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ABSTRACT
We present a joint cosmic shear analysis of the Dark Energy Survey (DES Y3) and the Kilo-Degree Survey
(KiDS-1000) in a collaborative effort between the two survey teams. We find consistent cosmological
parameter constraints between DES Y3 and KiDS-1000 which, when combined in a joint-survey analysis,
constrain the parameter 𝑆8 = 𝜎8

√︁
Ωm/0.3 with a mean value of 0.790+0.018

−0.014. The mean marginal is lower
than the maximum a posteriori estimate, 𝑆8 = 0.801, owing to skewness in the marginal distribution and
projection effects in the multi-dimensional parameter space. Our results are consistent with 𝑆8 constraints
from observations of the cosmic microwave background by Planck, with agreement at the 1.7𝜎 level. We
use a Hybrid analysis pipeline, defined from a mock survey study quantifying the impact of the different
analysis choices originally adopted by each survey team. We review intrinsic alignment models, baryon
feedback mitigation strategies, priors, samplers and models of the non-linear matter power spectrum.
Keywords: Cosmology, Weak Gravitational Lensing
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1. INTRODUCTION

A cosmic shear analysis exploits the weak gravitational
lensing of background galaxy images by foreground large-
scale structures in order to probe the growth of structures
and the expansion of the Universe. Since the first detec-
tion (Bacon et al. 2000; Kaiser et al. 2000; Van Waerbeke
et al. 2000; Wittman et al. 2000) significant developments
in instrumentation, data, theory, simulation and statistical
analysis have led to an established and robust cosmological
probe. Cosmic shear is one of the primary science drivers
for the next generation of cosmological surveys imaged with
Euclid1, the Nancy Grace Roman Space Telescope2 and the
Vera C. Rubin Observatory3. These surveys are designed
to attain sub-percent level precision on joint measurements
of the dark energy equation of state parameter, 𝑤0, and
the scale factor evolution parameter, 𝑤a. Their goal is to
understand the mechanism that drives cosmic acceleration.
Large-scale pathfinders include the Deep Lens Survey (DLS,
Wittman et al. 2002; Jee et al. 2016), the Canada France
Hawaii Telescope Lensing Survey (CFHTLenS, Heymans
et al. 2012; Joudaki et al. 2017), the Dark Energy Survey
(DES, DES Collaboration et al. 2018; Sevilla-Noarbe et al.
2021; Amon et al. 2022; Secco, Samuroff et al. 2022), the
Hyper Suprime Camera Survey (HSC, Aihara et al. 2018;
Dalal et al. 2023; Li et al. 2023a) and the Kilo Degree Sur-
vey (KiDS, Kuĳken et al. 2015, 2019; Asgari et al. 2021).
All have set tight and consistent constraints on the param-
eter4 𝑆8 = 𝜎8

√︁
Ωm/0.3, which accounts for the inherent

cosmic shear degeneracy between Ωm, the matter density
parameter, and 𝜎8, the linear-theory standard deviation of
matter density fluctuations in spheres of radius 8 ℎ−1Mpc.
These constraints all show a preference for 𝑆8 to be lower
than the value derived from observations of the Cosmic Mi-
crowave Background when adopting the flat-ΛCDM model
(CMB; Planck Collaboration 2020). Any significant offset
between direct measurements of 𝑆8 and the CMB-informed
ΛCDM prediction would, in principle, indicate issues with
the ΛCDM model. The community has not reached a con-
sensus on whether the ‘tension’ seen between these early
and late Universe observations arises from sampling vari-
ance, systematic errors in the theoretical modelling and/or
data analysis, or whether the existing results are already an
indication of beyond-ΛCDM physics.

The weak lensing community has a long history of collab-
orative initiatives to improve the robustness of cosmic shear
cosmology with shear and redshift measurement challenges
analysing image simulations and mock catalogues (Heymans
et al. 2006a; Hildebrandt et al. 2010; Kitching et al. 2012;
Mandelbaum et al. 2015; Euclid Collaboration: Desprez
et al. 2020; Schmidt et al. 2020). The strong track record
in releasing all relevant data products has also allowed for
examination and verification by independent groups (Mac-
Crann et al. 2015; Efstathiou & Lemos 2018; Troxel et al.
2018; Asgari et al. 2019; Asgari, Tröster et al. 2020; Joudaki
et al. 2020; Chang et al. 2019; García-García et al. 2021;
Amon & Efstathiou 2022; Longley et al. 2023). Comparison
studies find consistent weak lensing measurements between
different surveys, as quantified through measurements of the
projected surface mass density around luminous red galax-
ies (Amon et al., 2018; Leauthaud, Amon et al. 2022; Amon,
Robertson et al. 2023). Unified analyses of cosmic shear sur-
veys also find consistency between the surveys tested, but
highlight the impact of different analysis choices on the re-

1 Euclid: https://sci.esa.int/web/euclid
2 Hereafter Roman: https://roman.gsfc.nasa.gov/
3 Hereafter Rubin: https://www.lsst.org/
4 There is no consensus in the literature on the name to best describe the

𝑆8 parameter. It has been referred to as the clustering amplitude parameter,
the structure growth parameter and the lensing amplitude parameter.

covered cosmological parameter constraints (Benjamin et al.
2007; Chang et al. 2019; Asgari, Tröster et al. 2020; Joudaki
et al. 2020). Most recently, Longley et al. (2023) combined
the first year data from DES and HSC with the fourth data
release from KiDS, reporting the tightest Stage-III cosmic
shear constraints to date. The 1.6-1.9% constraints on 𝑆8
range from 𝑆8 = 0.777+0.016

−0.017 to 𝑆8 = 0.791+0.013
−0.013, depending

on the different modelling approaches and methods used to
account for the cross-survey covariance between the over-
lapping KiDS and HSC surveys.

This paper presents a joint collaboration analysis of the
latest data releases from the Dark Energy Survey (hereafter
DES Y3), and the Kilo-Degree Survey (hereafter KiDS-
1000)5. Table 1 summarises the survey specifications for
these two complementary data sets. The DES footprint
spanning a factor of five times the area of the KiDS foot-
print, can be contrasted with KiDS utilising three times as
many filters as DES in the wide field cosmic shear measure-
ment, with matched-depth photometry in both the optical
and near infrared. In the DES Deep Field calibration analy-
sis, DES extend both the depth and wavelength range of the
survey into the near infrared (Hartley, Choi et al. 2021). To
advance photometric redshift calibration, both surveys in-
corporate significant imaging of calibration fields that have
been targeted by a range of different deep spectroscopic red-
shift campaigns (Hildebrandt, van den Busch, Wright et al.
2021; Myles, Alarcon et al. 2021). Using self-organising
maps (SOM), both teams mitigate incompleteness in these
spectroscopic training samples (Buchs et al. 2019; Wright
et al. 2020a; Myles, Alarcon et al. 2021), incorporating
near-infrared information (Wright et al. 2019; Hartley, Choi
et al. 2021; Everett et al. 2022), with validation using cross-
correlation clustering measurements (van den Busch et al.
2020; Hildebrandt, van den Busch, Wright et al. 2021; Gatti,
Giannini et al. 2022b). DES and KiDS both adopt blinding
procedures to avoid the inclusion of confirmation bias in
their findings (Kuĳken et al. 2015; Muir et al. 2020). The
cosmic shear constraints from the two surveys are consis-
tent, with similar prescriptions chosen to derive analytical
covariance matrices (Schneider et al. 2002; Joachimi et al.
2021; Friedrich et al. 2021). Asgari et al. (2021) present the
KiDS-1000 cosmic shear analysis finding 𝑆8 = 0.759+0.024

−0.021.
Amon et al. (2022); Secco, Samuroff et al. (2022) present the
DES Y3 joint cosmic shear and shear ratio analysis finding
𝑆8 = 0.772+0.018

−0.017 in their ΛCDM-optimised analysis.
Whilst there are many similarities between the DES and

KiDS data processing techniques, catalogue production and
calibration methods, it is worth noting that the two teams
take rather different approaches to the shear measurement
(Miller et al. 2013; Huff & Mandelbaum 2017; Sheldon &
Huff 2017). This has been motivated in part by the dif-
ferent tiling strategies and PSF properties of each survey.
The DES analysis operates on astrometrically sheared and
stacked images with the KiDS analysis operating on indi-
vidual unsheared exposures using analytic astrometric cor-
rections. These core differences in data handling make it
highly non-trivial to conduct a KiDS-like shear measure-
ment of DES and vice versa. Many in the lensing commu-
nity argue that the significant resources required to make a
pixel-level comparison of shear measurement methods us-
ing real data would be unwarranted, given the significant
investment already made in the production of realistic im-
age simulations (Kannawadi et al. 2019; MacCrann et al.
2022; Li et al. 2023c). This argument is strengthened by the
finding that the simulation-informed calibration correction

5 We have chosen to limit this joint analysis to DES and KiDS. Accurately
modelling the cross-survey covariance with the addition of HSC is non-
trivial: roughly half of HSC overlaps the Northern stripe of KiDS with the
other half overlapping with the DES equatorial stripe (see Appendix A).

https://sci.esa.int/web/euclid
https://roman.gsfc.nasa.gov/
https://www.lsst.org/
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is fairly insensitive to modifications of the simulation’s in-
put parameters, well within the uncertainty adopted by each
team (see for example appendix C of Li et al. 2023b). We
are therefore confident in the compatibility and robustness
of the DES and KiDS shear catalogues for this joint-survey
analysis.

In this analysis we quantify how the cosmological parame-
ter constraints for DES and KiDS are impacted by differences
in the model and analysis framework chosen by each survey.
Table 2 highlights these methodological differences, which,
in each case, have been chosen based on well-reasoned and
sound scientific arguments detailed in Joachimi et al. (2021)
and Krause et al. (2021). We present constraints from a
Hybrid pipeline where we adopt a unified set of choices de-
signed to provide the most robust joint-survey analysis. We
adopt the findings of each team for their overall covariance
matrix and their quantification of redshift and shear calibra-
tion uncertainty, following any survey-specific data-related
systematic limitations and mitigation strategies.

This paper is organised as follows. In Section 2 we re-
view the differences in methodology and the analysis frame-
work between the two survey teams, along with our choices
and rationale behind the Hybrid pipeline. Cosmological
parameter constraints are presented in Section 3 with our
conclusions presented in Section 4. Detailed information
about the analysis can be found in the appendices. Ap-
pendix A presents the DES data vector used in the joint-
survey analysis, re-measured from the DES Y3 catalogues
with the overlapping region of the KiDS footprint excised
to mitigate cross-survey covariance. Appendix B defines
the required scale cuts for the DES and KiDS data vectors
when using the DES baryon feedback mitigation strategy.
Appendix C presents a study of the impact of the different
analysis choices within a controlled mock data environment.
We compare constraints when the astrophysical systematics
are matched to each survey’s framework and consider po-
tential systematic biases in a joint-survey analysis when the
underlying astrophysical systematic models are no-longer
matched to the models adopted by each survey. Appendix D
compares the differences between the recovered cosmologi-
cal constraints from a range of samplers and in Appendix E
we verify the accuracy of our Hybrid pipeline using mock
data based on the EuclidEmulatorv2 (Euclid Collabora-
tion: Knabenhans et al. 2021). Appendix F quantifies the
probability of finding an offset in 𝑆8 when comparing noisy
cosmic shear constraints with and without scale cuts. Finally
in Appendix G we present additional tables and figures to
complement the primary analysis in Section 3.

2. COSMIC SHEAR ANALYSIS

In this paper, the term ‘cosmic shear’ refers to the two-
point statistical analysis of the observed correlations be-
tween galaxy ellipticities, 𝜖obs, which are related to the weak
gravitational lensing shear6 𝛾 as

𝜖obs = (1 + 𝑚)
[
𝜖 int + 𝜂 + 𝛼𝜖∗ + 𝛽𝛿𝜖∗ + 𝑐 + 𝛾

]
, (1)

where 𝜖 int is the intrinsic galaxy ellipticity, 𝜂 is the random
noise on the measurement, 𝜖∗ is the model ellipticity of the
image point spread function (PSF), 𝛿𝜖∗ is the error on the
PSF ellipticity model, 𝑐 is an additive bias that is uncor-
related with the PSF and 𝛼, 𝛽 and 𝑚 are scalars that may
vary for different galaxy samples (Heymans et al. 2006a;
Paulin-Henriksson et al. 2008; Jarvis et al. 2016).

For a perfect shape measurement method, 𝑚 = 0, 𝑐 =
0, 𝛼 = 0 and 𝛿𝜖∗ = 0, for all galaxies. Both DES and
KiDS use image simulations to quantify the amplitude and

6 We adopt complex notation for the two ellipticity and shear components
where, for example, 𝜖 = 𝜖1 + i𝜖2 and 𝛾 = 𝛾1 + i𝛾2.

DES Y3 KiDS-1000 HSC Year 3

Cosmic shear catalogue:
Area [deg2 ] 4143 777 416
Wavebands riz (Wide) + ugriZYJHKs grizy

grizJHKs (Deep)
𝑛eff 5.59 6.22 14.96
𝑧median 0.63 0.67 0.80
2-pt statistic 𝜉± (𝜃 ) COSEBIs 𝜉± (𝜃 )𝐶𝜖 𝜖 (ℓ )

DES Y3 KiDS-1000

Data calibration uncertainty:
Shear 𝑚1 : G(−0.006; 0.009) 𝚫𝒎 : N(𝝁𝑚;𝑪𝑚 )

𝑚2 : G(−0.020; 0.008) 𝜇1
𝑚 = −0.009 𝜎1

𝑚 = 0.019
𝑚3 : G(−0.024; 0.008) 𝜇2

𝑚 = −0.011 𝜎2
𝑚 = 0.020

𝑚4 : G(−0.037; 0.008) 𝜇3
𝑚 = −0.015 𝜎3

𝑚 = 0.017
𝜇4
𝑚 = 0.002 𝜎4

𝑚 = 0.012
𝜇5
𝑚 = 0.007 𝜎5

𝑚 = 0.010
Redshift Δ𝑧1 : G(0; 0.018) 𝚫𝒛 : N(𝝁𝑧 ;𝑪𝑧 )

Δ𝑧2 : G(0; 0.015) 𝜇1
𝑧 = 0.000 𝜎1

𝑧 = 0.011
Δ𝑧3 : G(0; 0.011) 𝜇2

𝑧 = 0.002 𝜎2
𝑧 = 0.011

Δ𝑧4 : G(0; 0.017) 𝜇3
𝑧 = 0.013 𝜎3

𝑧 = 0.012
𝜇4
𝑧 = 0.011 𝜎4

𝑧 = 0.009
𝜇5
𝑧 = −0.006 𝜎5

𝑧 = 0.010

Table 1. The properties of the DES Y3, KiDS-1000 and HSC Year 3 cosmic
shear catalogue (upper section). The area listed corresponds to the total
area of the survey footprint after masking. The wavebands utilised for the
analysis are listed, with DES analysing the riz filters in the Wide Survey area,
using extra depth and wavelength coverage in the Deep Fields for calibration
(Hartley, Choi et al. 2021). The effective number density of sources, 𝑛eff ,
is given in units of galaxies per square arcmin (Heymans et al. 2012).
For DES Y3 and KiDS-1000 we list the observational systematic nuisance
parameters used in this analysis (lower section). Uncertainty on the shear,
𝑚𝑖 , and redshift calibration corrections, Δ𝑧𝑖 = ⟨𝑛estimate

𝑖
(𝑧) ⟩ − ⟨𝑛true

𝑖
(𝑧) ⟩,

per tomographic bin 𝑖, are modelled as uncorrelated between the four
DES tomographic bins. DES uses independent Gaussian priors G(𝜇; 𝜎) ,
with mean 𝜇 and standard deviation 𝜎. Data calibration uncertainty is
modelled as correlated between the five KiDS tomographic bins, using a
five dimensional multivariate Gaussian prior N(𝝁;𝑪 ) with mean, 𝝁, and
covariance, 𝑪. The amplitude of the diagonal of the covariance is listed as
𝜎𝑖 =

√
𝐶𝑖𝑖 .

uncertainty of the multiplicative calibration correction 𝑚
(Kannawadi et al. 2019; MacCrann et al. 2022)7. They
also both quantify the additive calibration correction terms
empirically with a significant detection of mean ellipticity
in both DES, ⟨𝜖obs

1 ⟩ = (3 ± 1) × 10−4 (Gatti et al. 2021),
and KiDS8, ⟨𝜖obs

2 ⟩ = (6 ± 1) × 10−4 (Giblin et al. 2021).
This additive bias is corrected by subtracting the average
ellipticity, per tomographic bin, to ensure that the mean shear
is zero by definition. Both teams then verify that the mild
levels of PSF contamination detected are sufficiently low9

7 Note that in both cases, image simulations are used to quantify residual
biases, after an initial calibration step (see Section 2.5 for details).

8 In Li et al. (2023b) an anisotropic error in the original likelihood
sampler of the lensfit shear measurement software was corrected which
resulted in a reduction of the KiDS-1000 additive bias to ⟨𝜖 obs

2 ⟩ = (3±1) ×
10−4. In the same KiDS-1000 cosmic shear re-analysis, the PSF correction
scheme, shear and redshift calibration were also improved following Li
et al. (2023c); van den Busch et al. (2022) but the cosmological constraints
on 𝑆8 were essentially unchanged. Compared to the analysis of Asgari et al.
(2021), the goodness of fit of the best-fit model was, however, significantly
improved with the 𝜒2 reducing from 𝜒2 = 88.3 with 𝑝 (𝜒2 > 𝜒2

min |𝜈) =
0.05, to 𝜒2 = 62.7 with 𝑝 (𝜒2 > 𝜒2

min |𝜈) = 0.66. As these enhancements
to the KiDS-1000 catalogue and calibration were only finalised towards
the end this project, we have used the original Giblin et al. (2021) shear
catalogue and Hildebrandt et al. (2021) redshift distributions in this analysis.

9 Giblin et al. (2021) find the KiDS-1000 PSF contribution to the ob-
served two point correlation function to be either less than ∼ 2% of the
expected cosmic shear signal, and/or within 10% of the expected noise on
the measurement at all scales. Amon et al. (2022) find the DES Y3 PSF
contribution to be at most 30% of the expected cosmic shear signal and
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so as not to bias cosmological parameter constraints (Giblin
et al. 2021; Jarvis et al. 2021; Gatti et al. 2021; Amon et al.
2022). As such, we only correct for the multiplicative and
additive shear calibration terms, 𝑚 and 𝑐, in Equation 1. The
resulting corrected shear angular power spectrum𝐶𝜖 𝜖

corr (ℓ)
then contains signal from both gravitational lensing (G) and
the intrinsic (I) alignment of galaxies,

𝐶𝜖 𝜖
corr (ℓ) = 𝐶GG (ℓ) + 𝐶GI (ℓ) + 𝐶II (ℓ) . (2)

In this section, we summarise the approach taken in the
DES (Amon et al. 2022; Secco, Samuroff et al. 2022) and
KiDS (Asgari et al. 2021) cosmic shear analyses to model
each component in equation 2 and constrain cosmological
parameters. The differing methodology has been rigorously
tested by each collaboration to the accuracy required by each
survey (Joachimi et al. 2021; Krause et al. 2021). Given the
additional constraining power of a joint-survey analysis, we
review each survey’s analysis choices in Appendices C and E
utilising information from recent N-body and hydrodynam-
ical simulations (Euclid Collaboration: Knabenhans et al.
2021; van Daalen et al. 2020). Motivated by our findings,
we define a set of unified analysis choices which we adopt
in our fiducial Hybrid analysis in Section 3. Here our aim
has been to design the most robust pipeline possible for a
joint-survey analysis. In the case of some of our Hybrid
analysis choices, the decisions are either subjective by na-
ture (for example the choice of priors and parameters), or
else there is simply not enough information at present to
make an informed decision (for example the complexity of
the IA model). For these elements, we have made decisions
based on input from the two collaborations, adopting the
best available options suited for a joint-survey analysis at
this point in time.

2.1. Non-linear matter power spectrum
The DES and KiDS teams both choose to relate the con-

vergence power spectrum, 𝐶GG (ℓ), to the non-linear matter
power spectrum 𝑃𝛿 (𝑘, 𝑧), using a modified flat sky Limber
approximation (LoVerde & Afshordi 2008; Kilbinger et al.
2017)

𝐶
(𝑖 𝑗 )
GG (ℓ) =

∫ 𝜒hor

0
d𝜒

𝑊 (𝑖) (𝜒)𝑊 ( 𝑗 ) (𝜒)
𝑓 2
K (𝜒)

𝑃𝛿

(
ℓ + 1/2
𝑓K (𝜒)

, 𝜒

)
.

(3)

Here 𝑓K (𝜒) is the comoving angular diameter distance which
simplifies to 𝜒, the radial comoving distance, for a spatially
flat Universe, and the integral is taken to the horizon, 𝜒hor.
The kernel, 𝑊 , depends on the redshift distribution of the
correlated tomographic populations, 𝑖 or 𝑗 , with the mathe-
matical form found in equations 6.19 and 6.22 of Bartelmann
& Schneider (2001).

Each team calculates the linear matter power spectrum
using CAMB (Lewis et al. 2000), and uses a halo model ap-
proach, calibrated with numerical simulations, to determine
the non-linear correction. The details of this correction,
however, differ. The DES team adopts the Smith et al.
(2003) Halofit fitting formula, re-calibrated by Takahashi
et al. (2012), where the impact of a non-zero neutrino mass is
modelled using the CAMB-version of the Bird et al. (2012)
fitting formula10. The KiDS team adopts the HMCode2016
limited to small scales for a few tomographic bin pairs. Both teams analyse
a PSF-contaminated mock cosmic shear data vector finding the residual
PSF in each shear catalogue induces a < 0.1𝜎 change in 𝑆8 (Giblin et al.
2021; Amon et al. 2022).

10 We refer the reader to appendix B of Mead et al. (2021) for a dis-
cussion of the differences between the Bird et al. (2012), HMCode2016
and HMCode2020 non-linear models which diverge for neutrino masses
Σ𝑚𝜈 ≳ 0.3eV and scales 𝑘 ≳ 0.1ℎMpc−1. In this ‘heavy’ neutrino regime,
the different techniques used to include massive neutrinos in numerical sim-

model from Mead et al. (2015), with the appropriate exten-
sions for non-zero neutrino mass (Mead et al. 2016). In our
Hybrid analysis we adopt HMCode2020, an updated ver-
sion of this model, which delivers improved accuracy at the
level of < 2.5% to 𝑘 < 10 ℎMpc−1 (see Mead et al. 2021,
and Appendix E.1).

2.2. Intrinsic galaxy alignments
The intrinsic alignment (IA) of galaxies with their local

environment can mimic weak lensing and therefore this phe-
nomenon is included as an astrophysical systematic uncer-
tainty in all cosmic shear analyses, with a range of different
analytical models proposed to mitigate this effect (see Troxel
& Ishak 2015; Joachimi et al. 2015; Kiessling et al. 2015,
and references therein).

The KiDS team adopts the non-linear linear-alignment
model (NLA) which describes the linear tidal alignment of
galaxies with the density field (Hirata & Seljak 2004). This
model also includes an ad hoc non-linear correction to the
linear matter power spectrum (Bridle & King 2007), as mo-
tivated by intrinsic alignment measurements in numerical
simulations and the Sloan Digital Sky Survey (Heymans
et al. 2006b; Hirata et al. 2007). The fiducial KiDS analysis
allows for only one free nuisance parameter11, 𝐴IA, modu-
lating the amplitude of the intrinsic alignment model (see
equations 3-5 in Bridle & King 2007 for the NLA intrinsic
alignment power spectra, 𝐶GI and𝐶II). The NLA model can
also include flexibility where the amplitude of the IA sig-
nal depends on the average luminosity of each tomographic
sample (Joachimi et al. 2011). More commonly used, how-
ever, is an NLA model amplitude that evolves with redshift,
using a power-law with [(1 + 𝑧)/(1 + 𝑧pivot)]𝜂IA , hereafter
referred to as the NLA-z model12.

The DES team adopts the Tidal Alignment and Tidal
Torquing model (TATT, Blazek et al. 2019), which extends
the linear alignment model with the inclusion of a tidal
torquing alignment mechanism. The fiducial DES analysis
allows for five free nuisance parameters: a tidal alignment
amplitude, 𝑎1, with redshift evolution, 𝜂1; a tidal torquing
amplitude, 𝑎2, with redshift evolution, 𝜂2; a linear bias am-
plitude, 𝑏TA (see equations 37-39 in Blazek et al. 2019, for
the TATT intrinsic alignment power spectra, 𝐶GI and 𝐶II,
highlighting the expectation of a non-zero B-mode from the
‘II’ term). In the limit 𝑎2, 𝜂2, 𝑏TA → 0, the TATT model
reduces to the NLA-z model with 𝑎1 = 𝐴IA and 𝜂1 = 𝜂IA.

Both the NLA and TATT models are found to provide
a sufficiently good fit to numerical simulations (Secco,
Samuroff et al. 2022; Hoffmann et al. 2022). Currently
there is no observational evidence to support the use of one
model over the other in two-point cosmic shear analyses. For
our Hybrid analysis we choose to adopt the NLA-z model.
In terms of complexity, this is between the original choices
of the two survey teams. In our fiducial Hybrid analysis we
ulations lead to significant differences in the high-𝑘 scales of the non-linear
matter power spectrum. Both Bird et al. (2012) and HMCode2016 are
calibrated using simulations created with neutrinos as a separate particle
species. The two sets of simulations differ, however, in their approach
to the injection of these particles. HMCode2020 is calibrated using Mi-
raTitan (Heitmann et al. 2016), where ‘linear neutrinos’ are included in
the evolution of the background and the gravitational potential, but there
is no back-reaction on the neutrinos from the simulation particles. There
is no community consensus on the simulation technique that provides the
most accurate estimate of the non-linear matter power spectrum. Most
recently the linear approach has been adopted for the EuclidEmulatorv2
simulations, and a particle-based approach has been adopted for the Mil-
lenniumTNG (Hernández-Aguayo et al. 2023) and Aemulus 𝜈 simulations
(DeRose et al. 2023). This issue is largely academic, however, as the im-
pacted 𝑘-scales are the same scales where there is significant uncertainty
on the non-linear suppression of power caused baryon feedback (see for
example Harnois-Déraps et al. 2015).

11 We hereafter refer to the KiDS fiducial NLA parametrisation, with one
free 𝐴IA parameter, as NLA (no-z).

12 In this analysis we use 𝑧pivot = 0.62.
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DES Y3 KiDS-1000 Hybrid

Cosmological parameter priors:
Amplitude 𝐴s : [0.5, 5.0] 𝑆8 : [0.1, 1.3] 𝑆8 : [0.1, 1.3]
Hubble constant ℎ : [0.55, 0.91] ℎ : [0.64, 0.82] ℎ : [0.64, 0.82]
Matter density Ωm : [0.1, 0.9] 𝜔c : [0.051, 0.255] 𝜔c : [0.051, 0.255]
Baryon density Ωb : [0.03, 0.07] 𝜔b : [0.019, 0.026] 𝜔b : [0.019, 0.026]
Spectral index 𝑛s : [0.87, 1.07] 𝑛s : [0.84, 1.1] 𝑛s : [0.84, 1.1]
Neutrinos 1000Ω𝜈ℎ

2 : [0.6, 6.44] Σ𝑚𝜈 = 0.06eV Σ𝑚𝜈 = [0.055, 0.6] eV

Astrophysical systematic models and priors:
Intrinsic Alignments TATT: 𝑏TA : [0, 2]; 𝑎1, 𝑎2, 𝜂1, 𝜂2 : [−5, 5] NLA: 𝐴IA : [−6, 6] NLA-z: 𝐴IA, 𝜂IA : [−5, 5]
Non-linear Model Halofit HMCode2016 HMCode2020
Baryon Feedback Scale cuts 𝐴bary : [2, 3.13] Scale cuts & log10 (𝑇AGN/K) : [7.3, 8.0]
Neutrino Model Bird et al. (2012) HMCode2016 HMCode2020

Sampling Algorithm:
PolyChord MultiNest PolyChord

Table 2. Comparison of the modelling choices in the DES-like, KiDS-like and Hybrid cosmic shear analyses: cosmological parameters, astrophysical
systematic models and the chosen sampling algorithm. The values in square brackets are the limits of the adopted top-hat priors. The listed cosmological
parameters are: the amplitude of the primordial power spectrum of scalar density fluctuations, 𝐴s; the Hubble constant, ℎ = 𝐻0/(100 km s−1 Mpc−1 );
the matter density, Ωm; the baryon density, Ωb; the scalar spectral index, 𝑛s; the neutrino mass density parameter, Ω𝜈 ; 𝑆8 = 𝜎8

√︁
Ωm/0.3, where 𝜎8 is

the linear-theory standard deviation of matter density fluctuations in spheres of radius 8 ℎ−1Mpc; 𝜔c = Ωcℎ2, where Ωc is the cold dark matter density;
𝜔b = Ωbℎ

2; and the sum of the neutrino masses, Σ𝑚𝜈 .

adopt independent IA parameters for each survey to reflect
the different survey depths, selection functions, shape mea-
surement methods and photometric redshift errors which
can be absorbed by the IA model (for further discussion, see
Appendix C.2).

