45 research outputs found
Methylmalonic acidemia (MMA) in pregnancy: a case series and literature review
IntroductionWomen with inherited metabolic disorders, including those with previously life‐limiting conditions such as MMA, are reaching child‐bearing age more often due to advances in early diagnosis and improved pediatric care. Information surrounding maternal and fetal complications associated with the underlying disorders remains largely unexplored.MethodsPregnancies affected by maternal MMA were ascertained through study 04‐HG‐0127 “Clinical and Basic Investigations of Methylmalonic Acidemia and Related Disorders” (clinicaltrials.gov identifier: NCT00078078) and via literature review. Prenatal and delivery records in study participants were reviewed.ResultsSeventeen pregnancies were identified in women with isolated MMA, including three abortions, one termination, and 13 completed pregnancies [three cases with cblA (four pregnancies), four cases of mut‐ (one cobalamin responsive, three non‐responsive), five cases with unknown type of MMA]. Seventeen percent (3/17) of the pregnancies resulted in a first trimester abortion, while 38.5 % (5/13) of the completed pregnancies resulted in preterm deliveries. A cesarean delivery rate of 53.8 % (7/13) was noted among the cohort. Fetal distress or nonreassuring fetal status was the indication for 57 % (4/7) cesarean deliveries. One patient was reported to have metabolic crisis as well as episodes of mild hyperammonemia. Malformations or adverse outcomes in the progeny were not observed.ConclusionAlthough there have been a small number of pregnancies identified in women with MMA, the cumulative results suggest that the majority of pregnancies can be complicated by cesarean delivery and increased risk of prematurity. A pregnancy registry could clarify perinatal complications and define management approaches needed to ensure optimal maternal and fetal outcomes in this growing patient population.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/147009/1/jimd0839.pd
In vitro and in vivo plasmalogen replacement evaluations in rhizomelic chrondrodysplasia punctata and Pelizaeus-Merzbacher disease using PPI-1011, an ether lipid plasmalogen precursor
<p>Abstract</p> <p>Background</p> <p>Childhood peroxisomal disorders and leukodystrophies are devastating diseases characterized by dysfunctional lipid metabolism. Plasmalogens (ether glycerophosphoethanolamine lipids) are decreased in these genetic disorders. The biosynthesis of plasmalogens is initiated in peroxisomes but completed in the endoplasmic reticulum. We therefore undertook a study to evaluate the ability of a 3-substituted, 1-alkyl, 2-acyl glyceryl ether lipid (PPI-1011) to replace plasmalogens in rhizomelic chrondrodysplasia punctata type 1 (RCDP1) and rhizomelic chrondrodysplasia punctata type 2 (RCDP2) lymphocytes which possess peroxisomal mutations culminating in deficient plasmalogen synthesis. We also examined plasmalogen synthesis in Pelizaeus-Merzbacher disease (PMD) lymphocytes which possess a proteolipid protein-1 (PLP1) missense mutation that results in abnormal PLP1 folding and it's accumulation in the endoplasmic reticulum (ER), the cellular site of the last steps in plasmalogen synthesis. <it>In vivo </it>incorporation of plasmalogen precursor into tissue plasmalogens was also evaluated in the Pex7 mouse model of plasmalogen deficiency.</p> <p>Results</p> <p>In both RCDP1 and RCDP2 lymphocytes, PPI-1011 repleted the target ethanolamine plasmalogen (PlsEtn16:0/22:6) in a concentration dependent manner. In addition, deacylation/reacylation reactions resulted in repletion of PlsEtn 16:0/20:4 in both RCDP1 and RCDP2 lymphocytes, repletion of PlsEtn 16:0/18:1 and PlsEtn 16:0/18:2 in RCDP2 lymphocytes, and partial repletion of PlsEtn 16:0/18:1 and PlsEtn 16:0/18:2 in RCDP1 lymphocytes. In the Pex7 mouse, oral dosing of labeled PPI-1011 demonstrated repletion of tissue levels of the target plasmalogen PlsEtn 16:0/22:6 with phospholipid remodeling also resulting in significant repletion of PlsEtn 16:0/20:4 and PlsEtn 16:0/18:1. Metabolic conversion of PPI-1011 to the target plasmalogen was most active in the liver.</p> <p>Conclusions</p> <p>Our data demonstrate that PPI-1011 is activated (removal of 3-substitution) and converted to PlsEtn <it>in vitro </it>in both RCDP1 and RCDP2 lymphocytes and <it>in vivo </it>in the Pex7 mouse model of RCPD1 effectively bypassing the peroxisomal dysfunction present in these disorders. While PPI-1011 was shown to replete PlsEtns 16:0/x, ether lipid precursors of PlsEtn 18:0/x and PlsEtn 18:1/x may also be needed to achieve optimal clinical benefits of plasmalogen replacement in these complex patient populations. In contrast, only limited plasmalogen replacement was observed in PMD lymphocytes suggesting that the effects of protein misfolding and accumulation in the ER negatively affect processing of plasmalogen precursors in this cellular compartment.</p
