONE, 7(5), e37373. doi:10.1371/journal.pone.0037373Lee, R. H., Kim, B., Choi, I., Kim, H., Choi, H. S., Suh, K., … Jung, J. S. (2004). Characterization and Expression Analysis of Mesenchymal Stem Cells from Human Bone Marrow and Adipose Tissue. Cellular Physiology and Biochemistry, 14(4-6), 311-324. doi:10.1159/000080341Qayyum, A. A., Haack-Sørensen, M., Mathiasen, A. B., Jørgensen, E., Ekblond, A., & Kastrup, J. (2012). Adipose-derived mesenchymal stromal cells for chronic myocardial ischemia (MyStromalCell Trial): study design. Regenerative Medicine, 7(3), 421-428. doi:10.2217/rme.12.17Bai, X., Ma, J., Pan, Z., Song, Y.-H., Freyberg, S., Yan, Y., … Alt, E. (2007). Electrophysiological properties of human adipose tissue-derived stem cells. American Journal of Physiology-Cell Physiology, 293(5), C1539-C1550. doi:10.1152/ajpcell.00089.2007Rigol, M., Solanes, N., Farré, J., Roura, S., Roqué, M., Berruezo, A., … Heras, M. (2010). Effects of Adipose Tissue-Derived Stem Cell Therapy After Myocardial Infarction: Impact of the Route of Administration. Journal of Cardiac Failure, 16(4), 357-366. doi:10.1016/j.cardfail.2009.12.006Planat-Bénard, V., Menard, C., André, M., Puceat, M., Perez, A., Garcia-Verdugo, J.-M., … Casteilla, L. (2004). Spontaneous Cardiomyocyte Differentiation From Adipose Tissue Stroma Cells. Circulation Research, 94(2), 223-229. doi:10.1161/01.res.0000109792.43271.47Weber, B., Zeisberger, S. M., & Hoerstrup, S. P. (2011). Prenatally harvested cells for cardiovascular tissue engineering: Fabrication of autologous implants prior to birth. Placenta, 32, S316-S319. doi:10.1016/j.placenta.2011.04.001Cortes-Morichetti, M., Frati, G., Schussler, O., Van Huyen, J.-P. D., Lauret, E., Genovese, J. A., … Chachques, J. C. (2007). Association Between a Cell-Seeded Collagen Matrix and Cellular Cardiomyoplasty for Myocardial Support and Regeneration. Tissue Engineering, 13(11), 2681-2687. doi:10.1089/ten.2006.0447Chi, N.-H., Yang, M.-C., Chung, T.-W., Chen, J.-Y., Chou, N.-K., & Wang, S.-S. (2012). Cardiac repair achieved by bone marrow mesenchymal stem cells/silk fibroin/hyaluronic acid patches in a rat of myocardial infarction model. Biomaterials, 33(22), 5541-5551. doi:10.1016/j.biomaterials.2012.04.030Wang, T., Jiang, X.-J., Tang, Q.-Z., Li, X.-Y., Lin, T., Wu, D.-Q., … Okello, E. (2009). Bone marrow stem cells implantation with α-cyclodextrin/MPEG–PCL–MPEG hydrogel improves cardiac function after myocardial infarction. Acta Biomaterialia, 5(8), 2939-2944. doi:10.1016/j.actbio.2009.04.040Wu, J., Zeng, F., Huang, X.-P., Chung, J. C.-Y., Konecny, F., Weisel, R. D., & Li, R.-K. (2011). Infarct stabilization and cardiac repair with a VEGF-conjugated, injectable hydrogel. Biomaterials, 32(2), 579-586. doi:10.1016/j.biomaterials.2010.08.098Vunjak-Novakovic, G., Lui, K. O., Tandon, N., & Chien, K. R. (2011). Bioengineering Heart Muscle: A Paradigm for Regenerative Medicine. Annual Review of Biomedical Engineering, 13(1), 245-267. doi:10.1146/annurev-bioeng-071910-124701Dobner, S., Bezuidenhout, D., Govender, P., Zilla, P., & Davies, N. (2009). A Synthetic Non-degradable Polyethylene Glycol Hydrogel Retards Adverse Post-infarct Left Ventricular Remodeling. Journal of Cardiac Failure, 15(7), 629-636. doi:10.1016/j.cardfail.2009.03.003Blan, N. R., & Birla, R. K. (2008). Design and fabrication of heart muscle using scaffold-based tissue engineering. Journal of Biomedical Materials Research Part A, 86A(1), 195-208. doi:10.1002/jbm.a.31642Zhao, X., & Zhang, S. (s. f.). Self-Assembling Nanopeptides Become a New Type of Biomaterial. Advances in Polymer Science, 145-170. doi:10.1007/12_088Vallés-Lluch, A., Arnal-Pastor, M., Martínez-Ramos, C., Vilariño-Feltrer, G., Vikingsson, L., Castells-Sala, C., … Monleón