2.3. Baryon feedback
Studies of hydrodynamical simulations find significant

differences in the small-scale, 𝑘 > 0.1ℎMpc−1, total matter
distribution relative to dark matter-only simulations, as a re-
sult of baryon cooling, star formation and active galactic nu-
clei (AGN) feedback (see Chisari et al. 2019, and references
therein). Theoretical models of the non-linear matter power
spectrum, 𝑃𝛿 (𝑘, 𝑧), that have been calibrated using dark
matter-only simulations are therefore inaccurate at high-𝑘
(White 2004; Semboloni et al. 2011). There is, however,
a large degree of uncertainty on the scale, amplitude and
redshift dependence of baryon feedback.

To account for this uncertainty the KiDS team adopts
the HMCode non-linear matter power spectrum 𝑃𝛿 (𝑘, 𝑧)
model, which incorporates uncertainty from baryon feed-
back through a single free parameter. This parameter scales
the halo concentration and the stellar and gas content, lead-
ing to a modification in the overall amplitude and shape of the
‘one-halo’ term in the halo model. Asgari et al. (2021) utilise
the Mead et al. (2016) version of HMCode, calibrated with
the OWLS hydrodynamical simulations (van Daalen et al.
2011). Tröster et al. (2021) present a KiDS-1000 cosmic
shear band power spectrum re-analysis using HMCode2020,
calibrated with the updated13 BAHAMAS hydrodynamical
simulations (McCarthy et al. 2017; van Daalen et al. 2020).

DES take a different approach to mitigating baryon feed-
back uncertainty in their analysis, eliminating data on scales
which are expected to be impacted significantly. Taking the
‘worst-case scenario’ for the extent of the impact as the AGN
model from the suite of OWLS hydrodynamical simulations
(van Daalen et al. 2011), Krause et al. (2021) contaminate
a mock ΛCDM cosmic shear data vector. Small-scale in-
formation is progressively removed until a dark matter-only
cosmological analysis biases the recovered cosmology from
the OWLS mock with a maximum bias of 0.3𝜎2D in the
Ωm − 𝑆8 2D plane. For the DES Y3 analysis, the ‘fidu-
cial’ scale cuts are defined for a 𝑤CDM analysis of the joint
cosmic shear, galaxy-galaxy lensing and galaxy clustering
likelihood (DES Collaboration et al. 2022). This probe com-

13 In Appendix F we find a 0.19𝜎 change in 𝑆8 when changing from
HMCode2016 to HMCode2020 in a KiDS-like reanalysis of the KiDS-
1000 COSEBIs data vector.

bination is hereafter referred to as 3×2pt. In this analysis we
adopt the DES Y3 alternative ‘ΛCDM-optimised’ scale cuts,
which allow for the inclusion of smaller scale cosmic shear
information while satisfying that the predicted baryon feed-
back bias is < 0.14𝜎2D (Amon et al. 2022; Secco, Samuroff
et al. 2022). These scale cuts were shown to be robust at
the level of a few percent against a range of hydrodynamic
simulations (see figure 5 and section G2 in Secco, Samuroff
et al. 2022).

In our Hybrid analysis we combine the two survey strate-
gies, adopting both the DES-Y3 ‘ΛCDM-optimised’ and
equivalently defined scale cuts for KiDS (see Appendix B),
along with the marginalisation over a free baryon feedback
parameter in the cosmological analysis. For our Hybrid non-
linear model choice, HMCode2020, the free parameter𝑇AGN
maps to the BAHAMAS-defined heating temperature of the
AGN14 which modulates the strength of the baryon feed-
back suppression of the matter power spectrum15. We adopt
a tophat prior on log10 (𝑇AGN/K) with the range [7.3, 8.0].
This prior range is allowed by a range of observational con-
straints on baryon feedback suppression: small-scale cos-
mic shear analyses (Harnois-Déraps et al. 2015; Yoon & Jee
2021; Chen et al. 2023; Aricò et al. 2023); joint analyses
of KiDS-1000 cosmic shear with shear-thermal Sunyaez
Zel’dovich (SZ) cross-correlation measurements (Tröster
et al. 2022) or with X-ray cluster gas fractions and kine-
matic SZ gas profiles (Schneider et al. 2022a); DES Y3

14 Note that 𝑇AGN is not a physical parameter. The hydrodynamical
BAHAMAS simulations inject black hole seed particles into halos which
then grow via gas accretion and mergers. The mass energy of the ac-
creted gas heats neighbouring gas particles by Δ𝑇heat. Out of the many
free parameters for this AGN feedback recipe, changes in Δ𝑇heat were
found to introduce the greatest impact to the resulting simulations (Le Brun
et al. 2014). The single-parameter baryon feedback model implemented
within HMCode2020 is calibrated using three BAHAMAS simulations
with Δ𝑇heat = 107.6K, 107.8K and 108.0K. Here a linear relationship is fit
between log10 (Δ𝑇heat/K) and each of the six halo-model parameters that
are sensitive to feedback. Variation in the strength of baryon feedback is
then modulated within HMCode2020 using one parameter, denoted 𝑇AGN,
which modifies all six halo parameters in line with the changes seen in
BAHAMAS (see section 6.2 and 6.3 of Mead et al. 2021, for details).

15 During the course of this work we isolated unusual behaviour at low-𝑘
for HMCode2020 predictions of feedback models outwith the BAHAMAS
range where HMCode2020 was calibrated; log10 (𝑇AGN/K) = [7.6, 8.0].
This arose from the unphysical behaviour of the one-halo term on these
scales which is magnified when the feedback parameter is significantly
raised. The HMCode2020 software has since been updated within CAMB
v1.4.0 and HMCode-python manually suppressing this unwanted effect,
following Mead et al. (2015). This update was not available when we
were conducting this analysis, but we have since verified that it does not
introduce any significant change in our results. Specifically 𝑆8 changes by
only 0.02𝜎.

https://github.com/cmbant/CAMB
https://github.com/alexander-mead/HMcode-python
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shear-thermal SZ cross-correlation measurements (Pandey
et al. 2023). Whilst stronger feedback models are permitted
by these observations, we choose to set the upper limit16 for
our baryon feedback prior informed by the maximum feed-
back strength with which the BAHAMAS simulations pro-
duce a baryon fraction at group scale that is consistent with
observations (van Daalen et al. 2020). The lower limit is set
to reproduce cosmic shear predictions that are equivalent to
a dark matter only model (see Appendix E). Whilst this low
level of feedback cannot reproduce the observed group-scale
baryon fraction in BAHAMAS, we choose to retain a dark
matter only power spectrum in our model space for consis-
tency with the HMCode2016 prior range used in Asgari et al.
(2021) and the dark matter power spectrum used in Amon
et al. (2022); Secco, Samuroff et al. (2022). We verify the
accuracy and discuss the benefits of this combined-approach
in Appendix E.

2.4. Cosmic shear statistic
DES present cosmological constraints from measure-

ments of the real-space two-point shear correlation functions
𝜉± (𝜃), utilising the full spherical sky expression17 to relate
these statistics to the cosmic shear power spectrum, 𝐶𝜖 𝜖 (ℓ),

𝜉± (𝜃) =
1

4𝜋

∞∑︁
ℓ=2

(2ℓ+1) 𝑑ℓ2,±2 (𝜃)
[
𝐶EE
𝜖 𝜖 (ℓ) ± 𝐶BB

𝜖 𝜖 (ℓ)
]
. (4)

Here 𝑑ℓ𝑚,𝑛 are the reduced Wigner D-matrices (Chon et al.
2004; Kilbinger et al. 2017), and the cosmic shear power
spectrum has been separated into its E- and B-modes. Any
significant B-mode component would originate from data-
related systematics and/or the intrinsic alignment signal,𝐶II.
The 𝜉± (𝜃) estimator, given in equation 10 of Amon et al.
(2022), is used to measure the auto and cross-correlation
between 4 tomographic bins using twenty angular logarith-
mic bins spanning 2.5 < 𝜃 ≤ 250.0 arcmin, although not all
𝜃-bins are used in the analysis. Tomographic bins are de-
fined using the SOMPZ method (Buchs et al. 2019; Myles,
Alarcon et al. 2021).

KiDS present cosmological constraints from measure-
ments of complete orthogonal sets of E/B-integrals (COSE-
BIs), which cleanly separate the E- and B-mode signals. The
COSEBIs, 𝐸𝑛 and 𝐵𝑛, are discrete values which can be es-
timated by integrating over finely binned 𝜉± measurements
(see equation 7 of Asgari et al. 2021). They are related to
the cosmic shear power spectrum as

𝐸𝑛 =

∫ ∞

0

dℓ ℓ
2𝜋

𝐶EE
𝜖 𝜖 (ℓ)𝑊𝑛 (ℓ) , (5)

with 𝐵𝑛 following the same form. Here the weight function,
𝑊𝑛, depends on the angular range that can be accessed from
the data, which KiDS define as 0.5 < 𝜃 ≤ 300.0 arcmin,
and serves to limit the effective ℓ-range entering the cosmic
shear analysis (see section 2.2 of Asgari et al. 2021, for de-
tails). In Appendix B, we restrict this angular range for the
DES-like and Hybrid joint-survey analyses, following the
baryon feedback mitigation strategy of Krause et al. (2021).
KiDS define five tomographic bins using BPZ photomet-
ric redshifts between 0.1 < 𝑧phot ≤ 1.2. (Benítez 2000;
Hildebrandt, van den Busch, Wright et al. 2021)

The fiducial DES cosmic shear analyses combine 𝜉± (𝜃)
with additional data from the shear ratio (SR) statistic
(Sánchez, Prat et al. 2022). Amon et al. (2022) demon-
strate the importance of including this extra observable to

16 We refer the reader to Yoon & Jee (2021); Amon & Efstathiou (2022);
Preston et al. (2023) for DES and KiDS cosmic shear studies where more
extreme AGN feedback models are explored.

17 This full sky expression is more accurate for large area surveys com-
pared to the flat-sky Hankel transform approximation used in previous
studies.

better constrain the parameters of the TATT model. With an
NLA-z analysis, however, the 𝑆8 constraining power is un-
changed by the inclusion of the SR data. Given our Hybrid
analysis choice for the NLA-z IA model, we choose not to
include the additional SR data in this joint-survey analysis
for pragmatic reasons: a new shear ratio measurement would
have otherwise been required for KiDS; we wished to retain
the cosmic shear-only nature of the survey comparison.

In addition to the fiducial statistics analysed by each col-
laboration, there are a range of alternative two-point cosmic
shear statistics that have been studied in both real and Fourier
space (see, for example Asgari et al. 2021; Doux et al. 2022;
Loureiro et al. 2022; Schneider et al. 2022b). Through a
study of noisy mock surveys, Asgari et al. (2021); Hamana
et al. (2022) find that ∼ 15% of the time, shot noise can
lead to > 1𝜎 offsets in 𝑆8 when comparing constraints from
a range of two-point statistical analyses of the same data
set. Throughout this analysis we have therefore chosen to
retain each survey’s fiducial statistic of choice with a joint-
survey data vector composed of the 𝜉± (𝜃) tomographic mea-
surements from DES combined with the 𝐸𝑛 tomographic
measurements from KiDS. By fixing each statistic in this
way, we can directly compare how a change in the analysis
framework influences each survey’s published 𝑆8 constraint
without having to also quantify the impact of noise on an al-
ternative two-point statistic (although see Appendix F where
this complication nevertheless arises as a result of modifying
the angular range for KiDS).

2.5. Data calibration uncertainty
The shear estimation methods for KiDS and DES differ.

The DES team adopts a Metacalibration Gaussian model
fit (Huff & Mandelbaum 2017; Sheldon & Huff 2017) which
involves artificially shearing and remeasuring galaxies in
the real survey images to calibrate the response of each
galaxy to shear. This approach mitigates both noise bias, the
dominant source of bias in shear measurement (Melchior &
Viola 2012; Refregier et al. 2012), and model bias (Voigt
& Bridle 2010). The KiDS team adopts a ‘self-calibrating’
bulge-disk model fit (lensfit: Miller et al. 2013), whereby the
initial best-fit galaxy model is simulated with the appropriate
noise level, and re-run through the measurement pipeline.
The per-galaxy noise bias calibration correction is then given
by the difference between the input and measured ellipticity
(Fenech Conti et al. 2017).

In order to reach the required percent-level accuracy, both
survey teams quantify residual biases using image simula-
tions built from HST-COSMOS observations (Kannawadi
et al. 2019; MacCrann et al. 2022; Li et al. 2023c). These
studies highlight the importance of including realistic frac-
tions of blended objects in image simulations for accurate
shear calibration. The DES Y3 calibration included the first
multi-band image simulation study for lensing. This ap-
proach allows for the replication of the redshift calibration
process, thereby also mitigating the impact of blending on
redshift calibration. The coupled calibration errors iden-
tified between the Metacalibration shear estimates and
phenotype redshift distributions are mitigated in the DES
Y3 analysis with an image-simulation calibrated effective
redshift distribution for the tomographic source samples.

DES account for the uncertainty on their shear calibra-
tion by marginalising over four independent free parameters,
𝑚𝑖=1..4, adopting Gaussian priors (see Table 1). KiDS dif-
fers18, assuming 100% correlation, between the tomographic

18 We note that both teams explore how their method to account for shear
calibration errors impacts their results. Asgari et al. (2021) find a 0.2𝜎
increase in 𝑆8 when adopting uncorrelated free 𝑚-parameters with Gaus-
sian priors of width 𝜎𝑖

𝑚. The ‘full blending treatment’ analysis in Amon
et al. (2022) includes the correlation between shear calibration parameters
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bins, for the uncertainty in the calibration correction, 𝜎𝑖=1..5
𝑚 .

The correlated uncertainty is then subsumed into the analyti-
cal covariance for the cosmic shear data vector (see equation
37 in Joachimi et al. 2021).

The primary redshift estimation methods for KiDS and
DES both utilise a SOM approach. KiDS make exclusive
use of spectroscopic training sets, creating a ‘gold’ sample of
photometric galaxies that are sufficiently well represented in
the training sample (Wright et al. 2020a). DES supplements
their spectroscopic training sample with very high-quality
photometric redshifts19 and include magnitude limits to en-
sure sufficient coverage between the training samples and
the Deep Field data (Myles, Alarcon et al. 2021). The DES
approach also relies on an estimation of the survey trans-
fer function using BALROG (Suchyta et al. 2016), which
injects simulated galaxies with photometry drawn from the
Deep Field into real Wide Field images (Everett et al. 2022).

KiDS utilise a multi-band mock galaxy survey to estimate
the uncertainty on the mean redshift of each tomographic
bin (van den Busch et al. 2020), verified through a cross-
correlation analysis (Hildebrandt, van den Busch, Wright
et al. 2021). The correlated uncertainty between the bins is
accounted for in the cosmological analysis using five free pa-
rameters drawn from a five dimensional multivariate Gaus-
sian prior N(𝝁𝑧;𝑪𝑧) (for details see section 3.3 of Joachimi
et al. 2021).

The fiducial DES cosmic shear analysis accounts for un-
certainty on the mean redshift in a similar way, using four
independent free parameters, Δ𝑧𝑖=1..4 with Gaussian pri-
ors20. The DES prior is set by combining information from:
sample variance in the SOM training data; the Deep Field
photometric calibration error (Hartley, Choi et al. 2021); the
systematic error related to the choice of training sample and
the uncertainty estimated from the MacCrann et al. (2022)
multi-band image simulation analysis; a cross-correlation
analysis (Gatti, Giannini et al. 2022b). For details see sec-
tion 5.6 of Myles, Alarcon et al. (2021). We caution against
direct comparisons of the prior widths for the calibration
corrections listed in Table 1 as this neglects the nuances in
the different approaches. In DES, the adopted formalism
to determine the calibration of redshift-dependent biases in-
cluding the impact of blending, also absorbs additional shear
calibration uncertainty. In KiDS, the uncertainty on both the
shear and redshift calibration is included as a correlated error
across tomographic bins.

Throughout this analysis, we retain the survey-specific
methodology to account for data calibration uncertainty in
each section of the joint-survey data vector. Revisiting the
studies that establish the robustness of these choices is be-
yond the scope of this analysis. The DES pipeline was mod-
ified in order to analyse KiDS data using a five-dimensional
multivariate Gaussian Δ𝑧 prior (hereafter a DES-like analy-
sis), and the KiDS pipeline was modified in order to analyse
DES data using four free shear calibration parameters, 𝑚𝑖 ,
with Gaussian priors (hereafter a KiDS-like analysis). The
Hybrid pipeline also permits survey-specific data calibration
nuisance parameters and priors.

as measured with the MacCrann et al. (2022) multi-wavelength image sim-
ulations. For this analysis they find their constraints are indistinguishable
from the fiducial result.

19 See also van den Busch et al. (2022) who take this approach with an
updated analysis of KiDS-1000.

20 See also alternative analyses in Amon et al. (2022); Stölzner et al.
(2021) which account for uncertainty in the full shape of the tomographic
redshift distributions. Here the DES team use the Hyperrank method
(Cordero et al. 2022), sampling over multiple realisations of the SOM-
calibrated distributions, and the KiDS team use a flexible Gaussian mixture
model.

2.6. Cosmological parameter inference
Sampling of the posterior is carried out using Poly-

chord21 (Handley et al. 2015) for DES Y3 and Multinest22

(Feroz et al. 2009) for KiDS-1000. Lemos, Weaverdyck
et al. (2023) demonstrate that for the DES first year (here-
after Y1) 3× 2pt analysis, Multinest systematically under-
estimates the 68% credible intervals for 𝑆8, at the level of
∼ 10%. We revisit this study using the DES Y3 cosmic
shear likelihood and the KiDS-chosen Multinest settings
in Appendix D, defining the true posterior as that estimated
using two Markov Chain Monte Carlo (MCMC) algorithms.
For the Polychord sampler we find an accurate recovery
of both the 68% and 95% credible intervals. With Multi-
nest, however, we find a ∼ 12%(15%) underestimate of
the 68% (95%) credible intervals. These findings are in-
dependent of the choice of IA model. Given the enhanced
performance of Polychord over Multinest, we adopt this
sampler for our Hybrid analysis. This choice is also bene-
ficial in terms of estimating the Bayesian evidence, where
MultiNest estimates have been shown to be biased in all
but the strictest of settings (Lemos, Weaverdyck et al. 2023).
We note that there is a significant extra cost in terms of
computational time when using Polychord, supporting the
development and future use of time-saving measures such as
analytical marginalisation over nuisance parameters (Ruiz-
Zapatero et al. 2023; Hadzhiyska et al. 2023), likelihood
emulators (Spurio Mancini et al. 2022) and neural network
assisted sampling techniques23.

Table 2 lists the cosmological parameter priors chosen by
each survey for the flat-ΛCDM analysis. In contrast to the
DES analysis, the KiDS team fixes the neutrino mass, Σ𝑚𝜈 ,
at the minimum mass allowed by oscillation experiments and
chooses more informative priors on the Hubble constant, ℎ.
The survey teams also differ over their choice of parameter
to marginalise over the amplitude of the matter power spec-
trum. The DES team chooses to sample using the amplitude
of the primordial power spectrum of scalar density fluctua-
tions 𝐴s, and the KiDS team chooses to sample in 𝑆8 (see
figures 15 and 16 in Joachimi et al. 2021 and figure 17 in
Secco, Samuroff et al. 2022 to visualise how these different
parameter and prior choices inform the multi-dimensional
parameter space24).

When reporting the headline cosmological parameter con-
straints, Amon et al. (2022); Secco, Samuroff et al. (2022)
report the mean of the 1D marginal distribution, along with
a credible interval that encompasses 68% of the marginal
highest posterior density. Asgari et al. (2021) report the
maximum a posteriori (MAP) and an associated 68% cred-
ible region given by the projected joint highest posterior
density region (PJ-HPD, see section 6.4 of Joachimi et al.
2021, for details). In addition to these headline results,
Amon et al. (2022); Secco, Samuroff et al. (2022) also tab-
ulate the MAP, and Asgari et al. (2021) also tabulate the
maximum marginal and associated credible intervals25. Un-
fortunately, there are issues related to all three approaches.

21 Polychord: https://github.com/PolyChord/
22 Multinest:https://github.com/farhanferoz/Multi

Nest
23 See for example Nautilus: https://github.com/johanne

sulf/nautilus
24 Sugiyama et al. (2020) provide a novel solution to the question of

optimal parameter choice. They derive a correction weight which converts
samples from a chain using flat priors in (1010𝐴s,Ωm ) such that the
weighted chain has, to first order, the desired flat (𝑆8,Ωm ) priors that are
automatically delivered when adopting 𝑆8 sampling. Using this approach
Li et al. (2023a) reweigh Polychord chains to recover constraints in the
(𝑆8,Ωm ) plane that are identical, irrespective of the chosen amplitude
sampling parameter: 𝐴s, ln 𝐴s or 𝑆8. Dalal et al. (2023) argue that with the
use of correction weights, adopting 𝐴s priors allows for the most efficient
sampling of the posterior.

25 We note that the maximum marginal statistic is adopted by HSC for
their headline result (see the discussion in Li et al. 2023a).

https://github.com/PolyChord/
https://github.com/farhanferoz/MultiNest
https://github.com/farhanferoz/MultiNest
https://github.com/johannesulf/nautilus
https://github.com/johannesulf/nautilus
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The MAP is notoriously challenging to determine requiring
significant computational resources to sufficiently decrease
the noise on the estimate (Muir et al. 2020; Joachimi et al.
2021). The accurate determination of the corresponding
PJ-HPD errors also requires densely sampled chains in or-
der to determine the 68% credible region around the MAP.
The marginal constraints for multi-dimensional posteriors
are subject to projection effects which are known to offset
the recovered parameters from the input truth (see for ex-
ample Krause et al. 2021; Joachimi et al. 2021; Chintalapati
et al. 2022, and Appendix C.3). Whilst the mean marginal
estimate is well defined, for skewed posterior distributions
the mean can be far from the MAP. Whilst the maximum
marginal is typically closer to the MAP, its estimate de-
pends on the choice of smoothing methodology and scale.
For example, using the chainconsumer26 Gaussian kernel
density estimation (Hinton 2016), leads to ∼ 10% larger er-
rors for the maximum-marginal constraint, compared to the
mean-marginal constraint (see Table 8).

In our Hybrid pipeline we choose to sample over the
KiDS choice of cosmological parameters: 𝜔c, 𝜔b, ℎ, 𝑛s,
𝑆8, with the addition of a free neutrino mass parameter,∑

𝜈 𝑚𝜈 . This is a subjective choice that we found helped to
minimise projection effects when adopting the NLA model
(see Appendix C.3). We use the KiDS-like priors with
the addition of the DES-like prior on the neutrino mass27.
For our primary parameter 𝑆8 we report the maximum and
mean marginals along with the MAP and PJ-HPD as de-
termined from oversampled Polychord chains28. For all
other parameters we report constraints using the standard
mean marginal statistic.

2.7. Goodness of fit
In this analysis we follow Joachimi et al. (2021) to estimate

a goodness of fit statistic, 𝑝(𝜒2 > 𝜒2
min |𝜈), the probability

that a weighted least-square, 𝜒2, will exceed the measured
minimum 𝜒2

min, assuming a 𝜒2-distribution with 𝜈 degrees
of freedom, where 𝜈 = 𝑁data−𝑁Θ. Here, 𝑁data is the number
of data points29, and 𝑁Θ is the effective number of parame-
ters, which for a prior-informed cosmic shear analysis with
correlated sampling parameters, is smaller than the total
number of free parameters. 𝑁Θ is estimated from the aver-
age of a likelihood-based and posterior-based estimate (see
equations 45 and 46 of Joachimi et al. 2021). This approach
was found to reproduce an unbiased estimate of the true 𝑁Θ,
on average, with a standard deviation 𝜎 ≃ 0.2𝑁Θ, as deter-
mined through the analysis of 100 noisy mock KiDS-1000
cosmic shear data vectors (see appendix B.2 of Asgari et al.
2021, and section 6.3 of Joachimi et al. 2021).

KiDS define an acceptable fit as 𝑝 ≥ 0.001, a 3.1𝜎 event
(Heymans, Tröster et al. 2021). DES define an acceptable fit
as 𝑝 ≥ 0.01, a 2.3𝜎 event (DES Collaboration et al. 2022).
In Section 3 we show that all data sets and analysis setups
recover a fit that meets these criteria.

We note that the Joachimi et al. (2021) method to deter-
mine the goodness of fit is slightly more conservative than
an alternative approach adopted, for illustrative purposes, in
Amon et al. (2022); Secco, Samuroff et al. (2022). In that
analysis 𝑁Θ was estimated using a ‘Gaussian linear model’
(see equation 29 of Raveri & Hu 2019), finding 𝑁Θ = 5
for the DES-like analysis. With the Joachimi et al. (2021)

26 chainconsumer:https://samreay.github.io/ChainC
onsumer

27 In order to use the CAMB python module, we convert the DES
prior on 1000Ω𝜈ℎ

2 = [0.6, 6.44] to Σ𝑚𝜈 = [0.055, 0.6] eV using the
approximation Ω𝜈ℎ

2 = Σ𝑚𝜈/93.4 eV.
28 The oversampled Polychord chains contain ten times the number of

original sampling points.
29 For the DES, KiDS and joint-survey data vectors, 𝑁data = 273, 75, 348

respectively.

approach we find 𝑁Θ = 6.7 for the same setup (for more de-
tails see Appendix G). Neither approach is, however, as ac-
curate as adopting a posterior predictive distribution (PPD)
goodness of fit estimate (Köhlinger et al. 2019; Doux et al.
2021), which removes the assumption that the distribution of
weighted least-squares, between noisy data realisations and
the model, follows a 𝜒2 distribution. DES Collaboration
et al. (2022) implement this preferred, but more compu-
tationally expensive PPD goodness of fit estimate, finding
𝑝 = 0.21 for the fiducial DES-Y3 cosmic shear data vector.
Comparing this to the Secco, Samuroff et al. (2022) Gaus-
sian linear model estimate of 𝑝 = 0.22, for the same data
vector, gives us confidence in utilising these faster goodness
of fit estimates for this analysis.

2.8. Consistency and tension metrics
When comparing cosmological parameter constraints

from different surveys or probes, there are a range of dif-
ferent statistical tools to define the degree of consistency,
or inconsistency. These can be grouped into methods that
focus on differences in a single parameter or in multiple
model parameters (parameter-space methods), methods that
quantify differences in the data vector space, and methods
that summarise the full likelihood or posterior into a single
metric, such as the Bayes factor (see appendix G of Hey-
mans, Tröster et al. 2021, Lemos et al. 2021, and references
therein). In the KiDS-1000 and DES Y3 analyses, a wide
range of consistency results are presented, both for internal
consistency tests and external comparisons with the CMB
constraints from Planck Collaboration (2020). Each method
tells us about a different aspect of how well the model and
the different sections of the data match or are in tension with
each other. It is therefore beneficial and prudent to consider
more than one method.

Beyond the methodological choices, there is also a de-
cision to be made on each metric’s threshold where data
sets are considered to be consistent or inconsistent with
each other. In this analysis we follow DES Collaboration
et al. (2022) who consider there to be evidence of incon-
sistency between probes when a tension metric results in a
probability-to-exceed 𝑝 < 0.01, corresponding to a > 2.3𝜎
event.

We limit this analysis to three complementary tension
estimators motivated by the consistency methodologies pre-
viously tested by each survey. For the single-parameter
tension metric we adopt the Hellinger distance, 𝑑H, (see for
example Beran 1977), to compare the overlap between two
1D probability density distributions, 𝑞(𝑥) and 𝑝(𝑥);

𝑑2
H =

1
2

∫
d𝑥

[√︁
𝑝(𝑥) −

√︁
𝑞(𝑥)

]2
= 1 −

∫
d𝑥
√︁
𝑝(𝑥)𝑞(𝑥) .

