133 research outputs found

    Osteoporosis prevention in postmenopausal female workers : Beneficial effects of silicon dietary supplementation on oxidative status. A pilot study

    Get PDF
    In the last years, the employment of ageing women is increased, and the well-being of these workers, together with the prevention of chronic disabling diseases, is an issue of great importance. Moreover, as postmenopausal ageing is associated with the loss of bone density and consequent increased fracture risk, promoting bone health in these women could be the best strategy for avoiding osteoporotic fractures. We aimed to evaluate the effects of 3-month supplementation with a commercial antioxidant product containing Silica on oxidative status and bone markers in a sample of Italian female workers. Subjects were menopausal and osteopenic women (N=29, age 59.34\ub16.37, mean BMI 26.19\ub14.01 kg/m2). At baseline (T0) and after three-month treatment (T1) bone mineral density (BMD) was evaluated by phalangeal osteosonogrammetry. Haematological, serum biochemical parameters, reactive oxygen species (ROS), total antioxidant capacity (TAC), oxydated low-density lipoproteins (oxLDL) and urinary cross-links pyridinoline (PYD) and deoxypyridinoline (DPD) were assessed. Parametric or non-parametric tests were performed at T0 and T1. To analyse the possible association between two variables a linear correlation test was performed. At T0, slightly high levels of ROS (86% of subjects), oxLDL (59%), Total Cholesterol (T-Chol) (90%) and LDL-Chol (59%) were observed, together with suboptimal or deficient 25-OH vitamin D (98%) concentrations. At T1, oxLDL levels and the ratio oxLDL/LDL-Chol significantly decreased (p<0.01). At T0 significant negative correlations between BMD T-score and cross-links were observed (DPD/Crea: r=-0.57, p=0.001; PYD/ Crea: r=-0.45, p=0.01). At T1, a significant reduction (p=0.03) was observed only for DPD (\u3bcg/L) but not for cross-links normalized by creatinine amounts. In conclusion 3-months Silica supplementation improves significantly oxidative status and bone resorption markers in most postmenopausal female workers, representing a complementary treatment for early phases of BMD reduction

    The extended Planetary Nebula Spectrograph (ePN.S) early-type galaxy survey: The kinematic diversity of stellar halos and the relation between halo transition scale and stellar mass

    Get PDF
    Context. In the hierarchical two-phase formation scenario, the halos of early type galaxies (ETGs) are expected to have different physical properties from the galaxies’ central regions.Aims. The ePN.S survey characterizes the kinematic properties of ETG halos using planetary nebulae (PNe) as tracers, overcoming the limitations of absorption line spectroscopy at low surface brightness.Methods. The survey is based on data from the custom built Planetary Nebula Spectrograph (PN.S), supplemented with PN kinematics from counter-dispersed imaging and from high-resolution PN spectroscopy. We present two-dimensional velocity and velocity dispersion fields for 33 ETGs, including both fast (FRs) and slow rotators (SRs), making this the largest kinematic survey to-date of extragalactic PNe. The velocity fields are reconstructed from the measured PN velocities using an adaptive kernel procedure validated with simulations, and extend to a median of 5.6 effective radii (Re), with a range [3Re−13Re]. We complemented the PN kinematics with absorption line data from the literature, for a complete description of the kinematics from the center to the outskirts.Results. We find that ETGs typically show a kinematic transition between inner regions and halo. Estimated transition radii in units of Re anti-correlate with stellar mass. SRs have increased but still modest rotational support at large radii, while most of the FRs show a decrease in rotation, due to the fading of the inner disk in the outer, more slowly rotating spheroid. 30% of the FRs are dominated by rotation also at large radii. Most ETGs have flat or slightly falling halo velocity dispersion profiles, but 15% of the sample have steeply falling profiles. All of the SRs and 40% of the FRs show signatures of triaxial halos such as kinematic twists, misalignments, or rotation along two axes. We show with illustrative photometric models that this is consistent with the distribution of isophote twists from extended photometry.Conclusions. ETGs have more diverse kinematic properties in their halos than in the central regions. FRs do contain inner disk components but these frequently fade in outer spheroids which are often triaxial. The observed kinematic transition to the halo and its dependence on stellar mass is consistent with ΛCDM simulations and supports a two-phase formation scenario

    The extended Planetary Nebula Spectrograph (ePN.S) early-type galaxy survey: the kinematic diversity of stellar halos and the relation between halo transition scale and stellar mass