Pradas, M. (2013). Combining self-assembling peptide gels with three-dimensional elastomer scaffolds. Acta Biomaterialia, 9(12), 9451-9460. doi:10.1016/j.actbio.2013.07.038Arnal-Pastor, M., Vallés-Lluch, A., Keicher, M., & Pradas, M. M. (2011). Coating typologies and constrained swelling of hyaluronic acid gels within scaffold pores. Journal of Colloid and Interface Science, 361(1), 361-369. doi:10.1016/j.jcis.2011.05.013Pérez Olmedilla, M., Garcia-Giralt, N., Pradas, M. M., Ruiz, P. B., Gómez Ribelles, J. L., Palou, E. C., & García, J. C. M. (2006). Response of human chondrocytes to a non-uniform distribution of hydrophilic domains on poly (ethyl acrylate-co-hydroxyethyl methacrylate) copolymers. Biomaterials, 27(7), 1003-1012. doi:10.1016/j.biomaterials.2005.07.030Soria, J. M., Martínez Ramos, C., Salmerón Sánchez, M., Benavent, V., Campillo Fernández, A., Gómez Ribelles, J. L., … Barcia, J. A. (2006). Survival and differentiation of embryonic neural explants on different biomaterials. Journal of Biomedical Materials Research Part A, 79A(3), 495-502. doi:10.1002/jbm.a.30803Campillo-Fernandez, A. J., Pastor, S., Abad-Collado, M., Bataille, L., Gomez-Ribelles, J. L., Meseguer-Dueñas, J. M., … Ruiz-Moreno, J. M. (2007). Future Design of a New Keratoprosthesis. Physical and Biological Analysis of Polymeric Substrates for Epithelial Cell Growth. Biomacromolecules, 8(8), 2429-2436. doi:10.1021/bm0703012Martínez-Ramos, C., Vallés-Lluch, A., Verdugo, J. M. G., Ribelles, J. L. G., Barcia Albacar, J. A., Orts, A. B., … Pradas, M. M. (2012). Channeled scaffolds implanted in adult rat brain. Journal of Biomedical Materials Research Part A, 100A(12), 3276-3286. doi:10.1002/jbm.a.34273Hernández, J. C. R., Salmerón Sánchez, M., Soria, J. M., Gómez Ribelles, J. L., & Monleón Pradas, M. (2007). Substrate Chemistry-Dependent Conformations of Single Laminin Molecules on Polymer Surfaces are Revealed by the Phase Signal of Atomic Force Microscopy. Biophysical Journal, 93(1), 202-207. doi:10.1529/biophysj.106.102491Kisiday, J., Jin, M., Kurz, B., Hung, H., Semino, C., Zhang, S., & Grodzinsky, A. J. (2002). Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: Implications for cartilage tissue repair. Proceedings of the National Academy of Sciences, 99(15), 9996-10001. doi:10.1073/pnas.142309999Semino, C. E., Merok, J. R., Crane, G. G., Panagiotakos, G., & Zhang, S. (2003). Functional differentiation of hepatocyte-like spheroid structures from putative liver progenitor cells in three-dimensional peptide scaffolds. Differentiation, 71(4-5), 262-270. doi:10.1046/j.1432-0436.2003.7104503.xNarmoneva, D. A., Vukmirovic, R., Davis, M. E., Kamm, R. D., & Lee, R. T. (2004). Endothelial Cells Promote Cardiac Myocyte Survival and Spatial Reorganization. Circulation, 110(8), 962-968. doi:10.1161/01.cir.0000140667.37070.07Genové, E., Shen, C., Zhang, S., & Semino, C. E. (2005). The effect of functionalized self-assembling peptide scaffolds on human aortic endothelial cell function. Biomaterials, 26(16), 3341-3351. doi:10.1016/j.biomaterials.2004.08.012Ellis-Behnke, R. G., Liang, Y.-X., You, S.-W., Tay, D. K. C., Zhang, S., So, K.