(6)
When the posteriors are perfectly matched, the Hellinger dis-
tance 𝑑H = 0. For non-overlapping posteriors 𝑑H = 1. We
follow Heymans, Tröster et al. (2021), measuring 𝑑H from
discrete marginal posteriors by taking the average result from
two different approaches. For the first measurement, 𝑝(𝑥)
and 𝑞(𝑥) are defined using a binned histogram. The second
measurement uses a smoothed kernel density estimate (see
appendix G.1 of Heymans, Tröster et al. 2021 for further
details).

The calculation of the Hellinger distance between two
marginal posterior distributions makes no assumption about
their Gaussianity. In order to present 𝑑H in terms of a
familiar 𝐻𝜎 ‘tension metric’, however, we choose to recast
the measured value in terms of two Gaussian posteriors
that exhibit the same Hellinger distance, 𝑑H, when their
variance is fixed to match the measured variance of the non-
Gaussian posteriors 𝑝, 𝜎2

𝑝 , and 𝑞, 𝜎2
𝑞 (see equation G.2

of Heymans et al. 2021). We report the ‘tension’ offset,

https://samreay.github.io/ChainConsumer
https://samreay.github.io/ChainConsumer
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𝐻𝜎, with 𝐻 = 𝛿𝜇/
√︃
𝜎2
𝑝 + 𝜎2

𝑞 , where 𝛿𝜇 is the mean-offset
between the two 𝑑H-separated Gaussian posteriors.

For a ‘multi-dimensional parameter’ tension metric we
adopt the Monte Carlo exact parameter shift method30 from
Raveri et al. (2020). We define the parameter difference
probability density, P(Δ𝜑), between two uncorrelated data
sets, A and B,

P(Δ𝜑) =
∫
𝑉𝑝

d𝜑PA (𝜑)PB (𝜑 − Δ𝜑) , (7)

where PX (𝜑) is the parameter posterior distribution from
experiment X, over a multi-dimensional parameter space
𝜑, evaluated within the whole parameter space volume 𝑉𝑝 .
The statistical significance that a shift exists between the
underlying parameters of experiment A and B, is then given
by

Δtension =

∫
P(Δ𝜑)>P(0)

dΔ𝜑P(Δ𝜑) , (8)

which we cast into a ‘tension’ offset, 𝑁𝜎𝜎, with an error
function, erf, as,

𝑁𝜎 =
√

2 erf−1 (Δtension) . (9)

The calculation of this metric from discrete marginal poste-
riors is non-trivial. We refer the reader to section VII.B of
Raveri et al. (2020) for details on the methodology adopted
and the caveats with this approach. In practice, we calculate
Δtension using the tensiometer31 software package (Raveri &
Doux 2021). We find that the Δtension estimate is sensitive to
the choice of tensiometer settings when including a large
number of unconstrained parameter dimensions. Further-
more we note that the metric is sensitive to the choice of pri-
ors. For example, the informative prior for ℎ = [0.64, 0.82],
is set with a width of ±5𝜎 around the Riess et al. (2016)
results, encompassing constraints from both Planck Collab-
oration (2020) and Riess et al. (2022). As cosmic shear
is currently unable to constrain 𝐻0, the 𝐻0 marginal poste-
rior from our Hybrid analysis is given by the prior which is
significant for 𝐻0 values between −6𝜎 and +27𝜎 from the
Planck best fit. With significantly more posterior volume
above the Planck 𝐻0 best fit than below it, the inclusion
of 𝐻0 in the tension metric’s parameter space 𝜑, artificially
enhances the multi-parameter tension between the cosmic
shear and Planck constraints. We therefore choose to report
Δtension measured from only the cosmic shear constrained
𝑆8 −Ωm parameter space.

For an ‘evidence-based’ tension metric, we adopt the ‘sus-
piciousness’ metric, ln 𝑆 = ln 𝑅 − ln 𝐼, which quantifies the
difference between the Bayes factor, 𝑅, and the informa-
tion ratio, 𝐼 (Handley & Lemos 2019). Heymans, Tröster
et al. (2021) show that this metric32 can be written in terms
of the difference between the expectation value of the log-
likelihoods, L, comparing a joint analysis of data sets A and
B with independent analyses,

ln 𝑆 = ⟨lnLA+B⟩PA+B − ⟨lnLA⟩PA − ⟨lnLB⟩PB . (10)

Under the assumption that the two data sets, A and B, are
concordant, and that the posteriors are Gaussian, a suspi-
ciousness probability can be determined as the quantity
𝑑 − 2 ln 𝑆, which has a 𝜒2 distribution with 𝑑 degrees of
freedom. Here 𝑑 = 𝑁A

Θ
+ 𝑁B

Θ
− 𝑁A+B

Θ
, is the difference

in the Bayesian model dimensionality determined from the
30 We note that the Raveri et al. (2020) parameter shift method is math-

ematically equivalent to the ‘tier 2’ method of Köhlinger et al. (2019), but
differs in the implementation strategy.

31 tensiometer: https://github.com/mraveri/tensiomet
er

32 We also refer the interested reader to section IV.E of Joudaki et al.
(2022), showing the relationship between a range of concordance statistics.

effective number of free parameters for each data set. As
discussed in Section 2.7, 𝑁Θ is non-trivial to accurately de-
termine given a degenerate parameter space with informative
priors and we adopt the Joachimi et al. (2021) strategy to
estimate this quantity. In contrast to the Hellinger and pa-
rameter shift metrics, the suspiciousness metric requires an
additional joint probe chain analysis. We therefore limit the
use of this metric to our fiducial analysis.

3. COSMOLOGICAL RESULTS

We present the cosmological parameter constraints from a
joint-survey analysis of the DES Y3 and KiDS-1000 cosmic
shear measurements using the Hybrid pipeline summarised
in Table 2. In Section 3.1, we show the headline results for
DES, KiDS, and the combination of the two surveys. In
Sections 3.2-3.4, we assess the sensitivity of our results to
changes in the neutrino mass prior, and the baryon feedback
and IA models. Our constraints are compared to those from
the CMB (Planck Collaboration 2020) in Section 3.5. We
compare the constraints from our fiducial Hybrid analysis to
a DES-like and KiDS-like re-analysis of the two surveys in
Section 3.6, and to a Hybrid-like re-analysis of HSC Year 3
in Section 3.7. We review the constraints from alternative
probes of 𝑆8 in Section 3.8.

In Appendices C, D and E we carry out a detailed in-
vestigation into the impact of different modelling choices,
under the controlled conditions of ‘noise-free’ mock DES
and KiDS data. This mock data analysis was completed and
the Hybrid pipeline defined, see Table 2, before embarking
on the joint-survey data analysis. The goodness of fit of the
model to the data and the consistency between the DES and
KiDS surveys were verified before viewing the cosmological
constraints.

3.1. Fiducial analysis
Our fiducial cosmic shear constraints are obtained using

the Hybrid pipeline, marginalising over 6 cosmological pa-
rameters in the flat-ΛCDM model and 18 systematic and
astrophysical parameters, as summarised in Tables 1 and 2.
In Figure 1 we present the DES Y3 (green), KiDS-1000
(yellow) and DES Y3+KiDS-1000 (pink) cosmic shear pos-
teriors, projected into a 2D parameter space for Ωm, 𝜎8, and
𝑆8. For the individual surveys, the mean marginal values of
𝑆8, Ωm and 𝜎8 are found with 68% credible intervals to be

DES : 𝑆8 = 0.802+0.023
−0.019

Ωm = 0.297+0.040
−0.060

𝜎8 = 0.816+0.076
−0.085

KiDS : 𝑆8 = 0.763+0.031
−0.023

Ωm = 0.270+0.056
−0.102

𝜎8 = 0.833+0.133
−0.146 ,

(11)

constituting 2.6% (DES Y3) and 3.5% (KiDS-1000) preci-
sion measurements of 𝑆8. In Table 4 we report the maximum
marginal and MAP+PJ-HPD statistics for 𝑆8. This table also
includes constraints from an analysis of the 8% area-cut DES
Y3 data vector that is used in the joint-survey analysis. Here
the overlapping region of the KiDS footprint has been ex-
cised to mitigate cross-survey covariance (see Appendix A),
which we find has little impact on the DES Y3 results.

For both surveys, the model provides a good fit to the
data, with a goodness of fit probability 𝑝DES (𝜒2 > 𝜒2

min |𝜈) =
0.231 and 𝑝KiDS (𝜒2 > 𝜒2

min |𝜈) = 0.048 (see Table 3), calcu-
lated assuming our data vector is drawn from a multivariate
Gaussian likelihood and that our assumed covariance matrix
is precisely and fully characterised33. Before combining the

33 We note that the KiDS goodness of fit probability increases to

https://github.com/mraveri/tensiometer
https://github.com/mraveri/tensiometer
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Figure 1. Cosmological constraints on the cosmological parameters 𝜎8 (left) and 𝑆8 (right) with the matter density Ωm in flat-ΛCDM. We adopt a Hybrid
pipeline to re-analyse cosmic shear observations from DES Y3 (green) and KiDS-1000 (yellow) and conduct a joint-survey analysis of DES Y3 + KiDS-1000
(pink). The cosmic shear constraints can be compared to a re-analysis of the Planck Collaboration (2020) CMB observations (blue) using a common set of
cosmological parameters and priors. The marginalised posterior contours show the 68% (inner) and 95% (outer) credible intervals.

two surveys we assessed their consistency. We find a DES-
KiDS Hellinger distance offset in 𝑆8 of 1.0𝜎 (Equation 6),
and a Δtension parameter shift in 𝑆8 − Ωm of 0.8𝜎 (Equa-
tion 8), thus meeting the < 2.3𝜎 threshold for consistent
data sets.

For the DES Y3+KiDS-1000 joint-survey analysis, the
mean marginal values of 𝑆8, Ωm and 𝜎8 and are found with
68% credible intervals to be

𝑆8 = 0.790+0.018
−0.014

Ωm = 0.280+0.037
−0.046

𝜎8 = 0.825+0.067
−0.073 ,

(12)

constituting a 2.0% precision measurement of 𝑆8 34. These
constraints are summarised in Figure 2 and tabulated in
Table 4 including the maximum marginal and MAP+PJ-
HPD values for 𝑆8. In all cases the model is found to
provide a good fit to the data (see Table 3). For our fiducial
joint-survey analysis we find a goodness of fit probability
𝑝(𝜒2 > 𝜒2

min |𝜈) = 0.068. We also measure the goodness of
fit of the DES and KiDS data vector for the best-fit set of
parameters from the joint analysis. The DES goodness of
fit is essentially unchanged by the joint analysis. The KiDS
goodness of fit degrades slightly, but nevertheless passes the
goodness of fit requirement with 𝑝(𝜒2 > 𝜒2

min |𝜈) = 0.035.
Reviewing the different mean marginal, maximum

marginal and MAP 𝑆8 values in Table 4, it is worth not-
ing that the 0.6𝜎 offset between the MAP and mean is ex-

𝑝KiDS (𝜒2 > 𝜒2
min |𝜈) = 0.66 in the Li et al. (2023b) Hybrid analysis of

an improved KiDS-1000 shear catalogue that also adopts enhanced shear
and redshift calibration techniques. We note that the Li et al. (2023b)
𝑆8 constraints are unchanged from this analysis, with the MAP+PJHPD
𝑆8 = 0.776+0.029+0.002

−0.027−0.003. The second set of errors here account for system-
atic uncertainties within the shear calibration.

34 It is interesting to note that the joint-survey constraints on 𝑆8 are the
same as those estimated through a naive approach of taking the weighted
average of the individual survey constraints in Equation 11. We do not
recommend this naive approach for future survey combinations, especially
in cases where the analysis choices differ. A weighted average of the
published constraints from Amon et al. (2022); Asgari et al. (2021); Secco,
Samuroff et al. (2022) is offset from our joint-survey constraints at the level
of 1.6𝜎. We discuss how the different analysis choices for each survey
team impacts the 𝑆8 constraints in Section 3.6, as quantified through mock
survey studies in Appendices C.4 and E.2.

Analysis 𝜒2
min 𝑁Θ 𝜒2

red 𝑝 (𝜒2
min |𝜈eff )

DES Y3 (Full area) 284.2 5.4 1.06 0.231
DES Y3 (KiDS-excised) 288.3 4.6 1.07 0.192
KiDS-1000 88.3 7.1 1.30 0.048

DES Y3+KiDS-1000:

Fiducial 378.0 9.6 1.12 0.068
Σ𝑚𝜈 = 0.06eV 376.6 9.7 1.11 0.074
Shared IA 382.2 8.0 1.12 0.057
NLA (no z) 379.3 8.8 1.12 0.065
TATT 371.5 12.3 1.11 0.087
Dark Matter 𝑃𝛿 (𝑘 ) 375.5 10.2 1.11 0.076

Table 3. Goodness of fit statistics for the Hybrid pipeline: the best-fit
𝜒2

min, the estimated effective number of free parameters, 𝑁Θ, the reduced
𝜒2

red = 𝜒2
min/𝜈, where 𝜈 is the number of degrees of freedom, and the

goodness of fit probability 𝑝 (𝜒2 > 𝜒2
min |𝜈) (see Section 2.7). The number

of data points for the DES, KiDS and joint-survey data vectors, are 𝑁data =
273, 75, 348 respectively. The upper section reports results for the fiducial
analysis of the individual and joint surveys. The lower section varies
one aspect of the Hybrid joint-survey analysis: fixing the neutrino mass
to Σ𝑚𝜈 = 0.06eV, sharing the IA parameters between the two surveys,
assuming an NLA IA model without redshift evolution (no z), adopting the
TATT IA model, and using a dark matter-only correction for the non-linear
model of the matter power spectrum, 𝑃𝛿 (𝑘 ) .

pected from our analysis of EuclidEmulatorv2 mocks in
Appendix E.2. This offset reflects the significant skew in the
marginal 𝑆8 posterior, in addition to a potential projection
effect which would arise when marginalising over a neu-
trino mass prior that is asymmetrical about the truth (see
Appendix C.3). In the discussion that follows we quote the
mean marginal values for 𝑆8, referring the reader to Table 4
for the alternative MAP+PJ-HPD or maximum marginal
metrics of the posterior.

3.2. Fixing the neutrino mass density
In our fiducial analysis we allow the neutrino mass density

to vary. Following Planck Collaboration (2020) we inves-
tigate adopting a fixed neutrino mass with Σ𝑚𝜈 = 0.06eV,
based on the minimum mass allowed by oscillation exper-
iments when assuming a normal mass hierarchy (Capozzi
et al. 2016). We find our constraints to be fairly insensitive
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Survey Analysis Mean Marginal MAP+PJHPD Maximum Marginal

𝑆8 Δ𝑆8 𝜎/𝜎fid 𝑆8 Δ𝑆8 𝜎/𝜎Fid 𝑆8 Δ𝑆8 𝜎/𝜎Fid

Joint Fiducial 0.790+0.018
−0.014 0.00𝜎 1.00 0.801+0.011

−0.023 0.62𝜎 1.06 0.792+0.017
−0.018 0.11𝜎 1.09

DES Y3 Fiducial (Full area) 0.802+0.023
−0.019 0.57𝜎 1.31 0.816+0.015

−0.028 1.18𝜎 1.34 0.803+0.022
−0.021 0.59𝜎 1.35

DES Y3 Fiducial (KiDS-excised) 0.806+0.021
−0.020 0.74𝜎 1.28 0.803+0.024

−0.016 0.64𝜎 1.25 0.807+0.021
−0.022 0.76𝜎 1.33

KiDS-1000 Fiducial 0.763+0.031
−0.023 −1.00𝜎 1.68 0.776+0.029

−0.027 −0.53𝜎 1.73 0.770+0.026
−0.031 −0.71𝜎 1.77

Joint Σ𝑚𝜈 = 0.06eV 0.797+0.017
−0.014 0.39𝜎 0.98 0.798+0.019

−0.014 0.49𝜎 1.02 0.798+0.016
−0.018 0.47𝜎 1.04

Joint Shared IA 0.792+0.018
−0.013 0.09𝜎 0.98 0.804+0.015

−0.020 0.75𝜎 1.09 0.795+0.016
−0.018 0.25𝜎 1.06

Joint NLA (no-z) 0.792+0.016
−0.014 0.08𝜎 0.94 0.788+0.020

−0.010 −0.19𝜎 0.93 0.791+0.017
−0.015 0.02𝜎 0.97

Joint TATT 0.771+0.025
−0.018 −0.88𝜎 1.35 0.761+0.024

−0.036 −0.98𝜎 1.84 0.775+0.022
−0.023 −0.66𝜎 1.41

Joint Dark Matter 𝑃𝛿 (𝑘 ) 0.784+0.016
−0.015 −0.42𝜎 0.95 0.785+0.014

−0.016 −0.36𝜎 0.93 0.786+0.015
−0.016 −0.30𝜎 0.97

Planck Fiducial 0.831+0.017
−0.017 1.04 0.834+0.019

−0.017 1.09 0.831+0.018
−0.018 1.10

Planck Σ𝑚𝜈 = 0.06eV 0.835+0.015
−0.016 0.97 0.838+0.013

−0.019 0.98 0.837+0.014
−0.018 1.02

Table 4. 𝑆8 constraints with 68% credible intervals using the mean 1D marginal posterior, the MAP and PJ-HPD, and the maximum 1D marginal. Constraints
are provided for our fiducial analysis of DES Y3, KiDS-1000 and the joint-survey analysis. We also report constraints from a series of analysis variants
which, in descending order, adopt a fixed neutrino mass, a shared set of intrinsic alignment parameters for the two surveys, an NLA analysis with no redshift
evolution fixing 𝜂IA = 0, a TATT intrinsic alignment model analysis and a dark matter only analysis with no marginalisation over the effects of baryonic
feedback. Δ𝑆8 quantifies the offset of each statistic’s value for 𝑆8 relative to the Hybrid joint analysis, mean marginal value 𝑆Fid

8 = 0.790, as a fraction of
the 1𝜎 error for each statistic. The error is also tabulated as a ratio to the fiducial joint analysis error 𝜎Fid = 0.016. The cosmic shear constraints can be
compared to a reanalysis of the Planck Collaboration (2020) CMB observations (see Section 3.5 for details) using the Hybrid pipeline’s set of cosmological
parameter priors with a free neutrino mass density, or a fixed neutrino mass prior with Σ𝑚𝜈 = 0.06eV. We do not list Δ𝑆8 for the Planck constraints, referring
the reader to Section 3.5 for a more appropriate set of metrics to compare independent cosmological probes.

0.7 0.75 0.8 0.85
S8 = σ8(Ωm/0.3)0.5

DES Y3+KiDS-1000

DES Y3

KiDS-1000

HSC Y3 ξ

HSC Y3 C`
Planck

P lanck Σmν = 0.06eV

DES Y3+KiDS-1000 Σmν = 0.06eV

DES Y3+KiDS-1000 shared IA

DES Y3+KiDS-1000 NLA (no-z)

DES Y3+KiDS-1000 TATT

DES Y3+KiDS-1000 Dark Matter Pδ(k)
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Figure 2. Summary of mean marginalised 1D constraints on 𝑆8, Ωm and 𝜎8. The mean of the posterior is indicated by the filled symbol and 68% credible
intervals are shown as horizontal bars. The DES and KiDS Hybrid analyses are represented as the yellow and green stars, respectively, and the joint Hybrid
analysis as the pink star and vertical shaded region. Variants of the joint Hybrid analyses are shown as pink diamonds. In descending order, we show
variants adopting a fixed neutrino mass, a shared set of intrinsic alignment parameters for the two surveys, an NLA analysis with no redshift evolution fixing
𝜂IA = 0, a TATT intrinsic alignment model analysis and a dark matter only analysis with no marginalisation over the effects of baryonic feedback. The DES
and KiDS constraints can be compared to a Hybrid pipeline re-analysis of the HSC Year 3 cosmic shear observations (purple stars) using the shear angular
power spectrum, 𝐶ℓ , (Dalal et al. 2023) and the two-point shear correlation function, 𝜉± (𝜃 ) (Li et al. 2023a, see Section 3.7 for details). We also compare
to a reanalysis of the Planck Collaboration (2020) CMB observations (see Section 3.5 for details) using the Hybrid pipeline’s set of cosmological parameter
priors with a free neutrino mass density (blue star), or a fixed neutrino mass prior with Σ𝑚𝜈 = 0.06eV (blue diamond). The numerical parameter values for
𝑆8 are listed in Table 4.
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to the choice of prior for Ω𝜈ℎ
2, similar to previous studies.

Comparing the ‘DES Y3+KiDS-1000 Σ𝑚𝜈 = 0.06eV’ anal-
ysis with the fiducial result, in Figure 2 and Table 4, we find
the mean value of 𝑆8 increases by 0.39𝜎 and the marginal
uncertainty decreases by 2% with:

𝑆
Σ𝑚𝜈=0.06eV
8 = 0.797+0.017

−0.014 . (13)

In Table 4 we find that adopting a fixed neutrino mass brings
the mean and maximum marginal estimates in line with the
MAP. This behaviour is also seen in our mock analysis in
Appendix E.2. For the fiducial Hybrid mock analysis, the
offset in the marginalised 𝑆8 constraints relative to the input
truth arises from the projection of a wide and positive Σ𝑚𝜈

prior, which is heavily skewed about the mock input value
of Σ𝑚𝜈 = 0.06eV.

3.3. Varying the intrinsic alignment model
In our fiducial analysis we adopt the NLA-z IA model,

with two independent sets of survey-specific IA parameters:
(𝐴DES

IA , 𝜂DES
IA ) and (𝐴KiDS

IA , 𝜂KiDS
IA ). The mean marginal con-

straints for these parameters are shown in Figure 3 with the
DES parameters in green and the KiDS parameters in yel-
low. We can compare the constraints from the individual and
joint-survey analyses. Analysing the surveys independently
we find:

𝐴DES
IA = 0.32+0.43

−0.37 𝐴KiDS
IA = 0.65+0.88

−0.54 . (14)

In a joint-survey analysis, we find 𝐴DES
IA reduces to accom-

modate a reduction in 𝑆8 relative to the DES-only preferred
value, and the same effect, but in reverse35, for 𝐴KiDS

IA :

𝐴
DES, Joint
IA = −0.02+0.58

−0.29 𝐴
KiDS, Joint
IA = 1.04+0.54

−0.52 . (15)

This increases the offset between the survey-preferred 𝐴IA
amplitude, but the constraints remain formally consistent
with a Hellinger offset of 1.47𝜎. As the intrinsic align-
ment signal is known to depend on many factors (see the
discussion in Appendix C.2), we do not expect identical
intrinsic alignment signals in the two surveys, hence our
use of independent IA parameters. That said, as DES and
KiDS have broadly similar redshift distributions and depths,
with the tomographic samples dominated by fainter bluer
galaxies, we do not expect considerable differences between
the effective intrinsic alignment contamination of each sur-
vey. The changes to the 𝐴IA constraints for each survey
in the joint survey analysis may therefore indicate that this
flexible nuisance parameter is absorbing more than just the
contribution to the tomographic cosmic shear signal of in-
trinsically aligned galaxies. When testing a single shared
set of IA parameters for the joint-analysis, we find, unsur-
prisingly, that the IA constraints lie between the best-fits for
the two individual surveys, with 𝐴Shared−IA

IA = 0.43+0.37
−0.45. As

shown in Figure 3 with the shared-IA constraints in pink,
the cosmological parameter constraints are not impacted by
the choice of shared or independent IA modelling. We find
negligible differences: 𝑆8 increases by 0.1𝜎, the marginal
uncertainty decreases by 2% and the goodness of fit proba-
bility decreases by 1%.

We are unable to constrain the redshift-dependent param-
eters 𝜂IA, but it is nevertheless interesting to note the high

35 In broad terms this can be understood through equation 2. The
amplitude of the shear power spectrum 𝐶GG (ℓ ) is roughly proportional to
𝑆2

8 (Jain & Seljak 1997). Given that the total observed signal is unchanged
by the analysis, lowering (raising) the value of 𝑆8 can be offset by raising
(lowering) the amplitude of the IA terms. As the GI term dominates the IA
signal, with 𝐶GI (ℓ ) ∝ −𝐴IA, a reduction in 𝑆8 combined with a reduction
in 𝐴IA can deliver a good fit to the data. In reality the situation is more
complex with multiple parameters in play, but this effect nevertheless drives
the mild degeneracy seen between 𝑆8 and 𝐴IA in Figure 3.

0.77 0.83

S8

−4

0

4

η I
A

−1

0

1

2

A
IA

0 2

AIA

−4 0 4

ηIA

DES Y3 + KiDS-1000 – KiDS IA

DES Y3 + KiDS-1000 – DES IA

DES Y3 + KiDS-1000 - shared IA

Figure 3. Constraints on the NLA-z intrinsic alignment parameters 𝐴IA
and 𝜂IA with 𝑆8. The marginalised posterior contours (inner 68% and outer
95% credible intervals) are shown for the fiducial analysis where the IA
parameters are independent for the two surveys. The DES IA parameters
are shown in green with the KiDS IA parameters in yellow. The fiducial
result can be compared to an alternative analysis where the IA parameters
are shared (pink).
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DES Y3+KiDS-1000

DES Y3+KiDS-1000
∑

mν = 0.06eV
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DES Y3+KiDS-1000 Dark Matter Pδ(k)
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Figure 4. Summary of mean marginalised 1D constraints for the NLA-z
𝐴IA parameter. The top row and shaded bands show the posterior mean and
1𝜎 error bars from our fiducial Hybrid pipeline analysis of the joint DES Y3
+ KiDS-1000 data vector. In descending order, we show analysis variants
with fixed neutrino mass, an NLA analysis with no redshift evolution fixing
𝜂IA = 0, a TATT intrinsic alignment model analysis and an analysis using a
dark matter non-linear matter power spectrum with no marginalisation over
the effects of baryonic feedback. In the case of the TATT analysis we plot
constraints for the 𝑎1 parameter, which is equal to 𝐴IA in the limit where
the TATT parameters 𝑎2, 𝜂2, 𝑏TA → 0. See Appendix G for marginal
constraints on each TATT parameter.

MAP-values for 𝜂DES,MAP
IA = 4.5 and 𝜂

KiDS,MAP
IA = 4.1 which

are unexpected36. We find the single-survey 𝜂IA posteriors
36 Direct observations of galaxy position-shape correlations for a sample

of LRGs constrain 𝜂IA = −0.3 ± 0.8 over the redshift range 0 < 𝑧 <
0.7 (Joachimi et al. 2011), and 𝜂IA = −0.05 ± 0.73 over the redshift
range 0.2 < 𝑧 < 1.1 (Samuroff et al. 2023). Null detections of intrinsic
alignments for late-type galaxies at 𝑧 ∼ 0.6 (Mandelbaum et al. 2011),
𝑧 ∼ 0.8 (Samuroff et al. 2023) and 𝑧 ∼ 1.4 (Tonegawa et al. 2018) suggest
there is also no strong evolution for spiral galaxy alignment, albeit with a
fairly large degree of uncertainty on these null results. Using a halo model,
Fortuna et al. (2021) demonstrate that the effective intrinsic alignment
signal for a magnitude limited galaxy survey is nevertheless expected to
evolve as a result of the changing average luminosity and central/satellite
fraction in each redshift bin. Using observation-informed halo model
parameters, they find the halo model prediction for the intrinsic alignment
signal from a KiDS-like survey can be represented by an NLA-z model
with 𝐴IA = 0.42 ± 0.02 and 𝜂IA = 2.21 ± 0.22.



13

also skew towards the upper edge of the 𝜂IA prior, matching
a similar finding in the Amon et al. (2022); Secco, Samuroff
et al. (2022) DES Y3 analysis, where posteriors for the cor-
responding 𝜂1 and 𝜂2 TATT parameters also skew towards
the high values allowed by the prior. This result could be
indicative of the flexibility of the IA model adapting to ab-
sorb some tension in the photometric redshift evolution of
the tomographic cosmic shear signals (see the discussion in
Appendix C.2 and Fischbacher et al. 2023). We note, how-
ever, that as we find 𝑆8 to be insensitive to changes in 𝜂IA
(see Figure 3), this result should not impact confidence in
the cosmological constraints.

In our fiducial analysis we adopt the NLA-z intrinsic align-
ment model. Changing to the one-parameter NLA model,
which removes the redshift dependence in the NLA-z frame-
work we find negligible differences with the 𝑆8 constraint
increasing by 0.1𝜎 and the marginal uncertainty decreasing
by 6% with:

𝑆NLA
8 = 0.792+0.016

−0.013 . (16)

As shown in Figure 4, removing freedom in the redshift
evolution reduces the uncertainty on the 𝐴IA constraints for
DES and KiDS, but they remain consistent with a Hellinger
offset of 1.53𝜎.