    Get PDF
    Context. In the hierarchical two-phase formation scenario, the halos of early type galaxies (ETGs) are expected to have different physical properties from the galaxies’ central regions. Aims. The ePN.S survey characterizes the kinematic properties of ETG halos using planetary nebulae (PNe) as tracers, overcoming the limitations of absorption line spectroscopy at low surface brightness. Methods. The survey is based on data from the custom built Planetary Nebula Spectrograph (PN.S), supplemented with PN kinematics from counter-dispersed imaging and from high-resolution PN spectroscopy. We present two-dimensional velocity and velocity dispersion fields for 33 ETGs, including both fast (FRs) and slow rotators (SRs), making this the largest kinematic survey to-date of extragalactic PNe. The velocity fields are reconstructed from the measured PN velocities using an adaptive kernel procedure validated with simulations, and extend to a median of 5.6 effective radii (Re), with a range [3Re−13Re]. We complemented the PN kinematics with absorption line data from the literature, for a complete description of the kinematics from the center to the outskirts. Results. We find that ETGs typically show a kinematic transition between inner regions and halo. Estimated transition radii in units of Re anti-correlate with stellar mass. SRs have increased but still modest rotational support at large radii, while most of the FRs show a decrease in rotation, due to the fading of the inner disk in the outer, more slowly rotating spheroid. 30% of the FRs are dominated by rotation also at large radii. Most ETGs have flat or slightly falling halo velocity dispersion profiles, but 15% of the sample have steeply falling profiles. All of the SRs and 40% of the FRs show signatures of triaxial halos such as kinematic twists, misalignments, or rotation along two axes. We show with illustrative photometric models that this is consistent with the distribution of isophote twists from extended photometry. Conclusions. ETGs have more diverse kinematic properties in their halos than in the central regions. FRs do contain inner disk components but these frequently fade in outer spheroids which are often triaxial. The observed kinematic transition to the halo and its dependence on stellar mass is consistent with ΛCDM simulations and supports a two-phase formation scenari

    DES Y3 + KiDS-1000: Consistent cosmology combining cosmic shear surveys

    Get PDF
    We present a joint cosmic shear analysis of the Dark Energy Survey (DES Y3) and the Kilo-Degree Survey (KiDS-1000) in a collaborative effort between the two survey teams. We find consistent cosmological parameter constraints between DES Y3 and KiDS-1000 which, when combined in a joint-survey analysis, constrain the parameter S8=σ8Ωm/0.3S_8 = \sigma_8 \sqrt{\Omega_{\rm m}/0.3} with a mean value of 0.790−0.014+0.0180.790^{+0.018}_{-0.014}. The mean marginal is lower than the maximum a posteriori estimate, S8=0.801S_8=0.801, owing to skewness in the marginal distribution and projection effects in the multi-dimensional parameter space. Our results are consistent with S8S_8 constraints from observations of the cosmic microwave background by Planck, with agreement at the 1.7σ1.7\sigma level. We use a Hybrid analysis pipeline, defined from a mock survey study quantifying the impact of the different analysis choices originally adopted by each survey team. We review intrinsic alignment models, baryon feedback mitigation strategies, priors, samplers and models of the non-linear matter power spectrum.Comment: 38 pages, 21 figures, 15 tables, submitted to the Open Journal of Astrophysics. Watch the core team discuss this analysis at https://cosmologytalks.com/2023/05/26/des-kid

    First Observation of a Upsilon(1D) State

    Get PDF
    We present the first evidence for the production of Upsilon(1D) states in the four-photon cascade, Upsilon(3S)-->gamma chib(2P), chib(2P)-->gamma Upsilon(1D), Upsilon(1D)-->gamma chib(1P), chib(1P)-->gamma Upsilon(1S), followed by the Upsilon(1S) annihilation into e+e- or mu+mu-. The signal has a significance of 10.2 standard deviations. The measured product branching ratio for these five decays, (2.5+-0.5+-0.5)x10^(-5), is consistent with the theoretical estimates. The data are dominated by the production of one Upsilon(1D) state consistent with the J=2 assignment. Its mass is determined to be (10161.1+-0.6+-1.6) MeV, which is consistent with the predictions from potential models and lattice QCD calculations. We also searched for Upsilon(3S)-->gammachib(2P), chib(2P)-->gammaUpsilon(1D), followed by either Upsilon(1D)-->eta Upsilon(1S) or Upsilon(1D)-->pi+pi- Upsilon(1S). We find no evidence for such decays and set upper limits on the product branching ratios.Comment: 12 pages postscript,also available through this http://w4.lns.cornell.edu/public/CLNS/, submitted to PR

    Measurement of the xx- and Q2Q^2-Dependence of the Asymmetry A1A_1 on the Nucleon

    Get PDF
    We report results for the virtual photon asymmetry A1A_1 on the nucleon from new Jefferson Lab measurements. The experiment, which used the CEBAF Large Acceptance Spectrometer and longitudinally polarized proton (15^{15}NH3_3) and deuteron (15^{15}ND3_3) targets, collected data with a longitudinally polarized electron beam at energies between 1.6 GeV and 5.7 GeV. In the present paper, we concentrate on our results for A1(x,Q2)A_1(x,Q^2) and the related ratio g1/F1(x,Q2)g_1/F_1(x,Q^2) in the resonance and the deep inelastic regions for our lowest and highest beam energies, covering a range in momentum transfer Q2Q^2 from 0.05 to 5.0 GeV2^2 and in final-state invariant mass WW up to about 3 GeV. Our data show detailed structure in the resonance region, which leads to a strong Q2Q^2--dependence of A1(x,Q2)A_1(x,Q^2) for WW below 2 GeV. At higher WW, a smooth approach to the scaling limit, established by earlier experiments, can be seen, but A1(x,Q2)A_1(x,Q^2) is not strictly Q2Q^2--independent. We add significantly to the world data set at high xx, up to x=0.6x = 0.6. Our data exceed the SU(6)-symmetric quark model expectation for both the proton and the deuteron while being consistent with a negative dd-quark polarization up to our highest xx. This data setshould improve next-to-leading order (NLO) pQCD fits of the parton polarization distributions.Comment: 7 pages LaTeX, 5 figure
    • 

    corecore