-F., & Schneider, G. E. (2006). Nano neuro knitting: Peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proceedings of the National Academy of Sciences, 103(13), 5054-5059. doi:10.1073/pnas.0600559103Garreta, E., Genové, E., Borrós,, S., & Semino, C. E. (2006). Osteogenic Differentiation of Mouse Embryonic Stem Cells and Mouse Embryonic Fibroblasts in a Three-Dimensional Self-Assembling Peptide Scaffold. Tissue Engineering, 12(8), 2215-2227. doi:10.1089/ten.2006.12.2215Martínez-Ramos, C., Rodríguez-Pérez, E., Garnes, M. P., Chachques, J. C., Moratal, D., Vallés-Lluch, A., & Monleón Pradas, M. (2014). Design and Assembly Procedures for Large-Sized Biohybrid Scaffolds as Patches for Myocardial Infarct. Tissue Engineering Part C: Methods, 20(10), 817-827. doi:10.1089/ten.tec.2013.0489Diego, R. B., Olmedilla, M. P., Aroca, A. S., Ribelles, J. L. G., Pradas, M. M., Ferrer, G. G., & Sánchez, M. S. (2005). Acrylic scaffolds with interconnected spherical pores and controlled hydrophilicity for tissue engineering. Journal of Materials Science: Materials in Medicine, 16(8), 693-698. doi:10.1007/s10856-005-2604-7Diego, R. B., Estellés, J. M., Sanz, J. A., García-Aznar, J. M., & Sánchez, M. S. (2007). Polymer scaffolds with interconnected spherical pores and controlled architecture for tissue engineering: Fabrication, mechanical properties, and finite element modeling. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 81B(2), 448-455. doi:10.1002/jbm.b.30683Bayes-Genis, A., Soler-Botija, C., Farré, J., Sepúlveda, P., Raya, A., Roura, S., … Belmonte, J. C. I. (2010). Human progenitor cells derived from cardiac adipose tissue ameliorate myocardial infarction in rodents. Journal of Molecular and Cellular Cardiology, 49(5), 771-780. doi:10.1016/j.yjmcc.2010.08.010MARTINEZESTRADA, O., MUNOZSANTOS, Y., JULVE, J., REINA, M., & VILARO, S. (2005). Human adipose tissue as a source of Flk-1 cells: new method of differentiation and expansion. Cardiovascular Research, 65(2), 328-333. doi:10.1016/j.cardiores.2004.11.015Cyganek, L. (2013). Cardiac Progenitor Cells and their Therapeutic Application for Cardiac Repair. Journal of Clinical & Experimental Cardiology, 01(S11). doi:10.4172/2155-9880.s11-008Wang, C., Cao, D., Wang, Q., & Wang, D.-Z. (2011). Synergistic Activation of Cardiac Genes by Myocardin and Tbx5. PLoS ONE, 6(8), e24242. doi:10.1371/journal.pone.0024242Wilson-Rawls, J., Molkentin, J. D., Black, B. L., & Olson, E. N. (1999). Activated Notch Inhibits Myogenic Activity of the MADS-Box Transcription Factor Myocyte Enhancer Factor 2C. Molecular and Cellular Biology, 19(4), 2853-2862. doi:10.1128/mcb.19.4.2853Lockhart, M. M., Wirrig, E. E., Phelps, A. L., Ghatnekar, A. V., Barth, J. L., Norris, R. A., & Wessels, A. (2013). Mef2c Regulates Transcription of the Extracellular Matrix Protein Cartilage Link Protein 1 in the Developing Murine Heart. PLoS ONE, 8(2), e57073. doi:10.1371/journal.pone.0057073Jiang, W., Ma, A., Wang, T., Han, K., Liu, Y., Zhang, Y., … Zheng, X. (2006). Homing and differentiation of mesenchymal stem cells delivered intravenously to ischemic myocardium in vivo: a time-series study. Pflügers Archiv - European Journal of Physiology, 453(1), 43-52. doi:10.1007/s00424-006-0117-yPrabhakaran, M. P., Venugopal, J., Kai, D., & Ramakrishna, S. (2011). Biomimetic material strategies for cardiac tissue engineering. Materials Science and Engineering: C, 31(3), 503-513. doi:10.1016/j.msec.2010.12.017Xu, B., Li, Y., Fang, X., Thouas, G. A., Cook, W. D., Newgreen, D. F., & Chen, Q. (2013). Mechanically tissue-like elastomeric polymers and their potential as a vehicle to deliver functional cardiomyocytes. Journal of the Mechanical Behavior of Biomedical Materials, 28, 354-365. doi:10.1016/j.jmbbm.2013.06.005Zhou, J., Shu, Y., Lü, S.-H., Li, J.-J., Sun, H.-Y., Tang, R.-Y., … Wang, C.