Changing to the five-parameter TATT model (see Sec-
tion 2.2), with DES-like IA priors from Table 1, we find the
joint-survey cosmic shear 𝑆8 constraint lowers by 0.9𝜎 and
the marginal uncertainty widens by 35% with:

𝑆TATT
8 = 0.771+0.018

−0.025 . (17)

The choice for our Hybrid pipeline of NLA over TATT
therefore introduces the largest impact on our results. We
note that the increased uncertainty in 𝑆8 when adopting the
TATT model is in contrast to the ∼ 10% reduction in uncer-
tainty on Ωm and 𝜎8 (see Figure 2). Appendix G compares
the multi-dimensional posteriors from the TATT and NLA-z
analyses finding a similar degeneracy in the𝜎8−Ωm plane for
the two distributions, but with a significantly broader width
in the case of the TATT analysis. This demonstrates that it
is non-trivial to predict estimates of 𝑆8 from the marginal
distributions of Ωm and 𝜎8.

The trends seen here in the uncertainty and value of 𝑆8, are
similar to the trends reported by previous DES and KiDS
analyses37. Asgari et al. (2021) find switching from an
NLA-z to a single-parameter NLA model impacts the 𝑆8
uncertainty at the level of ∼ 10 − 30% dependent on the
two-point statistic and has a negligible impact on the value
of 𝑆8. Samuroff et al. (2019); Amon et al. (2022); Secco,
Samuroff et al. (2022) find switching from NLA-z to TATT
decreases 𝑆8 by∼ 0.6−1.0𝜎 depending on the scale cuts, and
the cosmic shear-only analysis (without shear ratio data38)
in Amon et al. (2022) find a ∼ 30% increase in the 𝑆8
uncertainty when adopting TATT compared to NLA-z.

To understand the differences between the NLA and TATT
analyses, exploring the multi-dimensional posterior shows
that the TATT IA model allows freedom for the cosmo-
logical model to explore low-𝑆8 values at large-𝑎2 values
(see Appendix G). This introduces a significant skew in the

37 We note that the impact of using different IA models in the cosmic shear
analysis of HSC is less pronounced than in our joint-survey analysis. Li et al.
(2023a); Dalal et al. (2023) report a ∼ 0.2− 0.4𝜎 𝑆8 offset when changing
from NLA-z to TATT, and a ∼ 15% increase in the uncertainty. Given the
interplay between photometric redshift nuisance parameters, Δ𝑧, and IA
parameters (Fischbacher et al. 2023), different IA behaviour is, however,
expected for HSC who use wide uninformative priors, Δ𝑧 = [−1, 1], for
bins with 𝑧phot > 0.9.

38 Whilst not directly comparable to the cosmic shear only analysis in
this study, we note that the DES Y3 𝑆8 uncertainty with TATT is only 6%
larger than in the NLA-z analysis when the cosmic shear data is analysed
in combination with the shear ratio data. For the DES Y3 3 × 2pt analysis,
the difference is ∼ 13%.

marginal posterior lowering the mean 𝑆8 value relative to
the maximum marginal value. This is not only a skew-
ness effect, however, as we find the MAP 𝑆8 estimate is
also low with 𝑆8 = 0.761+0.024

−0.036. The difference between
the MAP estimates for the NLA-z and TATT analysis is
1.3𝜎, demonstrating that the 0.9𝜎 offset found between the
mean 𝑆8 marginals is not solely a result of prior volume or
projection effects.

In our mock survey study in Appendices E.2 and C.4 we
quantify the impact of adopting a TATT or NLA cosmic
shear analysis for different input IA models. When the input
truth model is NLA (no-z), we find a 0.45𝜎 reduction in
𝑆8 and a 10% widening of the marginal uncertainty when
changing between the Hybrid NLA-z and TATT analysis of
the same simulated data vector. When the input truth model
is a strong TATT model39, we find a 1.3𝜎 increase in the
mean marginal 𝑆8 value, relative to the input cosmology in
an NLA-analysis. The impact of choosing TATT or NLA-z
for the data lies between these two cases. At this point,
with the information available to us, it is not possible to say
whether the differences we find between the TATT and NLA
analyses arises from a significant bias of the NLA-z model
relative to the true underlying IA mechanism, or a numer-
ical effect that will disappear as future data becomes more
constraining. New observational constraints are required to
help distinguish between these IA models, to set tighter pri-
ors on the free parameters, and to better inform the analysis
choices for future weak lensing surveys.

3.4. Varying the baryon feedback model
In our fiducial analysis we employ two schemes to mitigate

our uncertainty on the impact of baryon feedback on the non-
linear matter power spectrum: scale cuts (see Appendix B)
and marginalisation over the HMCode2020 𝑇AGN parameter
(see Appendix E.2). Changing to use the HMCode2020
dark matter-only correction for the non-linear 𝑃𝛿 (𝑘), but
retaining the scale cuts, we find the joint-survey cosmic shear
𝑆8 constraint lowers by 0.4𝜎 and the marginal uncertainty
decreases by 5% with:

𝑆
Dark Matter P𝛿 (k)
8 = 0.784+0.016

−0.015 . (18)
With the inclusion of scale cuts, our constraints are there-
fore robust at the 0.4𝜎-level to the use of baryon feedback
marginalisation as an analysis choice. This finding is consis-
tent with the baryon feedback sensitivity analysis in Asgari
et al. (2021) and Secco, Samuroff et al. (2022) using 𝐴bary
and HMCode2016. It also matches the 0.5𝜎 reduction in
𝑆8 found when switching off the 𝑇AGN marginalisation in
our mock survey analysis, where the input baryon feedback
was modelled using the OWLS-AGN simulation (see Ap-
pendix E.2). In Appendix G we show that we are unable
to set constraints on the amplitude of the baryon feedback
model.

3.5. Quantifying consistency/tension with Planck
Figure 1 compares our cosmic shear constraints to the

Planck satellite CMB temperature and polarisation mea-
surements (Planck Collaboration 2020). Specifically we
use the Planck measurements of the auto power spectra of
temperature 𝐶TT

ℓ
, of 𝐸-modes 𝐶EE

ℓ
, and their cross-power

spectra 𝐶TE
ℓ

, using the ‘Plik’ version for ℓ >30. In the range
2< ℓ <29, we only analyse the measurements of 𝐶TT

ℓ
and

𝐶EE
ℓ

. We choose to not include the CMB lensing data that
is sensitive to a wide range of redshifts, extracting cosmo-
logical information solely from the high redshift primary

39 Our ‘strong’ TATT model is given by the best-fit parameters from the
Amon et al. (2022); Secco, Samuroff et al. (2022) DES Y3 cosmic shear
with shear-ratio analysis. See Table 6 and Appendix C.4 for details.
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Data Analysis 𝑑H (𝑆8 ) Δ
𝑆8 ,Ωm
tension

DES Y3 (Full area) Fiducial 1.00𝜎 0.87𝜎
DES Y3 (KiDS-excised) Fiducial 0.90𝜎 0.73𝜎
KiDS-1000 Fiducial 2.11𝜎 1.89𝜎
DES Y3 + KiDS-1000 Fiducial 1.66𝜎 1.67𝜎

DES Y3 + KiDS-1000 Σ𝑚𝜈 = 0.06eV 1.67𝜎 1.78𝜎
DES Y3 + KiDS-1000 Shared IA 1.57𝜎 1.37𝜎
DES Y3 + KiDS-1000 NLA (no-z) 1.67𝜎 1.62𝜎
DES Y3 + KiDS-1000 TATT 2.15𝜎 2.33𝜎
DES Y3 + KiDS-1000 Dark Matter 𝑃𝛿 (𝑘 ) 2.01𝜎 1.90𝜎

Table 5. Tension metrics comparing the cosmological constraints from
cosmic shear with those from Planck Collaboration (2020) CMB obser-
vations. We tabulate the Hellinger distance offset 𝑑H (𝑆8 ) , and the multi-
dimensional parameter shift offsetΔtension, for the cosmic-shear constrained
parameter set (𝑆8,Ωm ) . Metrics are reported for the fiducial Hybrid
pipeline analysis of DES Y3 (both the full area and the KiDS-excised area),
KiDS-1000 and the joint-survey analysis. We also report metrics for the
Hybrid analysis variants where we adopt a fixed neutrino mass, a shared set
of intrinsic alignment parameters for the two surveys, an NLA analysis with
no redshift evolution fixing 𝜂IA = 0, a TATT intrinsic alignment model
analysis and a dark matter-only correction for the non-linear modelling of
the matter power spectrum 𝑃𝛿 (𝑘 ) . In the case of the fixed neutrino mass
analysis, we compare the cosmic shear constraint to a Planck analysis which
also fixes the sum of neutrino masses to Σ𝑚𝜈 = 0.06eV.

CMB anisotropies40. In order to assess consistency, we re-
analyse Planck using the Hybrid set of cosmological priors
(Table 2), primarily to allow for variations in the sum of
neutrino masses, a quantity which is fixed to Σ𝑚𝜈 = 0.06eV
in the fiducial Planck analysis.

The sensitivity of the CMB constraints to the choice of
neutrino mass prior is shown by comparing the ‘Planck
Σ𝑚𝜈 = 0.06eV’ analysis with our Hybrid-prior re-analysis41
of Planck in Figure 2 and Table 4. Fixing the neutrino masses
increases the Planck mean marginal 𝑆8 value by 0.27𝜎 with
the marginal uncertainty decreasing by 10%.

In Table 5 we report the Hellinger distance offset 𝑑H (𝑆8)
(Equation 6) between the Hybrid pipeline cosmic shear
𝑆8 constraints and Planck 𝑆8 constraints. We also re-
port the multi-dimensional parameter shift offset Δtension
(Equation 8) for the cosmic-shear constrained parameter set
(𝑆8,Ωm), finding similar results for the two tension met-
rics. In all cases we find consistency between DES, KiDS
and Planck. We find that the joint Hybrid constraint differs
from the Planck CMB result by 1.7𝜎, for both our fidu-
cial setup and an analysis where the neutrino mass is fixed.
The tension between the observations is driven by the KiDS
survey with an 𝑆8 Hellinger distance offset of 2.1𝜎, com-
pared to the DES offset of 1.0𝜎. For our fiducial analysis
we also quantify the Suspiciousness metric, Equation 10,
finding a probability of 𝑝 = 0.28 to observe the measured
offset between two concordant data sets. This corresponds
to consistency between DES, KiDS and Planck at the level

40 The inclusion of CMB lensing in the Planck data vector decreases the
uncertainty on 𝑆8 by 23-33% without influencing the mean value (Planck
Collaboration 2020; Efstathiou & Gratton 2021).

41 For the fixed neutrino mass re-analysis of Planck, adopting Hybrid
priors for all other parameters, we choose to use the Multinest sampler
for speed. In this specific case, the posteriors are more Gaussian and con-
strained and therefore less sensitive to the Multinest issues that affect
non-Gaussian cosmic shear posteriors (see Appendix D). From this anal-
ysis we recover the same 𝑆8 constraints as Planck Collaboration (2020),
within the expected 0.1𝜎 chain-to-chain variance. These constraints are
0.38𝜎 higher than the 𝑆8 constraint from Efstathiou & Gratton (2021) in
their Planck re-analysis. The measurement of an 𝑆8 tension metric be-
tween our joint survey analysis and the Efstathiou & Gratton (2021) CMB
constraints would therefore be reduced relative to the Planck Collaboration
(2020) CMB tension metrics in Table 5. We note that had we chosen to
use the Efstathiou & Gratton (2021) Planck re-analysis and also include
CMB lensing observations, enhancing the overall constraining power, the
resulting tension metrics would be fairly similar to our quoted values.

of 0.6𝜎.
The adoption of the Hybrid pipeline reduces the previ-

ously reported tension between the DES Y3 and KiDS-1000
cosmic shear observations and Planck. In the case of KiDS,
this reduction is primarily driven by an increase in the un-
certainty on 𝑆8 arising from the use of Polychord over
Multinest and the inclusion of additional flexibility with
the NLA-z model. In the case of DES, the reduction is pri-
marily driven by an upward shift in 𝑆8 which we find in our
mock studies is to be expected when changing both the IA
and non-linear matter power spectrum models (see Appen-
dices C.4 and E.2). These differences are also highlighted
by the range of constraints from our variants of the Hybrid
analysis. Using a TATT model increases the offset with
Planck, to the level of 2.2𝜎 (Hellinger) and 2.3𝜎 (Δtension),
bringing us to the limit where we would consider there to be
evidence of inconsistency. Analysing the data vector with
a dark matter only model for the matter power spectrum
also increases the offset relative to the fiducial case, with
a 2.0𝜎 Hellinger distance offset between the joint-survey
constraints and Planck.

3.6. A DES-like and KiDS-like re-analysis
In this section, we return to the original DES-like and

KiDS-like pipelines, summarised in Table 2, comparing con-
straints with our fiducial Hybrid pipeline in the re-analysis
of the DES Y3 and KiDS-1000 cosmic shear observations.
Figure 5 compares constraints in the 𝑆8 −Ωm plane for DES
Y3 (left) and KiDS-1000 (right), using a DES-like analy-
sis (green), a KiDS-like analysis (yellow) and the Hybrid
analysis (pink).

For both surveys, the 𝑆8 uncertainty relative to the Hy-
brid analysis increases by ∼ 20% for the DES-like analysis
and decreases by ∼ 20% for the KiDS-like analysis, in line
with expectations from our mock analysis. We also see off-
sets between the DES-like and KiDS-like constraints for the
same data set. For our re-analysis of DES Y3 we find an off-
set between the results from the two analysis pipelines with
Δ𝑆DES

8 = 0.033. We can write this offset as a factor of the
DES-like analysis error on 𝑆8, with Δ𝑆DES

8 = 1.40𝜎DES
DES−like,

or as a factor of the more constraining KiDS-like analysis er-
ror on 𝑆8, with Δ𝑆DES

8 = 1.99𝜎DES
KiDS−like. Similar differences

are seen when using the two pipelines to analyse KiDS-1000
with Δ𝑆KiDS

8 = 0.044. Casting this offset again as a factor
of the DES-like or KiDS-like pipeline’s reported error we
find Δ𝑆KiDS

8 = 1.19𝜎KiDS
DES−like = 1.97𝜎KiDS

KiDS−like. In Appen-
dices C.4 and E.2, we find that this level of offset is to be
expected when analysing the same data set with the mod-
elling combination of TATT and Halofit (DES-like) versus
NLA (no-z) and HMCode (KiDS-like).

Comparing the Hybrid and KiDS-like analyses, we find
similar 𝑆8 constraints for the re-analysis of the DES survey
in the left panel of Figure 5. This is expected given that
the main difference for the Hybrid pipeline is the use of
the Polychord sampler, in place of Multinest, with ad-
ditional parameter freedoms of a varied neutrino mass and
redshift-dependence in the IA modelling. These modifica-
tions are only expected to significantly impact the constrain-
ing power. In the re-analysis of the KiDS survey, however
(see the right panel of Figure 5), we find a larger offset be-
tween the Hybrid and KiDS-like constraints, arising from
the addition of scale cuts to the COSEBIs data vector in
the Hybrid case. Appendix F examines this offset in more
detail, finding a 0.7𝜎 offset in 𝑆8 when adopting scale cuts
with an HMCode2016 KiDS-like analysis. Using a series
of mocks, we show that there is a 23% chance of such an
offset arising from random shape noise. We also show that
an offset of this size is unlikely to be fully attributable to
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Figure 5. Cosmological constraints on 𝑆8 and the matter density Ωm from DES Y3 (left) and KiDS-1000 (right): comparing our fiducial Hybrid re-analysis
of the two cosmic shear surveys (pink) to analyses that adopt the original DES-like pipeline (green) and KiDS-like pipeline (yellow). The DES-like analysis
of DES Y3 (green left) replicates the ΛCDM-optimised cosmic shear only constraints from Amon et al. (2022); Secco, Samuroff et al. (2022). The KiDS-like
analysis of KiDS-1000 (yellow right) replicates the COSEBIs cosmic shear constraints from Asgari et al. (2021). The marginalised posterior contours show
the 68% (inner) and 95% (outer) credible intervals.
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Figure 6. Constraints on 𝑆8 from the KiDS-1000 (yellow), DES Y3 (green)
and HSC Year 3 (purple) surveys, with 68% credible intervals shown as hor-
izontal bars. In the upper section we compare the published headline results
from each survey (circles). In the case of HSC we show constraints from
two cosmic shear statistics, labelled 𝜉± (𝜃 ) (Li et al. 2023a) and 𝐶ℓ (Dalal
et al. 2023). In the case of DES we show both the primary ‘ΛCDM opti-
mised’ cosmic shear result from Amon et al. (2022); Secco, Samuroff et al.
(2022), which includes additional shear ratio data (green circle), and the
cosmic shear-only constraint (‘no SR’, green cross). In the middle section
we present constraints from a DES-like re-analysis of KiDS-1000 (yellow
square) and a KiDS-like re-analysis of DES Y3 (green square), demon-
strating the differences between a TATT with Halofit analysis (DES-like)
and an NLA (no-z) with HMCode2016 analysis (KiDS-like). The lower
section presents the results from a unified Hybrid pipeline re-analysis of
each survey (stars), along with a shaded vertical bar for reference.

small-scale baryon feedback effects using the Le Brun et al.
(2014) Cosmo-OWLS:8.7 hydrodynamical simulation as an
example of extreme feedback. For the KiDS-like analyses
we find a DES-KiDS Hellinger distance offset in 𝑆8 of 2.0𝜎,
and a Δtension parameter shift in 𝑆8 − Ωm of 1.8𝜎, within
the < 2.3𝜎 threshold for consistent data sets. Given that
we have shown in Appendix D that the KiDS-like pipeline’s
use of Multinest leads to a systematic underestimate of the
constraining power, we choose to not present joint-survey
constraints using the KiDS-like pipeline.

Comparing the Hybrid and DES-like analyses, we find

higher 𝑆8 values with the Hybrid setup for both surveys.
This is predicted by our EuclidEmulatorv2 mock survey
analysis in Appendix E where changing the non-linear power
spectrum model from Halofit to HMCode2020 combined
with a change in the IA model from TATT to NLA-z in-
creases 𝑆8 by ∼ 1𝜎. Including a free baryon feedback
parameter in the analysis raises 𝑆8 by an additional ∼ 0.5𝜎
when the underlying baryon feedback model is given by
OWLS-AGN (see Table 12 and also Secco et al. 2022, where
the impact of these analysis choices are documented for the
fiducial DES Y3 analysis). In Figure 6 we show that the
34% increase in 𝑆8 uncertainty in the DES-like re-analysis
of DES Y3 compared to the headline results from Amon
et al. (2022); Secco, Samuroff et al. (2022) arises from our
decision to focus on a cosmic shear-only analysis, excluding
the additional shear ratio data used in the original studies
(denoted no SR). For the DES-like analyses we find a DES-
KiDS Hellinger distance offset in 𝑆8 of 1.2𝜎, and a Δtension
parameter shift in 𝑆8 − Ωm of 0.7𝜎, within the < 2.3𝜎
threshold for consistent data sets. Given the offset between
the recovered and input 𝑆8 parameters in our DES-like analy-
sis of joint-survey EuclidEmulatorv2-based mocks, how-
ever, we choose to not present joint-survey constraints using
the DES-like pipeline. In our conclusions, we discuss the
implications of these differences for future survey analyses.

3.7. A comparison of constraints with HSC Year 3
In Figure 6 we compare the DES Y3 and KiDS-1000 𝑆8

constraints to the cosmic shear analysis of HSC Year 3 data
(Li et al. 2022). The upper section presents the headline
HSC results from the two-point shear correlation function
analysis, 𝜉± (𝜃) (Li et al. 2023a), and the shear angular power
spectrum analysis, 𝐶EE

𝜖 𝜖 (ℓ) (Dalal et al. 2023). These results
are in good agreement with the headline results42 from DES

42 A reminder that the published headline results presented in Figure 6
use different statistics to define an 𝑆8 value from each analysis. The HSC
team chooses to quote the maximum marginal 𝑆8 value. The KiDS team
chooses to quote the MAP+PJ-HPD. The DES team chooses to quote the
mean marginal 𝑆8 value. Table 4 demonstrates how these three value
estimates differ for the joint DES+KiDS analysis and we refer the reader to
the discussion in Section 2.6 on the merits and challenges associated with
estimating each value statistic.
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Y3 and KiDS-1000. As demonstrated throughout this pa-
per, however, caution is required when comparing headline
results as the offsets induced by different analysis choices
can be significant.

We compare the HSC Year 3 fiducial analysis choices to
the Hybrid approach adopted in this study. Both analyses use
the Polychord sampler and to mitigate the impact of baryon
feedback, both analyses incorporate scale cuts and model-
marginalisation with a free nuisance parameter. The HSC
team uses HMCode2016 for their headline result, however,
in contrast to the Hybrid choice of HMCode2020. The HSC
team chooses TATT for their IA model, in contrast to NLA-
z. The 𝐴s parameter is chosen to sample over, along with the
inclusion of a correction weight (Sugiyama et al. 2020), in
contrast to the 𝑆8 parameter sampling chosen in the Hybrid
setup. The HSC team also choose to fix the sum of the
neutrino masses to Σ𝑚𝜈 = 0.06eV. The projection effects
and impact of each of these analysis choices is quantified in
detail in Dalal et al. (2023); Li et al. (2023a), finding any
offsets induced in 𝑆8 are less than ∼ 0.5𝜎.

In the lower section of Figure 6, we compare DES Y3,
HSC Year 3 and KiDS-1000 𝑆8 constraints analysed with
the same Hybrid pipeline and reported using mean marginal
values. As in the cases of DES and KiDS, in the Hybrid
re-analysis of HSC we preserve the observational calibration
parameters determined by the survey. We discuss the dif-
ferences between the published and Hybrid DES and KiDS
results in Section 3.6. For HSC Year 3 we find little im-
pact43 on the reported constraints when adopting the Hy-
brid pipeline in place of the HSC fiducial analysis pipeline.
In contrast to the DES+KiDS joint-survey analysis in Sec-
tion 3.3, a significant offset is not seen in the HSC analysis
when changing IA models from TATT to NLA-z (Dalal et al.
2023; Li et al. 2023a). The differing response to the intrinsic
alignment model might be understood given the HSC team’s
adoption of wide uninformative priors on theΔ𝑧 redshift cal-
ibration parameter for bins with 𝑧phot > 0.9. The HSC data
self-calibrates these parameters with a resulting uncertainty
that is a factor of 3-9 times larger than the corresponding
informative priors adopted by the DES and KiDS teams.

With a Hybrid analysis evaluated for each survey we can
directly compare the results within a unified framework. The
constraints are consistent between the three surveys, with all
three recovering a lower value for 𝑆8 compared to the CMB
result from Planck Collaboration (2020). DES Y3 yields the
tightest 2.6% precision measurement on 𝑆8 and the highest
𝑆8 value out of the three surveys. KiDS-1000 reports the
lowest 𝑆8 value from the set with 3.5% precision. The HSC
Year 3 result lies between DES Y3 and KiDS-1000 with a
4% precision measurement. We remind the reader that as
almost half of the HSC footprint overlaps with KiDS, with
most of the other half overlapping with DES, these surveys
are not independent.

We note that the 2% precision constraints on 𝑆8 from
our joint Hybrid analysis of DES Y3 and KiDS-1000 are
less precise than the 1.6-1.9% precision constraints reported
from the unified analysis of DES Y1, HSC Year 1 and KiDS-
1000 by Longley et al. (2023). Excluding HSC Year 1
from their analysis, Longley et al. (2023) report a DES Y1
and KiDS-1000 𝑆8 precision of 2.4%. Compared to this
analysis, the area of DES Y3 triples relative to DES Y1,
but the resulting constraints are systematics limited. In a
DES Y3-like analysis of DES Y1, Amon et al. (2022) finds
the increased area leads to a ∼ 50% improvement in the

43 When using the Hybrid setup for the 𝜉± (𝜃 ) HSC analysis, 𝑆8 increases
by 0.1𝜎 and the error on 𝑆8 decreases by 4%. For the 𝐶EE

𝜖 𝜖 (ℓ ) analysis,
𝑆8 decreases by 0.2𝜎 with the error on 𝑆8 increasing by 5%. We note that
these results are subject to chain-to-chain variance noise which we estimate
to be at the level of ∼ 0.1𝜎 (Joachimi et al. 2021).

DES constraining power. The main differences between
the Longley et al. (2023) fiducial analysis framework and
the Hybrid setup include the use of the Multinest sampler
and the adoption of scale cuts without marginalisation over
baryon feedback. From Appendices D and E we would
expect this combination of choices to decrease the Longley
et al. (2023) reported uncertainty on 𝑆8 by ∼ 20% relative
to a Hybrid analysis. Factoring these known differences
together, we conclude that our findings are in line with those
from Longley et al. (2023).

3.8. Alternative large scale structure observations
To date, the most precise constraints on 𝑆8 come from

the analysis of cosmic shear or the CMB. Other large scale
structure observations also constrain this parameter includ-
ing galaxy-galaxy lensing; galaxy clustering; redshift space
distortions; peculiar velocities; X-ray, optical and thermal
SZ cluster counts; CMB lensing; with data sometimes com-
bined in cross-correlation or in a multi-probe analysis (see
the discussion in Abdalla et al. 2022; Madhavacheril et al.
2023; Amon & Efstathiou 2022, and references therein). In
common with our constraints in Section 3.1, many results in
the large scale structure literature favour 𝑆8 values that are
formally consistent, but low in comparison to Planck.

We leave a detailed comparison to other cosmological
probes for future work as these results adopt a range of cos-
mological parameter priors which must be homogenised for
a robust assessment. It is worth noting, however, the excep-
tions to the low-𝑆8 trend: the CMB lensing results from the
Atacama Cosmology Telescope (ACT, Madhavacheril et al.
2023) and the South Pole Telescope (SPT, Bianchini et al.
2020). A joint analysis of ACT CMB lensing with baryon
acoustic oscillation observations, finds a mean marginal
value for 𝑆8 = 0.840 ± 0.028, with similarly high but less
constraining results from SPT. These results challenge the
hypothesis that an 𝑆8-tension exists between the Planck and
large scale structure analyses as a result of a non-ΛCDM
redshift evolution between the CMB early Universe predic-
tion and direct observations of the late-time Universe. CMB
lensing probes linear scales and is sensitive to structure at
0.5 < 𝑧 < 5 with sensitivity peaking at 𝑧 ∼ 2. This can be
contrasted to cosmic shear, which probes non-linear scales
and is currently sensitive to structure at 𝑧 < 1.

4. CONCLUSIONS

In a joint cosmic shear analysis of DES Y3 (Amon et al.
2022; Secco, Samuroff et al. 2022) and KiDS-1000 (Asgari
et al. 2021) we find consistent cosmological constraints with
CMB observations from Planck Collaboration (2020), at the
1.7𝜎 level. We constrain cosmological parameters in flat-
ΛCDM, while also varying the neutrino mass, to find a 2%
fractional uncertainty on 𝑆8, with a mean-marginal value
of 𝑆8 = 0.790+0.018

−0.014 and a MAP+PJ-HPD value of 𝑆8 =

0.801+0.011
−0.023. Our results are also consistent with cosmic

shear constraints from the Hyper Suprime Camera Survey
(HSC, Dalal et al. 2023; Li et al. 2023a). This analysis
adopts a hybrid of the DES Y3 and KiDS-1000 pipelines.
Through a detailed mock analysis, comparing the impact
of each modelling choice, we determine that the Hybrid
pipeline is robust for the statistical power of the joint survey
cosmic shear analysis. Further work will explore whether
the Hybrid setup is also suitable for a 3 × 2pt analysis.

Reflecting on two decades of cosmic shear constraints, it
is clear that the significant advances made in terms of survey
area have not yet been matched by dramatic improvements
in constraining power. This is because with each enhance-
ment in statistical power, as in this joint-survey analysis,
it is necessary for modelling choices, nuisance parameters
and priors to be re-assessed. Where there is systematic un-
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certainty on par with the newly reduced statistical noise, a
more conservative approach must be adopted. As a result,
the full statistical power of modern cosmic shear surveys
has yet to be realised. In this analysis we have quantified
the impact of making different analysis choices to mitigate
systematics arising from astrophysical processes: intrinsic
galaxy alignments, non-linear modelling of the dark matter
power spectrum and the impact of baryon feedback on the
total matter distribution. We have also investigated different
choices for the cosmological parameter priors and samplers
for the inference.

In both our mock and data studies, the most significant
changes arise from the choice of IA model: NLA or TATT.
Replacing our fiducial NLA-z analysis with a TATT anal-
ysis reduces the cosmological consistency with Planck to
2.2𝜎 with the Hellinger distance metric, and 2.3𝜎 with the
parameter-shift metric Δtension. As such, the TATT 𝑆8 con-
straints are on the borderline 2.3𝜎 limit above which we
consider there to be evidence of inconsistency. This re-
sult therefore highlights the critical importance of future
research to distinguish between these IA models and oth-
ers (see for example Vlah et al. 2020; Fortuna et al. 2021),
better inform the parameter priors and develop alternative
strategies such as a self-calibrated halo modelling approach
(Asgari et al. 2023). Direct measurements of intrinsic align-
ments, comparing high resolution large volume hydrody-
namical simulations (see for example Delgado et al. 2023)
with observations from overlapping spectroscopic and imag-
ing surveys (see for example Mandelbaum et al. 2006; John-
ston, Georgiou et al. 2019; Samuroff et al. 2023) will be
central to this development. Significant advances are antic-
ipated with direct-IA analyses of the Physics of the Accel-
erating Universe Survey (PAUS, Johnston et al. 2021), the
Dark Energy Spectroscopic Instrument Bright Galaxy Sur-
vey (DESI-BGS, Hahn et al. 2023), the Javalambre-Physics
of the Accelerated Universe Astrophysical Survey (J-PAS,
Benitez et al. 2014) and the 4-metre Multi-Object Spec-
trograph Telescope Wide Area Vista Extragalactic Survey
(4-MOST WAVES, Driver et al. 2019). It may also become
necessary for more complex cosmic shear studies that sep-
arate the red and blue galaxy populations to become the
future standard (Heymans et al. 2013; Samuroff et al. 2019;
Li et al. 2021), given that these galaxy populations exhibit
clear differences in their alignment properties.

Our fiducial mitigation strategy for baryon feedback com-
bines two complementary approaches. First, led by the
findings of the BAHAMAS hydrodynamical simulations
(McCarthy et al. 2017; van Daalen et al. 2020), we set a
prior on the likely magnitude range for baryon feedback.
Using the BAHAMAS-calibrated HMCode2020 model we
then marginalise over our uncertainty on the non-linear sup-
pression of power. Secondly, we adopt a set of scale cuts
to reduce our sensitivity to baryon feedback effects, espe-
cially those that are not represented by the BAHAMAS-
calibrated model and prior range. Comparing our fiducial
results with an analysis that adopts a non-linear matter power
spectrum with no baryon feedback, we find the 𝑆8 constraint
changes by only 0.4𝜎. We note that these findings would
likely differ, however, if we had explored more extreme
feedback models which tend to raise the mean marginal
value found for 𝑆8 and decrease the overall constraining
power of the analysis (Amon & Efstathiou 2022; Preston
et al. 2023). Future research is therefore essential to deter-
mine robust simulation-data comparisons and thus feedback
limitations from a range of hydrodynamical simulations.
The direct calibration of baryonic feedback models through
mass-gas cross-correlation analyses (see for example the
shear-Sunyaez Zel’dovich cross-correlation constraints from
Tröster et al. 2022; Gatti et al. 2022a; Pandey et al. 2023)

and galaxy-gas cross-correlation analyses (Vikram et al.
2017; Pandey et al. 2019; Koukoufilippas et al. 2019; Chiang
et al. 2020; Amodeo et al. 2021; Yan et al. 2021; Schneider
et al. 2022a; Sánchez et al. 2023) will also be critical if we
are to robustly access cosmic shear information on scales
𝑘 > 0.1ℎMpc−1 in the Euclid-Roman-Rubin era.

The choice of the non-linear matter power spectrum model
and sampler are found to make less of an impact on our con-
clusions. In these two cases the best analysis choice for the
Hybrid pipeline was, however, unambiguous. The Poly-
chord sampler was found to accurately recover the wings
of the non-Gaussian posterior. In terms of speed it is, how-
ever, significantly slower than the less accurate Multinest
sampler, for our cosmic shear constraints. Future speed
enhancements are likely attainable, however, with the inclu-
sion of accurate likelihood emulators (Spurio Mancini et al.
2022). Using the large-scale high resolution suite of dark
matter simulations from Euclid Collaboration: Knabenhans
et al. (2021) we found 1% level accuracy in predictions of
the DES and KiDS cosmic shear observables when adopt-
ing HMCode2020. Accurate recovery was found across
the full emulator parameter space. Similar tests are now
warranted for 3 × 2pt studies, which are sensitive to differ-
ent 𝑘-scales and may therefore reach different conclusions.
This study should also be extended to include the recently
released Aemulus 𝜈 numerical simulations (DeRose et al.
2023) which span a broad range of 𝜎8 values.

When reporting the marginalised constraints for con-
strained parameters, informative priors on unconstrained pa-
rameters can introduce an offset relative to the MAP, given
the degeneracies between cosmological and nuisance param-
eters (Joachimi et al. 2021; Krause et al. 2021; Chintalapati
et al. 2022). Using mock analyses, we have quantified these
offsets for different sets of priors, concluding that they are
significant enough to caution against the direct comparison
of marginal statistics from surveys that adopt different pri-
mary parameter sets and priors (see similar conclusions from
Chang et al. 2019; Joudaki et al. 2020; Longley et al. 2023).
With the nuisance parameter space likely to further grow to
allow for new flexibility in the modelling of astrophysical
systematics, this issue is unlikely to naturally resolve. The
MAP statistic is insensitive to projection effects, but with
the MAP being challenging to accurately determine and a
standardised method to report credible intervals around the
MAP yet to be widely adopted, the MAP is traditionally
underutilised. On the question of consistency or tension,
we therefore encourage future studies to continue publish-
ing chains, data vectors, covariances and software to allow
for the homogenisation of priors in comparison analyses and
the subsequent direct comparison of posteriors, rather than
marginal statistics.

This is the first joint collaboration cosmic shear analysis.
We have found it to be a highly productive learning experi-
ence. Previous independent cosmic shear analyses of public
survey data certainly served to drive the field forward. By
enabling a direct and sustained interaction between the two
teams in this joint study, we found our collective understand-
ing has been accelerated in a way that would not have been
feasible from literature reviews alone. We recommend this
approach to future cosmology experiments with indepen-
dent but complementary teams to promote innovation and
allow for the accurate comparison of results.
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APPENDIX

A. SURVEY OVERLAP: EXCISING THE KIDS AREA FROM THE
DES FOOTPRINT

Summary: In this appendix we use simulations to
estimate the cross-covariance between the DES and KiDS
surveys when removing the KiDS-overlap region from the
DES footprint. We conclude that the cross-covariance is
sufficiently small and can therefore be neglected in the joint
survey cosmic shear analysis. We confirm that the DES
footprint modification, which reduces the total DES area by
8%, does not significantly impact the DES Y3 cosmological
parameter constraints.

In Figure 7 we compare the DES and KiDS on-sky foot-
prints, highlighting the Southern overlap region covering
471 square degrees, 337/246 of which are unmasked in the
DES/KiDS area respectively. Data in the overlap region rep-
resents 8% of DES Y3, and 32% of KiDS-1000, introduc-
ing a cross-covariance between the two surveys. Given the
different redshift distributions of the two surveys, it is non-
trivial to analytically calculate the cross-covariance. We
therefore choose to reduce the cross-covariance by excising
the KiDS-overlap region from the DES survey44, given the
relatively smaller impact on the total DES area. We as-
sume that DES is sufficiently homogenous that the redshift
distributions are unchanged by the reduction in area. We re-
measure the effective number density, the ellipticity shape
noise and the mean shear and selection response, for every
tomographic source bin45. We find < 0.1% changes for 𝜎𝑒

in all bins, < 1% changes for the mean shear response and
< 1% changes for the mean selection response in all but
the second bin where the change is 2.6%. There are small
changes in 𝑛eff , which is systematically higher in all bins
ranging from 2% in the highest redshift source bin to 4% in
the lowest redshift source bin. We then re-calculate the an-
alytical covariance for the revised DES footprint following
Friedrich et al. (2021).

In Figure 8 we compare the DES data vector from Amon
et al. (2022); Secco, Samuroff et al. (2022) to the excised
DES data vector and covariance that we analyse in Sec-
tion 3. We find that excising the KiDS area has little im-
pact on the DES cosmological parameter constraints with
𝑆

original
8 − 𝑆excised

8 = −0.0004, using a DES-like analysis and
𝑆

original
8 − 𝑆excised

8 = −0.004, using the Hybrid pipeline. The
constraining power of the reduced survey area decreases
when using a DES-like analysis with the 68% credible in-
terval 𝜎

original
𝑆8

/𝜎excised
𝑆8

= 0.91. For the Hybrid pipeline
analysis, however, we find little impact on the constraining
power with 𝜎

original
𝑆8

/𝜎excised
𝑆8

= 1.02. We note these numbers
will be subject to chain-to-chain variance which we expect
to be at the level of ∼ 0.1𝜎 (Joachimi et al. 2021).

To assess the residual cross-survey covariance that re-
mains after excising the overlap region, we estimate the
cross-covariance from 1250 lognormal simulations created
with FLASK (Xavier et al. 2016; Friedrich et al. 2021).
For simplicity, we only simulate the properties of DES Y3,

44 To excise the KiDS-overlap, we remove DES galaxies with −0.63◦ <
RA < 53.94◦ and −35.62◦ < Dec < −26.98◦.

45 The effective number density, response and shape noise are weighted
quantities. The DES Y3 per-galaxy weights are defined from empirical
measurements of the observed ellipticity variance across the survey, binned
by galaxy-to-PSF size ratio and signal-to-noise (see section 4.3 of Gatti
et al. 2021). It is not necessary to recalculate these galaxy weights for
the reduced survey area as the binned measurements automatically allow
us to account for the effects of varying PSF size and survey depth in our
re-defined footprint.
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Figure 7. Survey footprints from DES Y3 (green) and KiDS-1000 (orange). The HSC-Y1 footprint (purple) overlaps KiDS in the North and DES in the
South complicating the modelling of cross-survey covariance. For this reason, we limit our joint-survey analysis to DES and KiDS.
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Figure 8. The DES Y3 cosmic shear two-point correlation function, 𝜉+ (𝜃 ) (left) and 𝜉− (𝜃 ) (right), for 10 tomographic bin combinations (see label). The
fiducial DES Y3 scale cuts are indicated in pale blue, with the ΛCDM-optimised scale cuts that are adopted in this cosmic shear analysis indicated in dark
blue. In the upper section of each panel we compare measurements from the full DES Y3 footprint (green) and the footprint with the KiDS-overlap region
excised (black) which covers 8% less area. The lower section of each panel shows the signal difference as a fraction of the best-fit theory. The analytical
covariance is calculated following Friedrich et al. (2021), accounting for the reduction in area.

measuring the 𝜉± (𝜃) statistic46 in 4 tomographic bins for
the primary DES area where the KiDS-overlap region is ex-
cised, and the remaining DES data within the KiDS-overlap

46 For this analysis we measure 𝜉± (𝜃 ) using TreeCorr with the bin slop
parameter 𝑏 = 0.1 (Jarvis et al. 2004) and adopt the fiducial DES Y3 scale
cuts. These cuts are more conservative than the ΛCDM-optimised scale
cuts adopted in our cosmic shear analysis (see Figure 8). This difference is
unlikely to impact our conclusions, however, as any cross-survey covariance
will predominantly impact the larger angular scales that feature in both
analyses.

region. The additional KiDS depth and different sampling of
𝑘-space with the COSEBIs statistic should serve to reduce
the cross-survey covariance estimated here. This analysis
therefore provides an upper limit of the cross-covariance be-
tween the DES and KiDS data vectors analysed in Section 3.

Figure 9 presents the FLASK-simulation estimated joint-
survey correlation matrix. We find the expected level of
intra-survey covariance between the different 𝜉+ (𝜃) and
𝜉− (𝜃) tomographic bins. For the cross-survey covariance,
the majority of correlation coefficients are within a threshold
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of ±8%. These levels are similar to the study in Joachimi
et al. (2021) which concludes the cross-survey covariance
can be neglected in a 3 × 2pt analysis when the majority of
correlation coefficients are within a threshold of ±5%.

We follow Fang et al. (2020); Andrade-Oliveira et al.
(2021) to assess the impact of neglecting cross-survey
covariance through a cosmic shear 𝜒2 analysis of 𝑖 =
[1..500, 000] mock joint-survey data vectors with correlated
noise randomly sampled from the FLASK-estimated covari-
ance Cfull. We measure

𝜒2
A,i = [di − dth]TC−1

A [di − dth] , (A1)

where di is the data vector for realisation 𝑖 and dth is the
theoretical data vector. The label A indicates the covari-
ance matrix with A=‘full’ or A=‘no-cross’ where we zero
the cross-survey blocks shown in Figure 9. We calcu-
late Δ𝜒2

𝑖
= 𝜒2

no−cross,𝑖 − 𝜒2
full,𝑖 finding ⟨Δ𝜒2⟩ = 0 ± 11 for

𝑁d = 454 data points47. These values are consistent with
analytical estimates of Δ𝜒2 from the different covariance
matrices using equations 20 and 21 from Andrade-Oliveira
et al. (2021). We therefore conclude that the use of an inac-
curate covariance matrix that neglects cross-survey covari-
ance will not introduce any significant effects on the inferred
goodness of fit or the best-fit parameter values. Our joint-
survey analysis therefore adopts a covariance matrix for the
KiDS and excised-DES data vectors with zero cross-survey
correlation.

Our approach differs from that of Longley et al. (2023)
who account for the cross-survey covariance between KiDS
and HSC in their joint cosmic shear analysis by conser-
vatively assuming 100% correlation between the Northern
stripe of KiDS and half of HSC. They then enlarge either
survey’s covariance by the ratio of the full survey footprint
area and the Northern footprint area. In lieu of an accurate
analytical model, we find our data excision approach to be
better suited for KiDS and DES, given the relatively small
fractional area of DES which overlaps with KiDS. In princi-
ple, we could have adopted the same approach to also include
the public HSC-Y1 catalogues into this joint-survey analy-
sis, excising the smaller HSC-Y1 footprint from the DES
equatorial stripe and KiDS-North (see Figure 7). Given that
this would not increase our overall joint-survey area, how-
ever, and that the uncertainty in the 𝑆8 constraints from this
first HSC data release (Hikage et al. 2019) are ∼ 40% larger
than the KiDS-1000 or DES Y3 results, we choose not to
extend our analysis with the inclusion of HSC-Y1. As half
of the complete HSC footprint has full overlap with half
of the complete KiDS footprint, any future combination of
the final data releases from KiDS and HSC will require an
analytical solution to account for cross-survey covariance.

B. MITIGATING THE UNCERTAIN IMPACT OF BARYON
FEEDBACK WITH SCALE CUTS

Summary: In this appendix we determine scale cuts for
the KiDS COSEBIs data vector, following the baryon feed-
back mitigation strategy of Krause et al. (2021). When used
in a joint-survey analysis alongside the ΛCDM-optimised
scale cuts for the DES 𝜉± (𝜃) data vector, the Hybrid pipeline
is shown to be robust to the presence of baryon feedback
at the level of < 0.22𝜎2D. Here 𝜎2D is the 68% credible
interval in the 2D (𝑆8,Ωm) marginalised posterior for a
joint survey cosmic shear analysis.

We compare constraints in the (𝑆8,Ωm) plane between
47 There are 𝑁d = 227 data points in the fiducial DES Y3 cosmic shear

analysis, which doubles to 𝑁d = 454 with the inclusion of the KiDS-overlap
region as an additional data vector, analysed in the same way as the primary
DES-patch.
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Figure 9. Correlation coefficient matrix for the DES Y3 tomographic
cosmic shear data vector measured in two areas: the DES Y3 footprint with
the KiDS overlap region excised, denoted 𝜉± (𝜃 )DES, and the KiDS-excised
region, denoted 𝜉± (𝜃 )KiDS. The upper triangle shows the correlation
matrix as calculated from FLASK mocks; the lower triangle shows the
correlation coefficients above ±8%. The low-levels of correlation between
the main DES area and the KiDS-excised area, in the lower-left quadrants,
supports our decision to neglect the cross-survey covariance between DES
and KiDS in our joint-survey analysis.

a joint-survey analysis of a mock dark-matter only and a
mock van Daalen et al. (2011) OWLS-AGN baryon-feedback
contaminated data vector48. We then progressively re-
move small-scale information until the two analyses agree
to within 0.3𝜎2D. We conduct this study following Krause
et al. (2021) by using the DES methodology, summarised in
Table 2, and adopting the best fit flat-ΛCDM cosmological
parameters from Planck Collaboration (2020).

In contrast to the DES-adopted shear correlation func-
tion, 𝜉± (𝜃), the KiDS-adopted COSEBIs statistic does not
straightforwardly allow for redshift-dependent scale cuts.
The theoretical prediction for each of the 𝐸n and 𝐵n to-
mographic modes is dependent on a fixed angular range
𝜃min < 𝜃 < 𝜃max (see Equation 5). Whilst predictions for
varied angular ranges for each tomographic bin combina-
tion, and the corresponding analytical covariance calcula-
tion, can in principle be calculated, this approach would
require an extensive update to the existing COSEBIs soft-
ware. We therefore take a pragmatic approach in this study,
fixing the redshift-dependent DES scale cuts to the Amon
et al. (2022); Secco, Samuroff et al. (2022) defined ΛCDM-
optimised scales, which predict a baryon feedback bias in
a DES Y3 ΛCDM cosmic shear analysis of < 0.14𝜎2D.
We then progressively increase 𝜃min for the KiDS-COSEBIs
analysis, in all tomographic bins, until the joint-survey anal-
ysis meets the Krause et al. (2021) robustness criteria.

For the KiDS-adopted 𝜃min = 0 ′
.5, we do not meet the

< 0.3𝜎2D offset criteria for a KiDS-only analysis using the
48 We note that the OWLS AGN model introduces less baryon feedback

suppression to the matter power spectrum than the Le Brun et al. (2014)
Cosmo-OWLS AGN simulations that were included in the Huang et al.
(2021) baryon feedback analysis of DES Y1. We choose to exclude the
Cosmo-OWLS models in this analysis as, in contrast to BAHAMAS which
guides our chosen𝑇AGN prior range in the Hybrid pipeline analysis, they are
unable to recover both the observed global stellar mass function (McCarthy
et al. 2017) and the observed baryon fraction on group scales (van Daalen
et al. 2020).
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Figure 10. Cosmological constraints in the Ωm − 𝑆8 plane from a mock
DES-like joint-survey analysis of data vectors from a dark-matter only Uni-
verse (‘Baseline’, purple), and an OWLS-AGN baryon-feedback contami-
nated Universe (‘Contaminated’, pink), for an input cosmology Ωm = 0.3
and 𝑆8 = 0.826 (grey-dashed). The contours are set at 0.3𝜎2D, where
𝜎2D is the 68% credible interval in the 2D marginalised posterior. In this
analysis the KiDS COSEBIs data vector has been created with an increased
minimum angular scale of 𝜃min = 2 ′

.0, leading to an offset from the Base-
line dark-matter only case of 0.18𝜎2D. We discuss the projection effects
that impact both the Baseline and Contaminated analysis in Appendix C.3.

DES framework. We find that raising 𝜃min = 2 ′
.0 is sufficient

to mitigate the bias from OWLS-AGN baryon feedback,
increasing the error on 𝑆8 by only ∼ 10%. In Figure 10 we
show that with this limit for KiDS, in addition to the redshift-
dependent DES scale cuts from Amon et al. (2022); Secco,
Samuroff et al. (2022), the Krause et al. (2021) methodology
predicts a baryon feedback bias of < 0.18𝜎2D in a DES-like
joint-survey cosmic shear analysis. We note that raising
𝜃min > 2 ′

.0 was found to significantly reduce the joint survey
constraining power, without any significant reduction in the
bias. For example with 𝜃min =5 ′

.0, the fractional error on 𝑆8
increased, relative to the 𝜃min = 0 ′

.5 case, by ∼ 30%, with
the bias remaining at ∼ 0.2𝜎2D.

We find that this scale cut combination is also sufficient
for our Hybrid set-up, using the mock analysis in Ap-
pendix E. Here we measure a baryon feedback bias for the
joint cosmic shear analysis of < 0.14𝜎2D with scale cuts
alone, and < 0.22𝜎2D for the combination of scale cuts
and marginalisation over the 𝑇AGN parameter in the HM-
Code2020 non-linear model. We remind the reader that
these results will be subject to chain-to-chain variance. For
Multinest, marginal constraints are found to differ between
successive runs at the level of ∼ 0.1𝜎 (Joachimi et al. 2021).
We have not carried out a systematic analysis to quantify the
level of chain-to-chain variance for Polychord, but find
∼ 0.1𝜎 variations in the handful of Polychord chains that
have been repeated in this analysis.

C. MOCK DATA ANALYSIS

Summary: In this appendix we quantify the impact of
the different analysis choices in the DES and KiDS fidu-
cial pipelines using a series of mock data vectors. More
specifically:

• In Appendix C.1 we find that a DES-like analysis in-
creases the 1𝜎 uncertainty on 𝑆8 by up to ∼ 60% com-
pared to the corresponding KiDS-like analysis of the same
data set. This distinction primarily arises from the TATT
or NLA choice of IA model, with little difference seen in
the 𝑆8 constraints when switching between each team’s
baryon feedback mitigation strategy.

• In Appendix C.2 we review the intrinsic alignment lit-
erature, selecting survey-independent IA parameters for

Parameter Mock Input DES Prior KiDS Prior

Cosmological parameters:

10−9𝐴s 2.41 [0.5, 5.0] -
𝑆8 0.759 - [0.1, 1.3]
ℎ 0.767 [0.55, 0.91] [0.64, 0.82]
Ωm 0.246 [0.1, 0.9] -
𝜔c 0.118 - [0.051, 0.255]
Ωb 0.044 [0.03, 0.07] -
𝜔b 0.026 - [0.019, 0.026]
𝑛s 0.90 [0.87, 1.07] [0.84, 1.1]
1000Ω𝜈ℎ

2 0.64 [0.6, 6.44] -

Astrophysical systematic model parameters:

TATT Intrinsic Alignments: ‘Strong’
𝑎1 -0.44 [−5, 5] -
𝜂1 4.33 [−5, 5] -
𝑎2 1.25 [−5, 5] -
𝜂2 2.12 [−5, 5] -
𝑏TA 1.81 [0, 2] -
TATT Intrinsic Alignments: ‘Weak’
𝑎1 0.15 [−5, 5] -
𝜂1 -4.09 [−5, 5] -
𝑎2 -0.02 [−5, 5] -
𝜂2 2.31 [−5, 5] -
𝑏TA 0.04 [0, 2] -
NLA Intrinsic Alignments:
𝐴IA 0.26 [−6, 6] [−6, 6]
Baryon Feedback:
log10 (𝑇AGN/K) 7.8 - [7.6, 8.0]

Table 6. Cosmological and astrophysical systematic parameters adopted
for the mock survey analysis. The input parameters can be compared to the
top-hat prior ranges of the DES-like and KiDS-like pipelines. The TATT
‘Strong’ parameters are the mean marginal values from the DES Y3 cosmic
shear with shear ratio analysis (Amon et al. 2022; Secco, Samuroff et al.
2022). The TATT ‘Weak’ parameters are the mean marginal values from
the DES Y3 3 × 2pt without shear ratio analysis (DES Collaboration et al.
2022). The TATT ‘Strong’ model is used to create the mocks analysed
with the DES-like pipeline in Appendices C.1, C.2 and C.3. The impact of
using the TATT ‘Weak’ or ‘Strong’ parameters as an input is quantified for
both a DES-like and KiDS-like mock survey analysis in Appendix C.4.

our fiducial analysis. We show this does not degrade the
expected constraining power of the analysis.

• In Appendix C.3 we quantify projection effects in the
multi-dimensional parameter space. We measure the off-
set of the mean and maximum value of the marginal 𝑆8
posterior from the true input 𝑆8 value. When using KiDS
priors for a KiDS-like analysis, and DES priors for a DES-
like analysis the offset introduced by projection effects on
the 𝑆8 marginal is negligible. Adopting the KiDS cos-
mological parameter priors for a DES-like analysis or the
DES cosmological parameter priors for KiDS-like analy-
sis, however, results in a ∼ ±0.5𝜎 offset.

• In Appendix C.4 we analyse a mock data vector created
with a TATT IA model and an HMCode2020 non-linear
matter power spectrum with baryon feedback. In this
scenario the different astrophysical modelling choices of
the two teams bias the 𝑆8 constraints in opposite directions
leading to a ∼ 2𝜎 level tension between a DES-like and
a KiDS-like and analysis of the same joint-survey data
vector.

This study was motivated as an alternative safety measure
to a blinded data analysis, as the standard DES and KiDS
blinding procedures became redundant when each survey’s
result entered the public domain. Given the wide range
of conclusions drawn from this mock survey analysis, we
recommend that in addition to existing blinding tools, future
studies use mocks to validate pipelines in both the fiducial
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setup (as in Joachimi et al. 2021; Krause et al. 2021), and
any proposed alternative combinations of models and priors.

The suite of mock data was created using the cosmological
parameters listed in Table 6 which are in agreement with
both the DES Y3 and KiDS-1000 cosmic shear constraints.
Specifically, we choose 𝑆8 = 0.759 to match the identical
reported best-fit 𝑆8 values from the fiducial cosmic shear
analysis from Amon et al. (2022); Secco, Samuroff et al.
(2022), and the fiducial COSEBIs cosmic shear analysis
from Asgari et al. (2021). The choice is well within 1𝜎 of
the best-fit 𝑆8 value from the DES Y3 optimised ΛCDM
cosmic shear analysis where 𝑆8 = 0.772+0.018

−0.017, and the best-
fit 𝑆8 from the KiDS-1000 band power spectra cosmic shear
analysis where 𝑆8 = 0.760+0.016

−0.038.
Throughout Appendix C, when we refer to the ‘KiDS-like’

pipeline, we use the KiDS-1000 Asgari et al. (2021) pipeline
with one update: the HMCode2016 non-linear model has
been updated to the improved HMCode2020 model adopted
in the Tröster et al. (2021) KiDS-1000 cosmic shear anal-
ysis. At the outset of this project it was our intention to
only report constraints from a DES-like and KiDS-like anal-
ysis and the KiDS team wished to use the version of their
pipeline that they considered to be the most accurate. They
chose a log10 (𝑇AGN/K) prior of [7.6, 8.0], to match the
allowed baryon feedback range where BAHAMAS repro-
duces the observed baryon fraction at group scale. In the
process of using this updated pipeline to conduct the mock
survey study documented in this appendix, we appreciated
the necessity to extend the scope of project and define a
new Hybrid setup for our headline joint-survey results. For
consistency with the most well known KiDS-1000 cosmic
shear results, we chose to revert to the original Asgari et al.
(2021) pipeline for the KiDS-like data analysis reported in
Section 3.6. In Appendix F we find the KiDS-1000 con-
straints using HMCode2016 and HMCode2020 differ by
0.2𝜎. The conclusions that we draw in this appendix are
therefore also applicable to the original Asgari et al. (2021)
pipeline.

In Appendices C.1, C.2 and C.3, when reporting DES-like
constraints, the mock surveys have been created and anal-
ysed using Halofit, with no baryon feedback and a TATT
IA model with 5 free parameters. For the same appen-
dices, when reporting KiDS-like constraints, the mock sur-
veys have been created and analysed using HMCode2020,
including baryon feedback and an NLA IA model without
redshift dependence. We choose to use a ‘noise-free’ mock
data vector, such that for these mocks which match the ex-
pectation of each pipeline, the maximum a posteriori (MAP)
is found at the set of input parameters. This data vector is
then analysed, adopting the DES Y3, KiDS-1000 and DES
Y3+KiDS-1000 cosmic shear covariances, assuming zero
correlation between KiDS-1000 and DES Y3 in the joint-
survey analysis.

The parameters encoded for each astrophysical systematic
are listed in Table 6, as informed by the best-fit values for
these parameters in Amon et al. (2022); Secco, Samuroff
et al. (2022); DES Collaboration et al. (2022); Asgari et al.
(2021); Tröster et al. (2021).