-Y. (2013). The Spatiotemporal Development of Intercalated Disk in Three-Dimensional Engineered Heart Tissues Based on Collagen/Matrigel Matrix. PLoS ONE, 8(11), e81420. doi:10.1371/journal.pone.0081420Zhang, S., Gelain, F., & Zhao, X. (2005). Designer self-assembling peptide nanofiber scaffolds for 3D tissue cell cultures. Seminars in Cancer Biology, 15(5), 413-420. doi:10.1016/j.semcancer.2005.05.007Santos, E., Hernández, R. M., Pedraz, J. L., & Orive, G. (2012). Novel advances in the design of three-dimensional bio-scaffolds to control cell fate: translation from 2D to 3D. Trends in Biotechnology, 30(6), 331-341. doi:10.1016/j.tibtech.2012.03.005Dégano, I. R., Quintana, L., Vilalta, M., Horna, D., Rubio, N., Borrós, S., … Blanco, J. (2009). The effect of self-assembling peptide nanofiber scaffolds on mouse embryonic fibroblast implantation and proliferation. Biomaterials, 30(6), 1156-1165. doi:10.1016/j.biomaterials.2008.11.021Kanno, S., & Saffitz, J. E. (2001). The role of myocardial gap junctions in electrical conduction and arrhythmogenesis. Cardiovascular Pathology, 10(4), 169-177. doi:10.1016/s1054-8807(01)00078-3Center CHG 1996Messner, B., Baum, H., Fischer, P., Quasthoff, S., & Neumeier, D. (2000). Expression of Messenger RNA of the Cardiac Isoforms of Troponin T and I in Myopathic Skeletal Muscle. American Journal of Clinical Pathology, 114(4), 544-549. doi:10.1309/8kcl-uqrf-6eel-36xkGnecchi, M., Danieli, P., & Cervio, E. (2012). Mesenchymal stem cell therapy for heart disease. Vascular Pharmacology, 57(1), 48-55. doi:10.1016/j.vph.2012.04.00

    Inoculation of Scrapie with the Self-Assembling RADA-Peptide Disrupts Prion Accumulation and Extends Hamster Survival

    Get PDF
    Intracerebral inoculation of 263K Scrapie brain homogenate (PrPsc) with a self-assembling RADA-peptide (RADA) significantly delayed disease onset and increased hamster survival. Time of survival was dependent on the dose of RADA and pre-incubation with PrPsc prior to inoculation. RADA treatment resulted in the absence of detectable PrPsc at 40 d followed by an increased rate of PrPsc accumulation at 75 d up to sacrifice. In all PrPsc inoculated animals, clinical symptoms were observed ∼10 d prior to sacrifice and brains showed spongiform degeneration with Congo red positive plaques. A time-dependent increase in reactive gliosis was observed in both groups with more GFAP detected in RADA treated animals at all time points. The PrP protein showed dose-dependent binding to RADA and this binding was competitively inhibited by Congo Red. We conclude that RADA disrupts the efficacy of prion transmission by altering the rate of PrPsc accumulation. This is the first demonstration that a self-assembling biomolecular peptide can interact with PrPsc, disrupt the course of Scrapie disease process, and extend survival

    Doxorubicin-induced cardiomyocyte toxicity- protective effects of endothelial cells in a tri-culture model system

    Get PDF
    Doxorubicin-induced cardiomyopathy is a clinically prevalent pathology, occurring as a sequelae following chemotherapy for cancer patients. In particular, the ‘first dose’ effect has been particularly challenging, given the heterogeneous and multifactorial nature of this pathophysiology. Here, we describe the development of a physiologically relevant in vitro model for cardiotoxicity testing, using human cells. Primary cardiomyocytes, endothelial and smooth muscle cells were tri-cultured in 2D, or within nano-fibrous scaffolds in a 3D environment, under dynamic nutrient flow, using the Quasi Vivo® system. State of the art sensor chips were used to detect troponin I levels, 2 hrs after acute exposure to Doxorubicin. We demonstrate a significant improvement in cardiomyocyte viability when grown in a 3D tri-culture environment over a 5 day period and a 10 fold reduction in Doxorubicin-induced toxicity. Our tri-culture model can be used as a valuable tool for physiologically relevant assessment of drug-induced cardiotoxicity in vitro

    Interaction of β-Sheet Folds with a Gold Surface

    Get PDF