C.1. The constraining power of a KiDS-like and DES-like
cosmic shear analysis

In Table 7 and Figure 11 we present 𝑆8 constraints from
a KiDS-like and DES-like analysis of mock cosmic shear
data from DES Y3, KiDS-1000 and a joint-survey analysis.
We find that the DES-like constraints increase the 1𝜎 uncer-
tainty on 𝑆8 by up to ∼ 60% compared to the corresponding
KiDS-like analysis. From the NLA-modified DES-like anal-
ysis in Table 8 and Figure 12, where the difference with the
KiDS-like fiducial 𝑆8 uncertainties is reduced to ∼ 10%, we
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KiDS Mock

DES Mock

Joint shared IA

Joint Mock

Figure 11. 𝑆8 constraints reported from a DES-like (blue circle) and KiDS-
like (pink star) analysis of mock survey data representing DES, KiDS and
a joint survey. In this figure the noise-free mock survey data differs for
each analysis, as they are created to match the astrophysical systematic
framework within which they are analysed. For the DES-like analysis
(blue), the mock surveys are created using Halofit and a TATT ‘Strong’
IA model (see Table 6). For the KiDS-like analysis (pink), the mock surveys
are created using HMCode and an NLA IA model. The input cosmological
model and MAP at 𝑆8 = 0.759 is marked in black. Any offset in 𝑆8 is
caused by projection effects (see Appendix C.3). For the joint-survey
analysis we compare an analysis where the IA nuisance parameters are
shared between the surveys (Joint shared IA), to an analysis where the IA
signal for each survey is considered to be independent, doubling the number
of IA parameters (Joint Mock and colour bars). For the KiDS-like analysis
we display the survey-preferred maximum-marginal 𝑆8 and 68% credible
intervals. For the DES-like analysis we display the survey-preferred mean-
marginal 𝑆8 and 68% credible intervals. These data are tabulated in Table 7.

can conclude that the contrast in constraining power between
the KiDS and DES pipelines is mainly driven by the choice of
IA model49. The remaining 10% difference is likely driven
by the chosen samplers, where the KiDS-chosen Multinest
sampler is known to underestimate uncertainty at this level,
in comparison to the DES-chosen Polychord sampler (see
Appendix D and Lemos, Weaverdyck et al. 2023).

The different mitigation strategies for baryon feedback
were not found to significantly impact the constraining power
in the KiDS-like analysis. Table 8 and Figure 12 present
constraints from a KiDS-like analysis that also adopted DES-
like scale cuts to mitigate baryon feedback (see Appendix B).
Given the similar results from these two analyses we can
conclude that the small-scale information removed by the
DES scale cuts is already being effectively removed by the
baryon feedback, 𝑇AGN, nuisance parameter marginalisation
in the KiDS pipeline.

Comparing the constraints from the individual mock sur-
veys and the joint mock constraints in Table 7, we draw simi-
lar conclusions on the expected fractional gain for constrain-
ing power, irrespective of the framework used in the analysis.
In the mocks we find the 1𝜎 uncertainty on 𝑆8 from a joint-
survey analysis decreases by a factor of 1.4 − 1.7 relative
to KiDS-only, and a factor of ∼ 1.3 relative to DES-shear-
only. These results are replicated in our Hybrid pipeline
analysis of the DES Y3, KiDS-1000 and joint-survey data
in Section 3.

C.2. Adopting shared or independent intrinsic alignment
parameters

In a DES-like analysis, five nuisance parameters are used
to marginalise over uncertainty in the intrinsic alignment
of galaxies. In a KiDS-like analysis a single parame-
ter is adopted (see Section 2.2 for details). In direct IA
measurements significant variation is seen as a function of
galaxy type and luminosity (see for example Mandelbaum
et al. 2006; Johnston, Georgiou et al. 2019, and references
therein). Furthermore Singh & Mandelbaum (2016); Geor-

49 We remind the reader that Amon et al. (2022); Secco, Samuroff et al.
(2022) show that the decrease in constraining power when adopting TATT
can be mitigated with the inclusion of additional data from the shear ratio
test.
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Analysis KiDS DES

Non-linear HMCode2020 Halofit
IA NLA TATT
Baryons 𝑇AGN = 7.8 Scale Cuts

Quoted 𝑆8 Max Mean Max Mean

𝑆KiDS
8 0.752+0.022

−0.023 0.747+0.026
−0.017 0.758+0.028

−0.033 0.748+0.036
−0.018

𝑆DES
8 0.758+0.018

−0.017 0.758+0.016
−0.017 0.758+0.026

−0.028 0.753+0.030
−0.020

𝑆J1IA
8 0.758+0.012

−0.014 0.757+0.013
−0.012 0.761+0.020

−0.021 0.757+0.024
−0.015

𝑆Joint
8 0.757+0.013

−0.013 0.757+0.011
−0.011 0.764+0.016

−0.019 0.759+0.019
−0.014

Δ𝑆KiDS
8 −0.31𝜎 −0.55𝜎 −0.02𝜎 −0.42𝜎

Δ𝑆DES
8 −0.08𝜎 −0.04𝜎 −0.04𝜎 −0.26𝜎

Δ𝑆J1IA
8 −0.05𝜎 −0.15𝜎 0.10𝜎 −0.10𝜎

Δ𝑆Joint
8 −0.12𝜎 −0.14𝜎 0.27𝜎 0.01𝜎

𝜎KiDS/𝜎KiDS
min 1.06 1.00 1.42 1.24

𝜎DES/𝜎DES
min 1.05 1.00 1.64 1.53

𝜎J1IA/𝜎J1IA
min 1.06 1.00 1.67 1.58

𝜎Joint/𝜎Joint
min 1.13 1.00 1.60 1.48

𝜎KiDS/𝜎Joint 1.80 1.92 1.71 1.61
𝜎DES/𝜎Joint 1.37 1.47 1.51 1.52
𝜎J1IA/𝜎Joint 1.03 1.10 1.15 1.18

Table 7. 𝑆8 constraints for a DES-like and KiDS-like analysis of noise-free
mock survey DES Y3 and KiDS-1000 data. In all cases the mock is created
to match the non-linear, IA and baryon feedback astrophysical systematic
framework within which they are analysed (see upper panel). The differ-
ent rows present the results for the analysis of the KiDS, DES and Joint
mocks. The columns present the results from each pipeline, reporting both
the maximum-marginal 𝑆8 (Max) and the mean-marginal 𝑆8 (Mean) both
with 68% credible intervals. Δ𝑆8 quantifies the bias of the recovered 𝑆8
relative to the true 𝑆8 = 0.759, as a fraction of the 1𝜎 error. This offset
is induced by a projection effect when reporting one-dimensional marginal
constraints from prior-dominated and multi-dimensional degenerate poste-
riors (see Appendix C.3). As the signal-to-noise of each mock data vector is
identical across trials, an inspection of the relative 𝑆8 constraining power,
𝜎survey/𝜎survey

min , reflects the impact of different analysis choices. Here
𝜎

survey
min is the minimum reported 68% credible interval for each mock sur-

vey across the four analysis trials (KiDS-like, DES-like, and Max and Mean
defined constraints). For the joint-survey analysis we compare an analysis
where the IA nuisance parameters are shared between the surveys (J1IA), to
an analysis setup where the IA parameters for each survey are independent
(Joint). For reference the lower section compares the constraining power
for the KiDS-only, DES-only and joint shared IA analyses (J1IA), to the
joint-survey analysis in each scenario. Some of this data is displayed in
Figure 11.

giou, Johnston et al. (2019) measure a dependence of the IA
amplitude on the isophote used to define galaxy ellipticity.
This means that the IA nuisance parameters in our cosmic
shear analyses constrain a shape-measurement dependent
model of the average intrinsic alignment contamination for
the source galaxy population of each survey50.

Both Amon et al. (2022); Secco, Samuroff et al. (2022)
and Asgari et al. (2021) measure an effective intrinsic align-
ment amplitude that is consistent with zero. Given the broad
similarities between the DES and KiDS survey depths, red-
shift distributions and shape measurement approaches, we
do not expect to detect any statistically significant differences
between the effective intrinsic alignment contamination of
the two surveys. As such, it could be preferable to adopt
a single set of intrinsic alignment parameters to coherently
model IA contamination in a joint-survey analysis, and we
denote this approach, ‘Joint shared IA’.

It has been noted that the IA parameter constraints are
somewhat sensitive to systematic errors in the photometric

50 Note that some cosmic shear analyses also include a red/blue galaxy
split in their intrinsic alignment analysis (Heymans et al. 2013; Samuroff
et al. 2019; Li et al. 2021).
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Figure 12. Mock joint-survey 𝑆8 constraints, comparing the KiDS-like
(upper section) and DES-like (lower section) fiducial analyses with mod-
ifications: adopting an alternative set of cosmological parameter priors
(as listed in the second panel of Table 1); adopting alternative astrophys-
ical systematic mitigation strategies with the KiDS-like analysis adopting
scale cuts to mitigate baryon feedback (see Appendix B), and the DES-
like analysis adopting the NLA model to mitigate IA. We present both the
maximum-marginal 𝑆8 and 68% credible intervals (blue circle), and the
mean-marginal 𝑆8 and 68% credible intervals (orange star). In this fig-
ure the mock data matches each survey’s chosen astrophysical systematic
framework, with an identical input cosmology and signal-to-noise. For ref-
erence the colour bars show 0.1𝜎, 0.3𝜎 and 1𝜎 bands from the fiducial
analysis, centred on the input 𝑆8, marked in black. These data are tabulated
in Table 8.

redshift distributions (see for example the ≲ 0.5𝜎 parame-
ter variations in Figure D.1 of Wright et al. 2020b, Figure
18 of Amon et al. 2022 and Figure 15 of Secco, Samuroff
et al. 2022, when different redshift distributions are adopted
in the cosmic shear analysis). Fischbacher et al. (2023)
quantify the interplay between the free parameters of the
IA model and photometric redshift calibration corrections
which can lead to biases that are sensitive to prior volume
effects. Given the differences between the DES and KiDS
approach to redshift calibration, it could therefore be prefer-
able to adopt independent sets of IA parameters, accounting
for both the extra freedom that IA-marginalisation affords
to absorb redshift errors and the uncertainty over the impact
of variations in galaxy population51 and shape measurement
methods. In our fiducial analyses we adopt this ‘Joint’ ap-
proach, doubling the number of IA parameters.

In Table 7 and Figure 11 we compare the two scenarios,
finding the 1𝜎 constraints on 𝑆8 from the joint analysis to be
∼ 10% smaller than the constraints from the joint shared IA
analysis. This result is counter-intuitive, given that a larger
number of free nuisance parameters would typically lead
to a less constrained cosmological model. This behaviour
is, however, not replicated in our Hybrid analysis of the
data in Section 3.3 where the 𝑆8 constraints from the shared
IA analysis and fiducial joint analysis are indistinguishable.
We therefore consider this unexpected result to be an artefact
related to the noise-free nature of the mock data vector.

C.3. Quantifying projection effects and the offset
introduced on 𝑆8 marginals

For the mocks analysed so far in this appendix, the MAP
is the input parameter set by definition, as we do not apply
noise and we use priors that are either flat, or peaked at
the input values. We therefore use these mocks to quan-
tify the bias52 that is introduced, relative to the MAP, when

51 See also figure 16 of Amon et al. (2022) which finds significant
variation in the recovered TATT amplitude parameters when different to-
mographic bins are excluded from the analysis.

52 Throughout Appendix C we use the term ‘bias’, defined as the mea-
sured offset between the reported 𝑆8 value and the input truth. As this
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Joint Analysis Modification Maximum Marginal Mean Marginal

𝑆8 Δ𝑆8 𝜎/𝜎min 𝑆8 Δ𝑆8 𝜎/𝜎min

KiDS-like: Fiducial 0.758+0.012
−0.014 −0.05𝜎 1.1 0.757+0.013

−0.012 −0.15𝜎 1.0
with DES Priors 0.754+0.013

−0.013 −0.41𝜎 1.1 0.754+0.013
−0.012 −0.43𝜎 1.0

with DES Scale cuts 0.758+0.014
−0.013 −0.11𝜎 1.1 0.758+0.013

−0.012 −0.11𝜎 1.0
DES-like: Fiducial 0.761+0.020

−0.021 0.10𝜎 1.7 0.757+0.024
−0.015 −0.10𝜎 1.6

with KiDS Priors 0.770+0.018
−0.020 0.58𝜎 1.6 0.766+0.020

−0.014 0.39𝜎 1.4
with NLA 0.752+0.013

−0.014 −0.49𝜎 1.1 0.752+0.014
−0.013 −0.49𝜎 1.1

with Σ𝑚𝜈 = 0.06eV 0.772+0.017
−0.021 0.68𝜎 1.6 0.766+0.022

−0.013 0.42𝜎 1.4

Table 8. Quantifying the impact of analysis choices in a joint mock survey analysis where the noise-free mock survey data matches the non-linear, IA and
baryon feedback astrophysical systematic framework within which they are analysed. We report both the maximum-marginal 𝑆8 and 68% credible intervals,
and the mean-marginal 𝑆8 and 68% credible intervals. Δ𝑆8 quantifies the offset of the recovered 𝑆8 from the true 𝑆8 = 0.759, as a fraction of the 1𝜎
error (see appendix C.3). The fiducial constraints from the KiDS-like and DES-like joint mock analysis can be compared to a modified analysis where the
alternative set of cosmological parameter priors are adopted (as listed in Table 2). We also explore the impact of using an alternative astrophysical systematic
mitigation strategy, with the KiDS-like analysis adopting scale cuts to mitigate baryon feedback (see Appendix B), and the DES-like analysis adopting the
NLA model to mitigate IA. As the signal-to-noise of each mock data vector is identical for all tests, an inspection of the 𝑆8 constraining power between the
trials, 𝜎/𝜎min, reflects the impact of each survey’s analysis choices. These data are displayed in Figure 12.

reporting projected 1D marginal constraints (see also Chin-
talapati et al. 2022). In Table 7 and Figure 11 we compare
𝑆8 values and their 68% credible intervals defined from
the maximum-marginal53, and the mean-marginal54. We
find that the reported maximum-marginal credible intervals
are ∼ 10% larger than the reported mean-marginal credible
intervals for all chains. This difference is likely a result
of the different approaches taken by chainconsumer and
CosmoSIS-postprocess to define credible intervals (Zuntz
et al. 2015; Hinton 2016). We find a ∼ 0.2𝜎 offset between
the mean and maximum marginal for the more skewed Poly-
chord chains that include a TATT IA model, which we
discuss further in Appendix D.

In Table 8 and Figure 12 we find that the KiDS-like and
DES-like fiducial joint-survey analyses recover the input
cosmology within ∼ 0.1𝜎, which is the expected run-to-run
variance between chains (Joachimi et al. 2021). Interest-
ingly, however, we find a significant offset when the alterna-
tive survey’s cosmological priors are adopted (see Table 1).
In a modified KiDS-like analysis which adopts the DES
cosmological priors, the reported 𝑆8 is underestimated by
0.4𝜎. In a modified DES-like analysis which adopts the
KiDS cosmological priors, the reported 𝑆8 is overestimated
by 0.4 − 0.6𝜎. Note in both these modified analyses the as-
trophysical systematics mitigation strategy for each survey
was retained.

In order to understand the different projection effects with
each survey’s choice of cosmological priors, we conducted
a modified DES-like analysis using the NLA IA model, as
word commonly implies inaccuracy, it is worth highlighting that an off-
set induced by a projection effect is not a reflection of any error with the
measured posterior. Instead these offsets demonstrate the non-Gaussian
nature of the cosmic shear multi-dimensional posterior: the conventional
expectation that the mean and maximum marginal distribution will recover
the MAP no longer applies. This analysis is intended to draw attention to
the problematic practice of directly comparing 1D marginal values from
a range of different surveys and probes where the projection effects will
differ. It also allows for quantification of the marginal offsets inherent to
each parameter and prior set, before determining the inaccuracy that arises
when the models adopted for the analysis differ from the underlying truth
(see Appendices C.4 and E.2).

53 The maximum-marginal posterior is the KiDS-preferred alterna-
tive to their fiducial, but computationally expensive, MAP+PJ-HPD es-
timate. Here we use chainconsumer with the settings statistics=‘max’
and kde=1.0 (Hinton 2016). The credible intervals are defined using a 1D
kernel density estimator (KDE), reporting the asymmetric iso-likelihood
levels above and below the KDE maximum.

54 The mean-marginal posterior is the DES-preferred estimator. Here
we use postprocess within CosmoSIS using the default settings (Zuntz
et al. 2015). The credible intervals are defined using a 1D KDE with the
equal-posterior asymmetric limits defined to contain the correct number of
samples. This is in contrast to the intervals defining the credible region
relative to the smoothed probability volume (see appendix F of Zuntz et al.
2015, for details).

both input to the simulated mock and as part of the analysis
pipeline, and the DES cosmological priors. The resulting
marginal 𝑆8 value is underestimated by 0.5𝜎, consistent
with the bias found with a KiDS-like NLA analysis adopt-
ing DES priors. We also conducted a modified DES-like
analysis adopting a fixed neutrino mass prior in addition to
the other DES cosmological priors. We find the resulting
marginal 𝑆8 to be overestimated by 0.4−0.7𝜎, similar to the
bias found for a DES-like analysis which adopts the KiDS
cosmological priors with a fixed neutrino mass. From these
modified analyses we conclude that there is a complex in-
terplay between the cosmological parameter priors and the
astrophysical systematic prior space, especially the neutrino
and IA priors. As an example of where complexity could
arise we note that the non-NLA component of the TATT
model, the tidal torque term modulated by the 𝐴2 and 𝜂2
parameters, depends on the linear matter power spectrum.
This means that the calculated contribution to the observed
cosmic shear signal from the TATT tidal torque term is in-
sensitive to variations in the neutrino mass or the baryon
feedback parameter in an inference analysis.

Chintalapati et al. (2022) show that the picture is further
complicated when priors for unconstrained cosmological pa-
rameters are asymmetric about the true parameter value, as
in the case of the neutrino mass prior in the DES-like anal-
ysis of these mocks. Projection effects therefore need to
be carefully considered when comparing marginal statistics
of surveys that adopt different primary parameter sets and
priors (see for example Longley et al. 2023, who find sig-
nificant shifts in poorly constrained parameters, such as Ωm,
with different prior choices).

C.4. Cosmological constraints when the underlying
astrophysical model differs from the survey-specific

framework
In this section we analyse mock joint-survey data where

the underlying astrophysical systematic differs from the the-
oretical models adopted by each survey, in one way. In
contrast to the mocks previously analysed, the MAP will no
longer be found at the set input parameters. This study there-
fore quantifies potential systematic biases in the recovered
cosmological parameters from a joint-survey analysis which
adopts a different astrophysical systematic model from the
truth. This analysis extends and complements existing stud-
ies in this area, which we briefly review before presenting
the mock analysis.

In comparing IA models, Blazek et al. (2019) demon-
strate that a future Rubin cosmic shear analysis that adopts
the NLA IA model, when the underlying IA truth is TATT,
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may be subject to a significant bias in the recovered cos-
mological parameters. They find an offset Δ𝑆8 ∼ 0.08 for
their preferred set of TATT parameters, which would trans-
late into a ∼ 0.7𝜎 offset for a joint DES-KiDS analysis.
Fortuna et al. (2021) reach a similar conclusion for a future
Euclid-like survey cosmic shear analysis adopting the NLA
IA model, when the underlying IA truth was an aligned
analytical halo model. The offset they find is less signifi-
cant, however, withΔ𝑆8 ∼ 0.005, which would be negligible
for this joint-survey study. Secco, Samuroff et al. (2022),
analysing mock DES Y3 cosmic shear data created with
the DES Y1 best-fit TATT parameters from Samuroff et al.
(2019), find a significant ∼ 3𝜎 offset in Ωm with a good
recovery of the input 𝑆8 when adopting an NLA model.
Campos et al. (2023) show that the different implications of
these studies can be understood by recognising the strong
dependence of model tests on the assumed IA parameters.
Defining a range of IA models from 21 samples of the DES
Y1 TATT parameter posteriors, they find bias from an NLA
analysis of DES Y3-like mocks could range from 0.04𝜎2D
to 5𝜎2D, where 𝜎2D is the 68% credible interval in the 2D
(𝑆8,Ωm) marginalised posterior. They propose an empirical
model selection approach to better inform the choice of IA
model in future cosmic shear analyses.

Turning to the non-linear power spectrum model, Krause
et al. (2021) use N-body simulations from Mira Titan,
Cosmic Emu (Lawrence et al. 2017) and the EuclidEmu-
lator1 (Euclid Collaboration: Knabenhans et al. 2019), to
demonstrate that the Halofit non-linear model for the mat-
ter power spectrum is sufficiently accurate for the DES Y3
baseline 3 × 2pt analysis with biases at < 0.15𝜎2D. They
also conclude that HMCode2016 fails their requirements for
a 2 × 2pt joint galaxy-galaxy lensing and galaxy clustering
analysis (see section B1 of Krause et al. 2021). In contrast,
Joachimi et al. (2021) use the Cosmic Emu simulations
(Heitmann et al. 2014) to demonstrate that the HMCode
non-linear model for the matter power spectrum is suffi-
ciently accurate for the KiDS-1000 baseline analysis with
biases at < 0.1𝜎 in 𝑆8. They find, however, an unaccept-
able 0.3𝜎 offset in the recovered value of 𝑆8 when adopting
Halofit55. We find that these apparently inconsistent con-
clusions can be resolved by recognising the differing goals
of the two surveys, with DES focussed on optimising the
accuracy of the 3 × 2pt analysis and KiDS more focussed
on the accuracy of the cosmic shear measurement. Further-
more, a fixed tolerance level in terms of 𝜎2D in the Ωm − 𝑆8
plane, allows for a less restricted tolerance level in the 1D
𝑆8 marginals (see the discussion in Appendix E).

Table 9 and Figure 13 present the 𝑆8 constraints from a
DES-like and KiDS-like analysis of a joint survey cosmic
shear data vector that has been created with one underlying
astrophysical systematic that differs from the model adopted
in each framework. The non-linear matter power spectrum
is defined using HMCode2020. The baryon feedback is set
with an AGN heating temperature, log10 (𝑇AGN/K) = 7.8,
to match the BAHAMAS simulation which best recovers
the observed hot gas mass fraction of groups and clusters in
addition to the galaxy stellar mass function (McCarthy et al.
2017). We include intrinsic alignments using the TATT
model comparing two sets of TATT parameters. We take the
best-fit TATT parameters56 from the optimised ΛCDM cos-

55 The Joachimi et al. (2021) result is consistent with the 0.4𝜎 offset in
𝑆8 between the Halofit and BaccoEmu DES Y3 cosmic shear analysis
presented in Aricò et al. (2023) which they conclude arises from the lower
accuracy of Halofit over the wide parameter space that is sampled by
the posterior. It is also consistent with the 0.5𝜎 offset in 𝑆8 between the
Halofit and HMCode DES Y3 cosmic shear analysis presented in Secco,
Samuroff et al. (2022) which they conclude originates from projection
effects from the adopted baryon feedback priors which are significantly
wider than the HMCode2020 𝑇AGN priors studied in this analysis.

56 The 𝜂1, 𝜂2, and 𝑏TA TATT parameters are formally unconstrained
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Figure 13. Joint survey 𝑆8 constraints reported from a DES-like (blue) and
KiDS-like (pink) analysis of mock survey data where the underlying astro-
physical systematics differ in one way from the theoretical models adopted
by each survey: the non-linear matter power spectrum, including baryon
feedback, is defined using HMCode2020 as expected by the KiDS-like
pipeline, and the IA contamination is defined using two different strengths of
TATT as expected by the DES-like pipeline (see Table 6). For reference the
colour bars show the KiDS-like (pink) and DES-like (blue) constraints from
the fiducial analyses where the mocks are constructed using the astrophysi-
cal systematics expected by each pipeline. In addition, we present DES-like
and KiDS-like constraints for an NLA (no-z) mock where the input power
spectrum changes from an HMCode2020 model including baryon feed-
back, to a dark matter only EuclidEmulatorv2 model. Constraints from
our Hybrid analysis are shown in green, analysing the same EuclidEm-
ulatorv2 mock with the addition of OWLS-AGN baryon feedback. For
the KiDS-like analysis we display the survey-preferred maximum-marginal
𝑆8 and 68% credible intervals. For the DES-like and Hybrid analysis we
display the survey-preferred mean-marginal 𝑆8 and 68% credible intervals.
These data are tabulated in Tables 9 and 12.

mic shear analysis of Amon et al. (2022); Secco, Samuroff
et al. (2022), denoted TATT ‘Strong’ in Table 6. We also
take the best-fit TATT parameters from the 3 × 2pt analysis
in DES Collaboration et al. (2022), denoted TATT ‘Weak’
in Table 6. Both of these scenarios are within the range
allowed by the most constraining Y3 analysis (3 × 2pt with
shear ratio data), and so are considered plausible given the
current data.

Assessing the KiDS-like pipeline, a comparison of
the fiducial analysis with the analyses from both HM-
Code2020+TATT mocks reveals the systematic bias in the
recovered 𝑆8 that is introduced by adopting the NLA model
when the underlying truth is a DES Y3-like TATT model.
The mismatch between intrinsic alignment models leads to
an overestimate of the true 𝑆8 at the level of 1.3𝜎, in the
TATT-strong case, and 0.3𝜎 in the TATT-weak case. This
result is consistent with the analysis in figure 15 of Amon
et al. (2022), where the 𝑆8 NLA constraint is ∼ 0.9𝜎 higher
than the corresponding TATT analysis. In contrast to the
mock analysis of Secco, Samuroff et al. (2022), we find
that the Ωm constraints for the HMCode2020+TATT mocks
are unchanged compared to the fiducial analysis. This is
in agreement with the NLA-TATT analysis comparison in
Amon et al. (2022), demonstrating how sensitive the con-
clusions of mock studies are to the default TATT parameters
adopted for the study.

Assessing the DES-like pipeline, we can compare the fidu-
cial analysis with either of the HMCode2020+TATT mock
analyses. This reveals the systematic bias in the recovered
𝑆8 that results from adopting a Halofit non-linear correc-
tion with scale cuts to mitigate baryon feedback, when the
underlying truth is a non-linear matter power spectrum from
in all DES Y3 analysis combinations. We denote the DES Y3 cosmic
shear with SR parameters TATT ‘Strong’, because the best-fit 𝜂1 and 𝑏TA
parameters are close to the allowed upper prior limit for these values. We
denote the TATT parameters from the DES Y3 3×2pt without SR MagLim
analysis, TATT ‘Weak’ because the 𝑎2 and 𝑏TA values are close to zero,
such that the TATT model is tending towards an NLA model.
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Maximum Marginals: Mean Marginals:

KiDS-like: DES-like: KiDS-like: DES-like:
Non-Linear Intrinsic Alignment 𝑆8 Δ𝑆8 𝑆8 Δ𝑆8 𝑆8 Δ𝑆8 𝑆8 Δ𝑆8

Fiducial Fiducial 0.758+0.012
−0.014 −0.05𝜎 0.761+0.020

−0.021 0.10𝜎 0.757+0.013
−0.012 −0.15𝜎 0.757+0.024

−0.015 −0.10𝜎
HMCode2020 TATT strong 0.775+0.012

−0.012 1.30𝜎 0.741+0.019
−0.022 −0.88𝜎 0.775+0.012

−0.012 1.28𝜎 0.735+0.024
−0.015 −1.28𝜎

HMCode2020 TATT weak 0.763+0.012
−0.013 0.32𝜎 0.736+0.013

−0.017 −1.55𝜎 0.762+0.013
−0.013 0.24𝜎 0.733+0.014

−0.014 −1.88𝜎

Table 9. Joint survey 𝑆8 constraints from mock data where the underlying astrophysical systematic differs from the adopted survey-specific model. The
fiducial analyses can be compared to a scenario where the non-linear matter power spectrum, including baryon feedback, is defined using HMCode2020,
deviating from the Halofit model adopted by DES. The IA model is then defined using TATT, deviating from the NLA model adopted by KiDS, exploring
two strengths for the TATT IA contamination (see Table 6). We report the 𝑆8 constraints and 68% credible interval using both the maximum-marginal and
mean-marginal approach, with Δ𝑆8 quantifying the offset from the true 𝑆8 = 0.759, as a fraction of the 1𝜎 error. These data are displayed in Figure 13. .

HMCode2020 including AGN baryon feedback. The mis-
match between non-linear power spectrum models leads to
an underestimate of the true 𝑆8 at the level of 1.3𝜎, in the
TATT-strong case, and 1.9𝜎 in the TATT-weak case when
reporting mean marginals. As can be seen in Figure 13 the
difference between these two results is primarily driven by
the reduced 𝜎 error on 𝑆8 in the TATT-weak case. These
offsets reduce to 0.9𝜎, and 1.6𝜎, when considering the
maximum marginal constraints. Given the scale-cut anal-
ysis in Appendix B, we expect any bias from neglecting
baryon feedback to be within ∼ 0.3𝜎2D. We therefore ex-
pect that this offset is primarily caused by the mismatch in
the non-linear modelling of the power spectrum. We explore
this further with a dark matter-only mock survey analysis in
Appendix E.2.

From this mock joint survey cosmic shear analysis we
conclude that neither the KiDS-like nor DES-like analysis
choices pass the accuracy requirements set by each survey,
when considering an 𝑆8 = 0.759 cosmology with a TATT
IA model and an HMCode2020 non-linear matter power
spectrum. In this specific scenario, the combination of dif-
ferent systematic modelling choices bias the constraints in
opposing directions leading to a ∼ 2𝜎 level tension between
a KiDS-like and DES-like analysis of identical data vectors.
To address this potential issue we developed the concept of
the Hybrid pipeline, described in Section 2, which is val-
idated using the EuclidEmulatorv2 in Appendix E. The
Hybrid setup was finalised before the joint survey data anal-
ysis commenced to minimise any confirmation bias in our
decision making process.

D. SAMPLER COMPARISON

Summary: In this appendix we find that cosmic shear
posteriors sampled with Multinest underestimate the
width of the 68%/95% marginal credible interval for 𝑆8 by
12%/15%. Polychord is shown to provide an accurate
recovery, within a few percent, of both the 68% and
95% 𝑆8 marginal credible interval when compared to a
Metropolis-Hastings sampler and Emcee.

In this appendix we compare the posteriors recovered from
a DES Y3 cosmic shear analysis57 using two nested sam-
pling algorithms, Multinest (Feroz et al. 2009) and Poly-
chord (Handley et al. 2015), and two Markov Chain Monte
Carlo (MCMC) algorithms, Metropolis-Hastings and emcee
(Metropolis et al. 1953; Goodman & Weare 2010; Foreman-
Mackey et al. 2013). Polychord and Multinest vary in
their implementation of nested sampling. Multinest uses a
series of multivariate ellipses to define likelihood thresholds
which Lemos, Weaverdyck et al. (2023) show can lead to
an undersampling of the posterior tails for many-parameter
unimodal non-Gaussian posteriors. Polychord uses one-
dimensional slice sampling, starting at a given set of parame-

57 We note that this cosmic shear analysis does not include additional
information from the shear ratio test.

ter values to determine the posterior. Samples are then taken
across one parameter only to find a new parameter set with
a higher posterior, continuing the iteration one dimension
at a time. This approach makes Polychord significantly
slower58 than Multinest, but it was found to be more ac-
curate in the DES Y1 lensing and clustering sampling study
of Lemos, Weaverdyck et al. (2023). This appendix extends
this study by analysing DES Y3 cosmic shear data from
Amon et al. (2022); Secco, Samuroff et al. (2022) within
the flat ΛCDM model. Our analysis duplicates and agrees
with the recent HSC Y3 cosmic shear sampler comparison
(Li et al. 2023a).

We adopt the DES Y3 sampler settings59 for Polychord,
and the KiDS-1000 sampler settings60 for Multinest (see
section 4.2 and 4.3 of Lemos, Weaverdyck et al. 2023 for
details of the nested sampling hyper parameters and con-
vergence diagnostics for each software package). To bench-
mark the results from these two nested samplers we use both
a classical Metropolis-Hastings sampler61 and the emcee
affine invariant MCMC sampler62. Both algorithms start
from a proposal distribution which we take from the output
of the Multinest or Polychord analysis. We do not use
these two samplers for our cosmological analysis with the
Hybrid pipeline due to the lack of Bayesian evidence es-
timation. Furthermore, when analysing large-dimensional
parameter spaces and non-Gaussian posterior distributions,
the run times to reach convergence can become prohibitive63.

Figure 14 shows the 68% and 95% credible intervals of the
sampled posteriors, marginalised in theΩm−𝑆8 plane, where
we have adopted the DES methodology framework sum-
marised in Table 2. We find significant differences between

58 The Polychord DES Y3 cosmic shear analysis adopting a TATT
(NLA) IA model, consumed a factor of ∼ 3(∼ 7) times as many CPU
hours as the equivalent Multinest analysis.

59 Polychord settings: 𝑛live = 500, 𝑛repeats = 60, tolerance=0.01,
fast_fraction = 0.1, fast_slow = True.

60 Multinest settings: 𝑛live = 1000, efficiency = 0.3, tolerance = 0.01,
constant efficiency = False, max_iterations = 1,000,000.

61 We use the CosmoSIS Metropolis sampler, running eight independent
chains. We follow Lemos, Weaverdyck et al. (2023) in burning the first
20% of each chain and determine convergence using the Gelman-Rubin
test with a tolerance of 0.01.

62 emcee simultaneously evolves an ensemble of walkers, where the
position in parameter space of each walker depends on the positions of the
remaining walkers. We combine four independent emcee chains run with
the parameter settings walkers = 160, samples = 12000. The resulting chains
have a total of ∼ 6M samples with ∼ 2M burn-in samples removed using
Chainconsumer diagnostic statistics to indicate convergence according
to both the Gelman-Rubin and Geweke metrics (Hinton 2016). We note
that these metrics provide only approximate estimates of convergence for
emcee given the correlations between the walkers. A more appropriate
metric is the integrated autocorrelation time (Goodman & Weare 2010).
Unfortunately this statistic was found to be highly sensitive to variations
in the methodology chosen to estimate it, suggesting that our chains are
relatively short compared to the quantity. Our best estimate suggests that
after burn-in removal, there are ∼ 5 autocorrelation times in each of the
four independent chains being combined to produce emcee posteriors.

63 Even when started with accurate proposal distributions, the emcee
(Metropolis-Hastings) DES Y3 cosmic shear analysis consumed a factor
of ∼ 10 (∼ 1.5) times as many CPU hours as the equivalent Polychord
analysis.
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Figure 14. Comparing the Polychord (black), Multinest (red), emcee
(blue, dashed) and Metropolis-Hastings (MH, light blue, filled) samplers
for a DES Y3 cosmic shear analysis: the 68% and 95% credible intervals
are shown for the two-dimensional posterior distribution in the Ωm − 𝑆8
plane.

the credible intervals, with a narrower Multinest poste-
rior compared to the Polychord, emcee and Metropolis-
Hastings posterior. Specifically we find the width of the
68% credible interval, Δ𝜎68 = 𝜎

upper
68 − 𝜎lower

68 , for the 𝑆8
marginal, to be ∼ 12% (∼ 9%) narrower compared to the
Metropolis-Hastings (emcee or Polychord) posterior (see
Figure 15 and Table 10).

Inspecting the width of the 95% marginal credible in-
terval, the ∼ 15% narrowing of the Multinest posterior
relative to the ‘truth’ is even more pronounced. The 𝑆8
credible interval from Polychord is, however, accurate to
a few percent. We note the emcee and Metropolis-Hastings
analyses require a proposal distribution of starting guesses,
finding a few percent variation between two analyses using
initial starting points drawn from the Polychord or Multi-
nest posteriors (see Table 15 for details, where Figures 14
and 15 display the Polychord-starting option). As such,
even though we use the emcee and Metropolis-Hastings re-
sult as our ‘truth’, there is still some degree of uncertainty
in it.

In Figure 15 we compare the 1D marginalised posteriors
for 𝑆8 for both the fiducial DES analysis which adopts the
TATT IA model (upper panel), and an alternative analysis
adopting the NLA (no-z) IA model (lower panel). We note
that the narrowing of the posterior is asymmetrical about the
maximum, which is likely a side-effect of the Multinest
ellipsoidal sampling (see Figure 1 of Lemos, Weaverdyck
et al. 2023 for an illustration). The skew of the Polychord
𝑆8 posterior, relative to the Multinest posterior leads to
significant differences between the lower 𝑆8 credible inter-
val, and larger offsets between mean 𝑆8 marginal estimates,
compared to estimates of the maximum of the marginalised
𝑆8 posterior.

E. VERIFYING THE HYBRID ANALYSIS PIPELINE

Summary: In this appendix we quantify the accuracy of
the Hybrid pipeline analysis through a series of mock anal-
yses using the EuclidEmulatorv2 (Euclid Collaboration:
Knabenhans et al. 2021).

• In Appendix E.1 we show HMCode2020 predictions of
the DES 𝜉± (𝜃) and KiDS 𝐸𝑛 cosmic shear observables
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Figure 15. Comparing DES Y3 cosmic shear one-dimensional marginal-
ized posteriors for 𝑆8 obtained using Polychord (black), Multinest (red),
emcee (blue, dashed) and Metropolis-Hastings (MH, light blue) samplers.
Results from an analysis using the TATT IA model, matching the posteriors
shown in Figure 14, are shown in the upper row, while the lower row adopts
an NLA IA model.

𝑆8 (mean) Δ𝜎68 Δ𝜎95
TATT:
Polychord 0.759 0.063 0.134
Multinest 0.763 0.058 0.115
emcee (PC) 0.760 0.064 0.134
emcee (MN) 0.761 0.064 0.132
Metropolis-Hastings (PC) 0.760 0.065 0.135
Metropolis-Hastings (MN) 0.760 0.067 0.137
NLA:
Polychord 0.782 0.043 0.091
Multinest 0.786 0.039 0.081

Table 10. The impact of sampler choice on one-dimensional marginal-
ized mean 𝑆8 constraints from the DES Y3 cosmic shear analyses.
For the emcee and Metropolis-Hastings analyses, ‘PC’ and ‘MN’ indi-
cate whether the initial starting points were drawn from the Polychord
or Multinest posteriors, respectively. Columns show the CosmoSIS-
postprocess-defined posterior mean, the full width of the 68% credible
interval (Δ𝜎68 = 𝜎

upper
68 − 𝜎lower

68 ) and the full width of the 95% credible
interval (Δ𝜎95 = 𝜎

upper
95 − 𝜎lower

95 ).

agree with the EuclidEmulatorv2 model at the percent
level across a wide range of cosmological parameters.

• In Appendix E.2 we find that using the Appendix B-
defined scale cuts alone results in a 0.5𝜎 bias on 𝑆8 in the
presence of OWLS AGN baryon feedback. Combining
scale cuts with marginalisation over a free AGN feedback
parameter 𝑇AGN, however, reduces the bias to 0.0𝜎. We
find the inclusion of an free neutrino mass parameter
introduces a projection offset in the marginal value of 𝑆8
at the level of 0.3𝜎.

E.1. Quantifying the accuracy of non-linear models for
DES and KiDS cosmic shear

In Figure 16 we compare the DES and KiDS cosmic shear
statistics predicted from the EuclidEmulatorv2 to pre-
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Parameter Mock Input EuclidEmulator2 range

Ωb 0.041 [0.04, 0.06]
Ωm 0.246 [0.24, 0.40]
𝑛s 0.99 [0.92, 1.00]
ℎ 0.7251 [0.61, 0.73]
𝑤0 −1.0 [−1.30, −0.70]
𝑤a 0.0 [−1.7, 0.5]
Σ𝑚𝜈 0.06 eV [0.0, 0.15] eV
𝐴s 2.445 × 10−9 [1.7, 2.5] × 10−9

Table 11. Cosmological parameters adopted for the EuclidEmulator2-
based mock joint-survey analysis which correspond to an input 𝑆8 = 0.759.
The chosen parameters lie within the range where the emulator has been
shown to be accurate to < 1% for 𝑘 ≲ 10ℎMpc−1 and 𝑧 ≲ 3 (Euclid
Collaboration: Knabenhans et al. 2021).

dictions adopting different non-linear models64. The Eu-
clidEmulatorv2 has been shown to be accurate to < 1%
for 𝑘 ≲ 10ℎMpc−1 and 𝑧 ≲ 3 (Euclid Collaboration: Kn-
abenhans et al. 2021; Adamek et al. 2023). For the mock
survey analysis in this appendix we have modified our in-
put set of cosmological parameters to lie within the emu-
lator’s parameter range (see Table 11), retaining the input
𝑆8 = 0.759, to match the fiducial 𝑆8 cosmic shear result from
both KiDS-1000 and DES Y3. With this set of cosmologi-
cal parameters we find significant offsets in the small-scale
cosmic shear signal when adopting Halofit.

In order to determine whether the accuracy of each non-
linear model changes across a wide range of cosmological
parameters, in Figure 17 we compress the theoretical 𝜉± (𝜃)
or 𝐸𝑛 tomographic data vector, d, into a single signal-to-
noise estimate, 𝜈, as

𝜈H =

√︃
dT

H C−1 dH . (E1)

Here C is the corresponding DES or KiDS covariance ma-
trix and H labels the adopted non-linear model Halofit,
HMCode2016 or HMCode2020. Figure 17 shows the ratio
𝜈EuclidEmulator/𝜈H for a range of different cosmologies that
fall within the region of parameter space covered by the Eu-
clidEmulatorv2 (see Table 11). In order to test a realistic
combination of cosmological parameters, each data point
represents a sample from the DES Y3 3 × 2pt Polychord
chain. We find only weak trends with each cosmological
parameter, with the HMCode2016 and HMCode2020 pre-
dictions agreeing with the EuclidEmulatorv2 model at the
percent level for both statistics. Halofit provides a poorer
fit, but is nevertheless accurate at the ∼ 2% level overall.

Table 12 and Figure 13 present the 𝑆8 constraints from
the EuclidEmulatorv2-based mock. With the impact of
the IA model choice assessed in Appendix C.4, we adopt
the NLA (no-z) model as an input for this analysis. For the
DES-like analysis we find an underestimate of the true 𝑆8
at the level of ∼ 1.2𝜎. This offset is likely caused from
the mismatch between the Halofit non-linear power spec-
trum and EuclidEmulatorv2 shown in Figures 16 and 17,
combined with the use of the TATT model which can in-
troduce a bias in the projected marginal 𝑆8 posterior65.
For the KiDS-like analysis, we find an overestimate of the
true 𝑆8 at the level of ∼ 0.9𝜎, which can be understood
when considering the 𝑇AGN baryon feedback marginalisa-
tion within the KiDS pipeline. As shown in Figure 16,
the KiDS BAHAMAS-range prior on log10 (𝑇AGN/K), with
[7.6, 8.0], does not allow for a dark-matter-only cosmology.

64 We refer readers interested in a direct comparison between the different
𝑃𝛿 (𝑘, 𝑧) models to figures 2 and D.1 of Mead et al. (2021), figures 13
and 14 of Euclid Collaboration: Knabenhans et al. (2021) and figure 7 of
Adamek et al. (2023).

65 When analysing an NLA-input mock with TATT and HMCode2020
we find a ∼ 0.5𝜎 (0.8𝜎) underestimate of the input 𝑆8 when using the
maximum (mean) marginalised posterior estimate (see Test G in Table 12).

It only includes feedback models which reduce power on
small physical scales, such that baryon feedback marginali-
sation, in a dark-matter-only Universe, leads to an overesti-
mate of the marginal 𝑆8. In a KiDS-like analysis modified to
use a dark-matter-only matter correction for the non-linear
matter power spectrum, we recover an unbiased value for
𝑆8 with 𝑆8 = 0.760+0.013

−0.016. These results lead to the same
conclusion as Appendix C.4: the KiDS-like and DES-like
analysis choices can lead to ∼ 2𝜎 𝑆8 offsets using identi-
cal data vectors, this time when considering the scenario of
an 𝑆8 = 0.759 EuclidEmulatorv2-based dark-matter-only
Universe.

E.2. A Hybrid pipeline analysis of EuclidEmulatorv2
mock data

In defining a unified Hybrid pipeline it was clear that we
would adopt the PolyChord sampler (Appendix D) and
HMCode2020 for the non-linear power spectrum model as
this outperforms both Halofit and HMCode2016 for the
DES data vector in Figure 17. For the IA model choice
we lack high signal-to-noise IA observations with which to
make an informed decision between TATT and NLA. After
discussion, the NLA-z model was selected as sufficiently
complex for the signal-to-noise of our current surveys (see
for example Fortuna et al. 2021). The KiDS cosmologi-
cal parameter priors were then selected as these were found
to minimise projection effects with the NLA model in Ap-
pendix C.3, with the addition of the DES-like prior on the
NLA-z 𝜂IA parameter. With these choices finalised, Tests A-
F in Table 12 were designed to compare the baryon feedback
mitigation strategies of adopting scale cuts and/or marginal-
ising over a free nuisance parameter 𝑇AGN.

Starting with a mock survey that includes no baryon feed-
back, in Test A we recover the input 𝑆8 within 0.1𝜎 us-
ing only scale cuts. Test A therefore confirms the analysis
in Appendix E.1 that HMCode2020 provides a sufficiently
accurate description of the EuclidEmulatorv2 non-linear
matter power spectrum, and the analysis in Appendix C.3
that the prior choice has minimised projection effects. In
Test B and C, we quantify the impact of including scale cuts
for DES and KiDS by including baryon feedback modelled
through the OWLS-AGN hydrodynamical simulation (van
Daalen et al. 2011) which introduces a significant reduction
of power on small physical scales (see Figure 16). Adopt-
ing scale cuts for only the DES part of the joint-survey data
vector (Test B) we underestimate the value of 𝑆8 by ∼ 1.1𝜎.
Including the COSEBIs scale cuts for KiDS (Test C) reduces
this bias, as designed, but we are still left with an underes-
timate of the value of 𝑆8 by ∼ 0.5𝜎 with the maximum
marginal, and ∼ 0.75𝜎 with the mean marginal. These tests
may seem to contradict the analysis in Appendix B where we
reported an offset of ∼ 0.14𝜎2D in the 𝑆8 −Ωm plane for this
OWLS AGN-contaminated data vector. These results can
however be understood by considering the weak constraints
from cosmic shear alone on Ωm. We find that the relative
error on Ωm is an order of magnitude larger than the relative
error on 𝑆8, such that a small bias within the 𝑆8 −Ωm plane
can translate into a large relative bias in 𝑆8. Note that the
Krause et al. (2021) scale cut methodology, that we have
adopted, was designed for the DES 3 × 2pt analysis, where
Ωm is more tightly constrained.

In Tests D, E, and F we analyse an OWLS AGN-
contaminated data vector, marginalising over the 𝑇AGN
baryon feedback parameter in HMCode2020. In all tests we
recover the input 𝑆8 within 0.2𝜎 using the mean marginal
value and within∼ 0.1𝜎 using the maximum marginal value.
These results are expected from Figure 16 where the 𝑇AGN
prior range encompasses the OWLS-AGN model. Compar-
ing Test D and Test E we quantify the impact of including
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Figure 16. The ratio for a range of KiDS 𝐸𝑛 (upper) and DES 𝜉± (𝜃 ) (lower) and cosmic shear models to the prediction from EuclidEmulatorv2. Each
auto-correlation tomographic bin is shown, with similar trends found for the cross-correlations (not shown). The dark matter-only predictions for Halofit
(blue) and HMCode2020 (cyan) can be compared to models that include baryon feedback using OWLS-AGN (pink) and the HMCode2020 𝑇AGN parameter
with log10 (𝑇AGN/K) = 7.3 (green), log10 (𝑇AGN/K) = 7.6 (yellow) and log10 (𝑇AGN/K) = 8.0 (purple). We have verified that cosmic shear signals predicted
by the HMCode2020 𝑇AGN model (green, yellow, purple), agree at the percent level to the signals predicted when using the equivalent BAHAMAS power
spectrum to directly suppress the EuclidEmulatorv2 dark matter power spectrum. The grey shaded regions indicate the adopted DES scale cuts. The
upper two rows compare the KiDS fiducial COSEBIs 𝐸𝑛 with 𝜃min = 0 ′

.5, to the scale cut version with 𝜃min = 2 ′
.0.

the Appendix B-defined scale cuts to the KiDS data vec-
tor. In common with the analysis in Table 8, we find that
the addition of scale cuts to KiDS does not significantly
impact the 𝑆8 constraining power, suggesting that the 𝑇AGN
marginalisation to mitigate baryon feedback is already re-
moving the majority of information from these scales66. In
Figure 18 we show that the degeneracy between the baryon
feedback nuisance parameter 𝑇AGN and 𝑆8 is, however, re-
duced when scale cuts are included. This is important as
it implies that the scale cut analysis is less sensitive to the
𝑇AGN prior which in this case is informative, based on our

66 Longley et al. (2023) find that the addition of scale cuts to a joint
cosmic shear analysis of DES, HSC and KiDS increases the error on 𝑆8 by
15 − 30%, relative to an all-scale analysis with baryon feedback marginal-
isation. We can understand the difference with our findings by noting that
in their analysis, scale cuts are applied to DES, HSC and KiDS, in contrast
to this analysis where we only investigate changes to scale cuts in KiDS.
In addition, the Longley et al. (2023) Δ𝜒2 scale cut methodology leads
to more stringent limits on the OWLS-AGN induced parameter bias with
Δ𝑆8 < 0.2𝜎. This can be compared to the Krause et al. (2021) methodol-
ogy, implemented in Appendix B, with a bias threshold of < 0.3𝜎2D.

current best knowledge from hydrodynamical simulations.
When expanding the informative baryon feedback prior to
log10 (𝑇AGN/K) : [7.0, 10.0], Amon & Efstathiou (2022)
find a 0.55𝜎 increase in the KiDS-1000 mean marginal
value67 for 𝑆8 and a 40% increase in the uncertainty on
that value. This study analysed the two-point shear correla-
tion function with angular limits 0 ′

.5< 𝜃 < 300 ′
.0 for 𝜉+ (𝜃)

and 4 ′
.0< 𝜃 < 300 ′

.0 for 𝜉− (𝜃). Adopting an uninforma-
tive prior on 𝑇AGN would further increase the uncertainty
on 𝑆8, with a stronger impact expected for statistics where
the high-𝑘-scale information has been removed68, reducing
the ability of the data to self-calibrate the baryon feedback
model.

67 The projection effects for the Amon & Efstathiou (2022) prior set have
not been quantified.

68 Amon & Efstathiou (2022) find the constraints from a COSEBIs
𝐸𝑛 (𝜃min ) = 0 ′

.5 analysis with wide, but still informative, priors on a
phenomenological power spectrum suppression parameter almost doubles
the uncertainty on 𝑆8 compared to the 𝜉± (𝜃 ) analysis adopting the same
priors.
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EuclidEmulatorv2 Maximum Marginal Mean Marginal

Analysis IA Σ𝑚𝜈 +OWLS? COSEBIs Cut? log10 (𝑇AGN/K) 𝑆8 Δ𝑆8 𝜎/𝜎min 𝑆8 Δ𝑆8 𝜎/𝜎min

DES-like TATT free × ✓ × 0.738+0.017
−0.020 −1.15𝜎 1.42 0.734+0.020

−0.015 −1.44𝜎 1.35
KiDS-like NLA 0.06eV × × [7.6 − 8.0] 0.771+0.013

−0.013 0.89𝜎 1.03 0.771+0.013
−0.013 0.90𝜎 1.00

A NLA-z 0.06eV × ✓ × 0.759+0.017
−0.018 0.01𝜎 1.36 0.758+0.016

−0.015 −0.09𝜎 1.22
B " " ✓ × × 0.745+0.017

−0.018 −0.83𝜎 1.35 0.742+0.018
−0.013 −1.10𝜎 1.21

C " " ✓ ✓ × 0.750+0.018
−0.018 −0.52𝜎 1.42 0.747+0.019

−0.013 −0.75𝜎 1.27
D " " ✓ × [7.6 − 8.0] 0.761+0.017

−0.022 0.10𝜎 1.53 0.757+0.019
−0.015 −0.14𝜎 1.33

E " " ✓ ✓ [7.6 − 8.0] 0.759+0.019
−0.020 −0.00𝜎 1.51 0.756+0.019

−0.015 −0.16𝜎 1.35
F " " ✓ ✓ [7.3 − 8.0] 0.759+0.018

−0.020 −0.03𝜎 1.48 0.755+0.020
−0.015 −0.22𝜎 1.39

Hybrid NLA-z free ✓ ✓ [7.3 − 8.0] 0.754+0.020
−0.021 −0.25𝜎 1.62 0.751+0.021

−0.015 −0.46𝜎 1.43
G TATT free ✓ ✓ [7.3 − 8.0] 0.748+0.022

−0.023 −0.49𝜎 1.78 0.743+0.025
−0.015 −0.81𝜎 1.58

Table 12. Joint survey 𝑆8 constraints from mock data created using the EuclidEmulatorv2 including an NLA IA model. The fiducial KiDS-like and
DES-like analyses can be compared to our Hybrid pipeline. A series of tests compare the baryon feedback mitigation strategies of adopting scale cuts and/or
marginalising over a free nuisance parameter 𝑇AGN using KiDS-like priors with the addition of the NLA-z 𝜂 parameter. Where relevant, the baryon feedback
is modelled using OWLS-AGN. We report the 𝑆8 constraints and 68% credible interval using both the maximum-marginal and mean-marginal approach,
with Δ𝑆8 quantifying the offset from the true 𝑆8 = 0.759, as a fraction of the 1𝜎 error. Some of these data are displayed in Figure 13.
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Figure 17. Comparison of the DES 𝜉± (𝜃 ) (upper) and KiDS
𝐸𝑛 (𝜃min =0 ′

.5) (lower) cosmic shear predictions from HMCode2020
(green), HMCode2016 (blue) and Halofit (pink), as a ratio with the
prediction from the EuclidEmulatorv2 (see Equation E1) for a range of
cosmological parameters. Each data point represents one sample from the
DES Y3 3 × 2pt posterior that lies within the allowed parameter range of
the EuclidEmulatorv2. The solid lines show an unweighted linear best
fit to the data points as a function of input 𝑆8 (left), Ωm (middle) and Σ𝑚𝜈

(right). Only weak trends are seen with all the parameters including those
not shown here. The shaded region brackets ±1% accuracy.

Amongst the authors there is a broad range of views on
the preferred approach to mitigate baryon feedback. Those
with a high degree of confidence in the scale and redshift
dependence of the BAHAMAS model for baryon feedback
and the HMCode2020 model for the non-linear power spec-
trum recommend a self-calibrating all-scale cosmic shear
analysis with uninformative 𝑇AGN priors. Those with a high
degree of confidence in the BAHAMAS-defined maximum
range of baryon feedback suppression, but less confidence in
the finer high-𝑘 details of the non-linear modelling recom-
mend a limited scale cosmic shear analysis with informative
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Figure 18. Comparing the degeneracy in the 𝑆8−log10 (𝑇AGN/K) plane for
an analysis of noise-free EuclidEmulatorv2+OWLS-AGN mocks using
different scale cuts and baryon feedback priors (see Table 12). Test D
(orange, dot-dashed) applies no additional scale cuts to the KiDS mock
data and shows the strongest degeneracy. Test E (green, dotted) shows that
including scale cuts reduces the degeneracy. Test F (blue, solid) extends
the lower bound of the log10 (𝑇AGN/K) prior to include dark-matter only
scenarios. The inner 68% and outer 95% credible intervals are shown
contoured, accurately recovering the input cosmology where 𝑆8 = 0.759.

𝑇AGN priors. Those with a low degree of confidence in the
results from hydrodynamical simulations recommend the
use of more conservative scale cuts, similar to the approach
taken in Appendix B but adopting a more extreme worst
case scenario for baryon feedback such as Cosmo-OWLS-
AGN:8.7. Other opinions include the use of highly flexible
baryon feedback models, with or without the combination
of scale cuts. As we have seen in Appendix C.3, any change
in prior and/or astrophysical model leads to different pro-
jection effects, some of which may be unexpected (see for
example the strong degeneracy between the HMCode2016
baryon feedback parameter 𝐴bary and 𝑛s when using unin-
formative priors in Yoon & Jee 2021). A comparison of the
results from the authorship’s range of preferred baryon feed-
back mitigation strategies would therefore require both the
analysis of mocks and data which we defer to a future study.
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We also note that data comparisons using different angular
ranges will also be subject to random noise fluctuations (see
Appendix F).

We conclude our baryon feedback study with Test F, where
we expand the lower limit of the 𝑇AGN prior to include low
feedback models that are equivalent to a dark matter only
model (see Figure 16). The decision to allow the non-linear
model of the matter power spectrum to include no baryon
feedback followed the preferred approach of Amon et al.
(2022); Secco, Samuroff et al. (2022) and also Asgari et al.
(2021) who allow for a dark matter only model within their
baryon feedback prior. We find that extending the infor-
mative 𝑇AGN prior to include no feedback, in combination
with scale cuts, does not change the recovered 𝑆8 value or
constraining power. This can be understood from Figure 18
where we see little degeneracy between 𝑇AGN and 𝑆8 for
log10 (𝑇AGN/K) ≲ 7.5. For our Hybrid analysis we there-
fore choose to combine the mitigation strategies from both
surveys using scale cuts and a 𝑇AGN prior that spans a dark
matter-only Universe through to the strongest BAHAMAS
AGN feedback model.