    The adsorption of proteins on inorganic surfaces is of fundamental biological importance. Further, biomedical and nanotechnological applications increasingly use interfaces between inorganic material and polypeptides. Yet, the underlying adsorption mechanism of polypeptides on surfaces is not well understood and experimentally difficult to analyze. Therefore, we investigate here the interactions of polypeptides with a gold(111) surface using computational molecular dynamics (MD) simulations with a polarizable gold model in explicit water. Our focus in this paper is the investigation of the interaction of polypeptides with β-sheet folds. First, we concentrate on a β-sheet forming model peptide. Second, we investigate the interactions of two domains with high β-sheet content of the biologically important extracellular matrix protein fibronectin (FN). We find that adsorption occurs in a stepwise mechanism both for the model peptide and the protein. The positively charged amino acid Arg facilitates the initial contact formation between protein and gold surface. Our results suggest that an effective gold-binding surface patch is overall uncharged, but contains Arg for contact initiation. The polypeptides do not unfold on the gold surface within the simulation time. However, for the two FN domains, the relative domain-domain orientation changes. The observation of a very fast and strong adsorption indicates that in a biological matrix, no bare gold surfaces will be present. Hence, the bioactivity of gold surfaces (like bare gold nanoparticles) will critically depend on the history of particle administration and the proteins present during initial contact between gold and biological material. Further, gold particles may act as seeds for protein aggregation. Structural re-organization and protein aggregation are potentially of immunological importance

    Diabetes Alters Intracellular Calcium Transients in Cardiac Endothelial Cells

    Get PDF
    Diabetic cardiomyopathy (DCM) is a diabetic complication, which results in myocardial dysfunction independent of other etiological factors. Abnormal intracellular calcium ([Ca2+]i) homeostasis has been implicated in DCM and may precede clinical manifestation. Studies in cardiomyocytes have shown that diabetes results in impaired [Ca2+]i homeostasis due to altered sarcoplasmic reticulum Ca2+ ATPase (SERCA) and sodium-calcium exchanger (NCX) activity. Importantly, altered calcium homeostasis may also be involved in diabetes-associated endothelial dysfunction, including impaired endothelium-dependent relaxation and a diminished capacity to generate nitric oxide (NO), elevated cell adhesion molecules, and decreased angiogenic growth factors. However, the effect of diabetes on Ca2+ regulatory mechanisms in cardiac endothelial cells (CECs) remains unknown. The objective of this study was to determine the effect of diabetes on [Ca2+]i homeostasis in CECs in the rat model (streptozotocin-induced) of DCM. DCM-associated cardiac fibrosis was confirmed using picrosirius red staining of the myocardium. CECs isolated from the myocardium of diabetic and wild-type rats were loaded with Fura-2, and UTP-evoked [Ca2+]i transients were compared under various combinations of SERCA, sarcoplasmic reticulum Ca2+ ATPase (PMCA) and NCX inhibitors. Diabetes resulted in significant alterations in SERCA and NCX activities in CECs during [Ca2+]i sequestration and efflux, respectively, while no difference in PMCA activity between diabetic and wild-type cells was observed. These results improve our understanding of how diabetes affects calcium regulation in CECs, and may contribute to the development of new therapies for DCM treatment
    corecore