The ‘Hybrid’ row in Table 12 repeats Test F with the Hy-
brid prior set, extending the KiDS prior set with the DES
prior on neutrino mass. This introduces an underestimate of
𝑆8 by 0.46𝜎 in our recovered mean marginal 𝑆8 value, aris-
ing from projection effects. Here our mock input neutrino
mass, Σ𝑚𝜈 = 0.06 eV, is at the lower edge of the allowed
tophat prior range which extends to Σ𝑚𝜈 < 0.6 eV. The
weak correlation between Σ𝑚𝜈 and 𝑆8 then leads to a bias in
the mean or maximum of the projected marginal 𝑆8 distri-
bution. This issue should be largely circumvented, however,
by reporting the MAP in contrast to the marginal values.

In one final Test G, we replace the NLA-z model with a
TATT model in our analysis to quantify the ∼ 0.8𝜎 level
of bias from the truth when adopting this model to analyse
an NLA-z mock Universe. As shown in Appendix C.3,
however, this bias decreases to zero when adopting the DES
priors and analysing a mock Universe that includes a TATT
IA signal.

We review the different constraining power of each setup
in Table 12, focusing on the mean-marginal constraints.
Comparing the KiDS-like analysis with Test D, we find a
∼ 33% increase in the error on 𝑆8 resulting from the change
in both IA model and sampler, which is consistent with ex-
pectations (see Appendix D; Secco, Samuroff et al. 2022;
Asgari et al. 2021). We find a modest improvement of∼ 10%
in constraints between the DES-like analysis, and Tests A,
B and C, demonstrating that the combination of changing
from TATT to NLA-z and from DES to KiDS+ priors does
not make a significant difference when the input IA model is
NLA, consistent with the results in Appendix C.4. Compar-
ing Test C and E, we find a ∼ 6% increase in the error on 𝑆8
when including baryon feedback marginalisation. The in-
clusion of a free neutrino mass parameter raises the error on
𝑆8 by a further ∼ 6%. For this EuclidEmulatorv2 mock
we find that our Hybrid analysis choices lead to an increase
in the error on 𝑆8 by ∼ 43% relative to the KiDS-like fidu-
cial analysis, with similar constraining power relative to the
DES-like fiducial analysis. The difference we see between
the constraints from this suite of mock analyses is largely
replicated in our data analysis in Section 3.

F. COMPARING KIDS-1000 COSEBIS WITH AND WITHOUT
SCALE CUTS

Summary: In this appendix we measure a 0.7 − 0.8𝜎
increase in the KiDS-1000 𝑆8 constraint when including
scale cuts in a KiDS-like COSEBIs analysis. We find this
result to be consistent with random noise fluctuations, where
a ≥ 0.7𝜎(≥ 0.8𝜎) offset between a 𝜃min = 0 ′

.5 and 𝜃min =

2pt 𝜃min HM 𝑆8 Δ𝑆8 𝜎/𝜎fid 𝐴IA Δ𝐴IA

𝐸𝑛 0.5´ 2016 0.758+0.017
−0.026 0.00𝜎 1.0 0.39+0.35

−0.41 0.00𝜎
𝜉± 0.5´ 2016 0.765+0.019

−0.017 0.33𝜎 0.83 0.37+0.36
−0.34 0.12𝜎

𝐸𝑛 2.0´ 2016 0.774+0.020
−0.024 0.73𝜎 1.01 0.62+0.35

−0.43 0.61𝜎
𝜉± 2.0´ 2016 0.769+0.018

−0.020 0.52𝜎 0.87 0.56+0.34
−0.35 0.45𝜎

𝐸𝑛 0.5´ 2020 0.762+0.023
−0.028 0.19𝜎 1.19 0.41+0.34

−0.46 0.04𝜎
𝐸𝑛 2.0´ 2020 0.780+0.020

−0.024 1.01𝜎 1.03 0.60+0.34
−0.44 0.56𝜎

Table 13. KiDS-1000 maximum marginal constraints on 𝑆8, and the
intrinsic alignment parameter, 𝐴IA, using a KiDS-like pipeline for a range
of different two-point statistics (2pt). We compare COSEBIs, 𝐸𝑛, with the
two-point shear correlation function, 𝜉±, for two different scale cuts 𝜃min =

0 ′
.5 (the fiducial KiDS setting) and 𝜃min = 2 ′

.0 (the Appendix B DES-like
scale cut setting). We also compare the COSEBIs results for two versions of
HMCode (HM). With HMCode2016 we use KiDS-like priors on the baryon
feedback parameter 𝐴bary = [2, 3.13]. With HMCode2020 we use the
BAHAMAS-defined baryon feedback range log10 (𝑇AGN/K) : [7.6, 8.0].
Δ𝑆8 and Δ𝐴IA compares the fiducial Asgari et al. (2021) 𝐸𝑛 result with
the different variations, in units of 𝜎, the 68% credible interval for each
parameter. We also compare the 𝑆8 constraining power for each variation
through the ratio 𝜎/𝜎fid.

2 ′
.0 COSEBIs analysis occurs 23%(14%) of the time in

noisy mock KiDS-1000 simulations. To address whether
this offset could alternatively/additionally indicate an issue
with unmodeled baryon feedback, we test a mock using the
most extreme hydrodynamic simulation Cosmo-OWLS:8.7.
In this case, we estimate a 0.4𝜎 offset in 𝑆8 between a 𝜃min =

0 ′
.5 and a 𝜃min = 2 ′

.0 noise-free COSEBIs analysis that
adopts the HMCode2020 model, fixing log10 (𝑇AGN/K) =
7.8.

In Table 13 we report the maximum marginal constraints
on 𝑆8 and 𝐴IA for a series of KiDS-1000 cosmic shear anal-
yses using: COSEBIs, 𝐸𝑛, and the two-point correlation
function69, 𝜉± (𝜃); two different minimum angular scales,
𝜃min = 0 ′

.5 and 𝜃min = 2 ′
.0; and two versions of HMCode.

The COSEBIs analysis with 𝜃min = 0 ′
.5 and HMCode2016

is the fiducial result from Asgari et al. (2021). The COSE-
BIs analysis with 𝜃min = 2 ′

.0 and HMCode2020 adopts the
scale cuts and updated non-linear power spectrum model
used in the Hybrid analysis presented in Section 3.1. We
find a 1.01𝜎 increase in 𝑆8 between these two analyses. An
increase of ∼ 0.2− 0.3𝜎 is found when changing from HM-
Code2016 to HMCode2020, which can be understood from
the percent-level change in the amplitude of the cosmic shear
predictions from these two models (see Figure 17), and the
use of different baryon feedback priors70. An increase of
∼ 0.7 − 0.8𝜎 is found when changing from 𝜃min = 0 ′

.5 to
𝜃min = 2 ′

.0 for the COSEBIs 𝐸𝑛 statistic71. In this appendix
we focus on understanding the likely origin of a 0.7 − 0.8𝜎
offset associated with scale cuts.

69 We refer the reader to section 2.4 and figure 1 of Asgari et al. (2021)
for a discussion on the advantages and disadvantages for each cosmic shear
statistic. Of note is the finding that the 𝜉± (𝜃 )-optimised definition 𝑆8 =
𝜎8 (Ωm/0.3)𝛼, where 𝛼 = 0.5, does not provide an optimal description of
the COSEBIs 𝜎8 − Ωm degeneracy where the best fit 𝛼 = 0.54.

70 With HMCode2016 the most extreme baryon feedback simula-
tion considered at the time was OWLS-AGN which corresponds to
log10 (𝑇AGN/K) ∼ 7.8. With HMCode2020, more extreme models
were permitted by the BAHAMAS simulation, raising the prior limit to
log10 (𝑇AGN/K) = 8.0. Owing to the degeneracy between 𝑆8 and 𝑇AGN,
stronger feedback allows for higher 𝑆8 values.

71 Defining 𝜎 = (𝜎upper
68 + 𝜎lower

68 )/2, using constraints from the
𝐸𝑛 (𝜃 =0 ′

.5) analysis, we find Δ𝑆8 = 0.73𝜎 when comparing the two
HMCode2016 analyses and Δ𝑆8 = 0.71𝜎 when comparing the two HM-
Code2020 analysis. We note that for the HMCode2020 analysis, the 𝑆8
error from the 𝐸𝑛 (𝜃 =0 ′

.5) data vector is ∼ 15% higher than the 𝑆8 error
from 𝐸𝑛 (𝜃 = 2.′0) data vector. This may be caused by chain-to-chain
variance noise. Defining the 𝑆8 offset for the two HMCode2020 analyses
in terms of the error on 𝐸𝑛 (𝜃 = 2.′0) , we find Δ𝑆8 = 0.81𝜎.
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Figure 19. Estimating the expected bias Δ𝑆8 when analysing a Uni-
verse with no baryon feedback (upper right quadrant) or a Universe with
strong AGN feedback, modelled with Cosmo-OWLS:8.7 (lower left quad-
rant), with a fiducial theoretical model that adopts HMCode2020 with
log10 (𝑇AGN/K) = 7.8. We determine the signal-to-noise 𝜈 (Equation E1)
for three mock cosmic shear observables: DES Y3 𝜉± (𝜃 ) including scale
cuts (green), KiDS-1000 COSEBIs 𝐸𝑛 with 𝜃min = 2 ′

.0 (pink) and KiDS-
1000 𝐸𝑛 with 𝜃min = 0 ′

.5 (blue). This is calculated for the fiducial model
over a range of 𝑆8 values (solid lines), and also for the trial cases of no
feedback, and strong feedback (data points). As expected the two scale cut
statistics (𝜉± (𝜃 ) - circle, 𝐸𝑛 , 𝜃min = 2 ′

.0 - star) produce the least biased
estimate when the underlying feedback differs from the model. The offset
between the two COSEBIs statistics is within the 1𝜎 error for a KiDS-like
analysis (shaded).

In the interest of conducting a fast approximate analysis,
we choose to compress the tomographic cosmic shear data
vector into a single signal-to-noise estimate 𝜈 (Equation E1),
following Appendix E.1. By noting that the amplitude of
the cosmic shear signal scales roughly as 𝜈 ∝ 𝑆2

8 (Jain &
Seljak 1997), we can write that the ratio 𝜈A/𝜈B ∝ Δ𝑆8, for
the same noise realisation of cosmology A and B whose 𝑆8
values differ by a small quantity Δ𝑆8 = 𝑆A

8 − 𝑆B
8 .

In Figure 19 we calibrate this relationship by calculating
the ratio of 𝜈test/𝜈fiducial for a series of mock KiDS-1000
and DES Y3 data vectors, using test cosmologies that differ
from our fiducial cosmological parameter set in Table 6 with
𝑆test

8 = 𝑆fiducial
8 +Δ𝑆8. We find a slightly different relationship

for the DES Y3-like 𝜉± (𝜃) data vector (green) and the KiDS-
1000-like 𝐸𝑛 data vectors (pink, blue), but a similar response
for the two COSEBIs statistic versions with 𝜃min = 0 ′

.5 (blue)
and 𝜃min = 2 ′

.0 (pink).
To address the question, what offset in 𝑆8 would we ex-

pect to measure from the different cosmic shear statistics
if our baryon feedback model was incorrect, we calculate
𝜈test/𝜈fiducial for two further tests. In both tests the cosmo-
logical model is fixed to the fiducial parameter set and the
baryon feedback model is altered. First we adopt a dark
matter only matter power spectrum with no baryon feedback
suppression. The fiducial mock simulates baryon feedback
with log10 (𝑇AGN/K) = 7.8, reducing power relative to the
dark matter only case by a factor of ∼ 5% at 𝑘 = 1ℎMpc−1.
In this case 𝜈test/𝜈fiducial > 1 (see the upper right quadrant in
Figure 19). For the second test we adopt a model from the
most extreme baryon feedback simulation to date Cosmo-
OWLS:8.7 (Le Brun et al. 2014), which reduces power rel-
ative to the dark matter only case by a factor of ∼ 20% at
𝑘 = 1ℎMpc−1, roughly a factor of four times the level of
suppression relative to the fiducial log10 (𝑇AGN/K) = 7.8
case. In this test 𝜈test/𝜈fiducial < 1 (see the lower left quad-
rant in Figure 19). Using the 𝜈A/𝜈B ∝ Δ𝑆8 relationship
calibrated for each statistic in Figure 19, we can read off

an estimate for Δ𝑆8 for these two test cases. As expected
we find the COSEBIs 𝜃min = 0 ′

.5 statistic (blue) to be the
most sensitive to baryon feedback (the largest Δ𝑆8 values),
followed by COSEBIs 𝜃min = 2 ′

.0 (pink) and then 𝜉± (𝜃)
with DES Y3 scale cuts applied. The difference seen be-
tween the COSEBIs 𝜃min = 2 ′

.0 and 𝜉± (𝜃) scale cut analyses
demonstrates that the COSEBIs-defined scale cut from Ap-
pendix B renders the cosmic shear analysis more sensitive
to the 𝑘-scales impacted by baryon feedback, compared to
the Krause et al. (2021) 𝜉± (𝜃)-defined scale cuts. It may be
beneficial in the future to develop the COSEBIs software to
allow for redshift-dependent 𝜃min-limits in order to further
reduce the impact of baryon feedback without incurring a
significant loss of constraining power.

What is of interest for this appendix is the 𝑆8 offset found
between the different statistics, rather than the offset rel-
ative to the fiducial input value. If the underlying truth
was a Universe with no baryon feedback, in a noise-free
analysis we would expect our best fit value for 𝑆8 to de-
crease by Δ𝑆8 = 0.012 when changing from 𝜃min = 0 ′

.5 to
𝜃min = 2 ′

.0. This corresponds to a ∼ 0.6𝜎 decrease between
the different KiDS-1000 constraints. In the data we find a
higher 𝑆8 value when scale cuts are included, which is more
similar to the case where the underlying truth is Cosmo-
OWLS:8.7. Here we would expect to measure an increase
of Δ𝑆8 = 0.008 between the two noise-free COSEBIs anal-
yses, corresponding to a 0.4𝜎 offset between the different
KiDS-1000 constraints.

It is important to recognise that these estimates are only
approximate as they compress the tomographic data vec-
tor into a single noise-averaged value, erasing second-order
information on scale and redshift dependence. In one re-
spect, however, they are conservative, as they do not account
for the marginalisation step over a wide baryon feedback
prior in the KiDS-like analysis that allows for models as
strong as log10 (𝑇AGN/K) = 8.0. From this analysis we draw
the conclusion that the 𝑆8 offset we measure between the
KiDS-1000 COSEBIs 𝜃min = 0 ′

.5 and 𝜃min = 2 ′
.0 𝐸𝑛 con-

straints could be attributed to unmodeled extreme baryon
feedback. This hypothesis only accounts for roughly half of
the observed difference, however, when considering Cosmo-
OWLS:8.7 as the ‘worst-case scenario’ for baryon feedback.

Asgari et al. (2021) report cosmological parameter con-
straints from a range of two-point statistics measured from
the same data set: 𝐸𝑛 (𝜃min =0 ′

.5), 𝜉± (𝜃) and 𝐶EE
𝜖 𝜖 (ℓ). Us-

ing a series of 5000 noisy mock simulations of KiDS-1000
created with SALMO72, they quantify the cross-correlation
between the different statistics. The range of positive, zero
and negative cross-correlations for different components re-
sult from the changing sensitivity of each statistic to a range
of noisy ℓ-scales. Asgari et al. (2021) find that they expect
to measure a > 1𝜎 offset in 𝑆8 constraints between the dif-
ferent KiDS-1000 two-point statistics, 15% of the time (see
similar findings for analyses of HSC-Y1 mocks in Hamana
et al. 2022). The 0.3𝜎 offset between the fiducial 𝜉± (𝜃) and
𝐸𝑛 constraints seen in Table 13 is therefore expected.

We revisit the Asgari et al. (2021) analysis to quantify the
expected offset in 𝑆8 between two COSEBIs analyses of the
same data set using 𝜃min = 0 ′

.5 and 𝜃min = 2 ′
.0. Using the

original set of SALMO mocks, we were able to determine
the cross-correlation between the two COSEBIs versions at
essentially no CPU cost. We then took a short-cut compared
to the original analysis, using the 𝜈A/𝜈B ∝ Δ𝑆8 relationship
derived in Figure 19 to determine the expected offset in 𝑆8
between pairs of 𝐸𝑛 statistics measured with and without

72 SALMO: https://github.com/Linc-tw/salmo. For
information see section 4 of Joachimi et al. (2021).

https://github.com/Linc-tw/salmo
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Survey Pipeline 𝜒2
min 𝑁Θ 𝑝 (𝜒2

min |𝜈eff )
DES Y3 (Full area) DES-like 283.6 6.7 0.222
DES Y3 (Full area) KiDS-like 284.3 5.0 0.235
DES Y3 (Full area) Hybrid 284.2 5.4 0.231
DES Y3 (KiDS-excised) DES-like 285.3 8.0 0.187
DES Y3 (KiDS-excised) KiDS-like 286.5 5.1 0.207
DES Y3 (KiDS-excised) Hybrid 288.3 4.6 0.192
KiDS DES-like 83.7 8.3 0.078
KiDS KiDS-like 82.5 6.5 0.118
KiDS Hybrid 88.3 7.1 0.048
Joint DES-like 371.5 12.0 0.089
Joint KiDS-like 381.3 7.8 0.062
Joint Hybrid 378.0 9.6 0.068
Joint-1IA DES-like 377.2 10.4 0.068
Joint-1IA KiDS-like 373.9 8.8 0.094
Joint-1IA Hybrid 382.2 8.0 0.057

Table 14. Goodness of fit statistics listing the 𝜒2
min, the effective number

of parameters, 𝑁Θ, and the goodness of fit statistic 𝑝 (𝜒2 > 𝜒2
min |𝜈) (see

Section 2.7 for details). The Hybrid pipeline results can be compared to
the DES-like and KiDS-like analysis of DES, KiDS and the joint survey.

scale cuts in each SALMO mock. This differs from the
CPU-intensive approach of Asgari et al. (2021) where full
CosmoSIS analyses were performed for each mock and each
statistic. By applying the same short-cut technique to the set
of statistics tested in Asgari et al. (2021), however, we have
verified that this approximate approach results in a similar
distribution in Δ𝑆8 values. We find that a ≥ 1𝜎 offset in 𝑆8
between the two COSEBIs measurements is expected 9%
of the time. As such the two COSEBIs versions are more
correlated with each other than with 𝜉± (𝜃) and 𝐶EE

𝜖 𝜖 (ℓ). For
the 0.7𝜎 difference that we observe in the HMCode2016
analysis, we find that an offset of ≥ 0.7𝜎 is expected 23% of
the time. An offset of ≥ 0.8𝜎 is expected 14% of the time.
As such the offsets we find between the scale cut and original
version of COSEBIs with KiDS-1000 can be attributed to
random noise fluctuations.

To the reader most familiar with the 𝜉± (𝜃) statistic, this re-
sult may seem counter-intuitive, as the scale cut that has been
applied removes only one data point from each tomographic
bin. As we can see in Table 13, a 𝜉± (𝜃) analysis with a 𝜃min =

2 ′
.0 scale cut applied indeeds makes little impact, with 𝑆8

changing by ∼ 0.2𝜎. In contrast, the COSEBIs statistic is
calculated as a weighted average of finely binned noisy mea-
surements of 𝜉± (𝜃) summed over the range 𝜃min < 𝜃 < 𝜃max.
The shape of the oscillatory weight functions depends on the
angular range limits (see equations 28 and 38 of Schneider
et al. 2010). For 𝜃min = 0 ′

.5 and 𝜃min = 2 ′
.0 it is worth noting

that the COSEBIs weight functions differ significantly for
𝜃 ≲ 40 ′

.0.

G. CONSTRAINTS ON ALL PARAMETERS, ADDITIONAL
TABLES AND FIGURES

Summary: In this appendix we present additional results
from the DES Y3 + KiDS-1000 cosmic shear analysis to
complement the primary results in Section 3.

• Table 14 presents the goodness of fit statistics for the DES-
like and KiDS-like analyses, listing the 𝜒2

min, the estimated
effective number of parameters, 𝑁Θ, and the goodness
of fit statistic 𝑝(𝜒2 > 𝜒2

min |𝜈) for a range of different
analyses of the DES, KiDS and joint-survey data vectors,
with 𝑁data = 273, 75, 348 respectively. We remind the
reader that the Joachimi et al. (2021) approach used to
estimate 𝑁Θ is subject to noise at the level of ∼ 0.2𝑁Θ.

• In Figure 20 we present the joint-survey constraints across
the full cosmological parameter space, comparing the

Parameter DES Y3+KiDS-1000 DES Y3 KiDS-1000

𝑆8 0.790+0.018
−0.014 0.802+0.023

−0.019 0.763+0.031
−0.023

Ωm 0.280+0.037
−0.046 0.297+0.040

−0.060 0.270+0.056
−0.102∗

𝜎8 0.825+0.067
−0.073 0.816+0.076

−0.085 0.833+0.133
−0.146

ℎ 0.746+0.069
−0.029∗ 0.738+0.072

−0.040∗ 0.749+0.068
−0.029∗

𝑛s 0.973+0.074
−0.072∗ 0.979+0.093

−0.062∗ 0.984+0.102
−0.053∗

Σ𝑚𝜈 0.326+0.110
−0.187∗ 0.317+0.139

−0.223∗ 0.327+0.152
−0.215∗

𝜔b 0.022+0.002
−0.003∗ 0.022+0.002

−0.003∗ 0.022+0.002
−0.003∗

log10 (𝑇AGN/K) 7.627+0.152
−0.299∗ 7.632+0.170

−0.289∗ 7.623+0.153
−0.293∗

𝐴DES
IA −0.025+0.576

−0.285 0.323+0.432
−0.369 -

𝜂DES 2.047+2.953
−0.832∗ 1.774+3.166

−0.940∗ -
𝐴KiDS

IA 1.038+0.543
−0.516 - 0.650+0.884

−0.539
𝜂KiDS 2.211+2.588

−0.958∗ - 2.022+2.937
−0.868∗

Δ𝑧DES
1 0.001+0.015

−0.015∗ −0.004+0.016
−0.015∗ -

Δ𝑧DES
2 0.014+0.012

−0.011∗ 0.011+0.011
−0.011∗ -

Δ𝑧DES
3 −0.008+0.010

−0.010∗ −0.004+0.010
−0.010∗ -

Δ𝑧DES
4 −0.006+0.015

−0.014∗ 0.000+0.014
−0.014∗ -

Δ𝑧KiDS
1 −0.001+0.011

−0.010∗ - 0.000+0.010
−0.010∗

Δ𝑧KiDS
2 −0.010+0.010

−0.011∗ - −0.008+0.011
−0.012∗

Δ𝑧KiDS
3 0.016+0.010

−0.011∗ - 0.016+0.011
−0.010∗

Δ𝑧KiDS
4 0.017+0.008

−0.009∗ - 0.015+0.008
−0.008∗

Δ𝑧KiDS
5 −0.006+0.009

−0.010∗ - −0.007+0.009
−0.010∗

𝑚DES
1 −0.007+0.009

−0.009∗ −0.007+0.009
−0.009∗ -

𝑚DES
2 −0.021+0.008

−0.007∗ −0.020+0.008
−0.008∗ -

𝑚DES
3 −0.022+0.007

−0.007∗ −0.024+0.007
−0.008∗ -

𝑚DES
4 −0.035+0.007

−0.007∗ −0.037+0.007
−0.007∗ -

Table 15. Mean marginal constraints with 68% credible intervals for the
ΛCDM parameters (upper), astrophysical nuisance parameters (middle) and
data calibration parameters (lower). Cosmic shear results are reported from
the joint DES Y3 and KiDS-1000 (left), DES Y3 (middle) and KiDS-1000
(right) analyses. Parameters marked ∗, are considered to be unconstrained
by the data as their marginal posterior, at either prior edge, exceeds 13% of
the peak posterior probability.

fiducial Hybrid NLA-z analysis with the alternative TATT
analysis. We also include the marginal posterior for the
baryon feedback parameter𝑇AGN. Only 𝑆8, Ωm and 𝜎8 are
constrained by the data. The axis limits on ℎ, 𝑛s, Σ𝑚𝜈 , 𝜔b
and𝑇AGN are set by the priors. As we have chosen to sam-
ple in 𝑆8, the prior space is straightforward to visualise
as rectangles in each 2D marginal bounded by the prior
edges. Throughout the paper we use GetDist73 (Lewis
2019) to plot quantities of interest from our chains of
Monte Carlo samples. GetDist applies a linear boundary
kernel and multiplicative bias correction74 to remove the
bias introduced when the chain-smoothing kernel passes
over a prior boundary. When the hard boundaries from
the priors are aligned with the parameter coordinates, as
in our case, the boundaries can be defined using the Get-
Dist.MCSamples ‘ranges’ option. With the prior ranges
set, the GetDist contoured credible intervals do not arti-
ficially close for prior-informed parameters.

• In Figure 21 we present the joint-survey constraints across
the astrophysical nuisance parameter space for the alter-
native TATT analysis. Only 𝑆8, 𝑎1 and 𝑎2 are constrained
by the data. We can see that the preference for a lower 𝑆8
value in the TATT analysis, relative to our fiducial anal-
ysis, is primarily driven by the IA model allowing for a
significant tidal torque amplitude, the 𝑎2 parameter, when
there is strong redshift evolution with high values for 𝜂2.
73 GetDist: https://getdist.readthedocs.io
74 We use the GetDist settings: boundary_correction_order:0,

mult_bias_correction_order:1.

https://getdist.readthedocs.io
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We find a similar preference for strong redshift evolu-
tion of the IA model in the fiducial NLA-z analysis (see
Figure 3), but in contrast to the TATT analysis, the 𝜂IA
amplitude is largely uncorrelated with 𝑆8. We see similar
behaviour for the IA model parameters for the DES (pink)
and KiDS (black) surveys. As with the fiducial analysis,
KiDS prefers higher values for 𝐴1 compared to DES.

• Table 15 reports the mean 1D marginal values for each
parameter for the fiducial Hybrid analyses of DES Y3
and KiDS-1000. We use ∗ to mark parameters that are
unconstrained by the data. In these cases the tabulated
constraint comes from the prior, as the marginal posterior
probability, at either prior edge, exceeds 13% of the peak
posterior value (see appendix A of Asgari et al. 2021).
We constrain 𝑆8, 𝜎8, and the intrinsic alignment ampli-
tude 𝐴IA for each survey, and Ωm for the joint survey
and the DES-only analysis. We have not presented fig-
ures of the marginal posteriors for the shear and redshift
calibration nuisance parameters 𝑚 and Δ𝑧, as we recover
the peak and width of the Gaussian prior for the majority
of these parameters (compare the values75 in Table 1 and
Table 15). A notable exception is the redshift calibration
parameter for the second tomographic bin, Δ𝑧2, for both
the DES and KiDS data. In the DES-only, KiDS-only and
joint-survey Hybrid analysis the mean Δ𝑧2 of each survey
is ±1𝜎 offset from the Gaussian prior peak. This is con-
sistent with the previous findings of both survey teams
(see for example figure 17 of Amon et al. 2022). Both
teams show consistent 𝑆8 results when excluding individ-
ual tomographic bins from the fiducial analysis (see also
figures 16 and 18 in Amon et al. 2022, for the stability
of the intrinsic alignment parameter constraints when re-
moving redshift bins and varying the redshift calibration
methodology). Using the Köhlinger et al. (2019) ‘three
tier’ set of internal consistency statistics, Asgari et al.
(2021) flag the second KiDS-1000 tomographic bin as an
outlier (see their appendix B.2). As this bin carries in-
significant levels of cosmological information, however,
the results are unchanged by the inclusion or exclusion of
this tomographic bin.

This paper was built using the Open Journal of Astro-
physics LATEX template. The OJA is a journal which provides
peer review for new papers in the astro-ph section of the
arXiv. Learn more at http://astro.theoj.org.

75 In this paper we define Δ𝑧 = ⟨𝑛estimate (𝑧) ⟩ − ⟨𝑛true (𝑧) ⟩ which
we note has a different sign convention to the CosmoSIS parameter
DELTA_Z_OUT= −Δ𝑧.

http://astro.theoj.org
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