A genomic rearrangement resulting in a tandem duplication is associated with split hand-split foot malformation 3 (SHFM3) at 10q24
Split hand-split foot malformation (SHFM) is characterized by hypoplasia/aplasia of the central digits with fusion of the remaining digits. SHFM is usually an autosomal dominant condition and at least five loci have been identified in humans. Mutation analysis of the DACTYLIN gene, suspected to be responsible for SHFM3 in chromosome 10q24, was conducted in seven SHFM patients. We screened the coding region of DACTYLIN by single-strand conformation polymorphism and sequencing, and found no point mutations. However, Southern, pulsed field gel electrophoresis and dosage analyses demonstrated a complex rearrangement associated with a ∼0.5 Mb tandem duplication in all the patients. The distal and proximal breakpoints were within an 80 and 130 kb region, respectively. This duplicated region contained a disrupted extra copy of the DACTYLIN gene and the entire LBX1 and β-TRCP genes, known to be involved in limb development. The possible role of these genes in the SHFM3 phenotype is discusse
Allelic Expression Imbalance Promoting a Mutant PEX6 Allele Causes Zellweger Spectrum Disorder
Zellweger spectrum disorders (ZSDs) are autosomal-recessive disorders that are caused by defects in peroxisome biogenesis due to bi-allelic mutations in any of 13 different PEX genes. Here, we identified seven unrelated individuals affected with an apparent dominant ZSD in whom a heterozygous mutant PEX6 allele (c.2578C>T [p.Arg860Trp]) was overrepresented due to allelic expression imbalance (AEI). We demonstrated that AEI of PEX6 is a common phenomenon and is correlated with heterozygosity for a frequent variant in the 3' untranslated region (UTR) of the mutant allele, which disrupts the most distal of two polyadenylation sites. Asymptomatic parents, who were heterozygous for PEX c.2578C>T, did not show AEI and were homozygous for the 3' UTR variant. Overexpression models confirmed that the overrepresentation of the pathogenic PEX6 c.2578T variant compared to wild-type PEX6 c.2578C results in a peroxisome biogenesis defect and thus constitutes the cause of disease in the affected individuals. AEI promoting the overrepresentation of a mutant allele might also play a role in other autosomal-recessive disorders, in which only one heterozygous pathogenic variant is identified.</p
Human predecidual stromal cells are mesenchymal stromal/stem cells and have a therapeutic effect in an immune-based mouse model of recurrent spontaneous abortion
Human decidual stromal cells (DSCs) are involved in the maintenance and development of
pregnancy, in which they play a key role in the induction of immunological maternal–fetal tolerance. Precursors of
DSCs (preDSCs) are located around the vessels, and based on their antigen phenotype, previous studies suggested
a relationship between preDSCs and mesenchymal stromal/stem cells (MSCs). This work aimed to further elucidate
the MSC characteristics of preDSCs. Under the effect of P4 and cAMP, the preDSC lines and clones decidualized in vitro: the cells became rounder
and secreted PRL, a marker of physiological decidualization. PreDSC lines and clones also exhibited MSC characteristics.
They differentiated into adipocytes, osteoblasts, and chondrocytes, and preDSC lines expressed stem cell markers OCT-
4, NANOG, and ABCG2; exhibited a cloning efficiency of 4 to 15%; significantly reduced the embryo resorption rate
(P < 0.001) in the mouse model of abortion; and survived for prolonged periods in immunocompetent mice. The fact
that 3 preDSC clones underwent both decidualization and mesenchymal differentiation shows that the same type of
cell exhibited both DSC and MSC characteristics. Together, our results confirm that preDSCs are decidual MSCs and suggest that these cells are involved
in the mechanisms of maternal–fetal immune toleranceThis work was supported by the Plan Estatal de Investigación Científica y
Técnica y de Innovación 2013–2016, ISCIII-Subdirección General de Evaluación y
Fomento de la Investigación, the Ministerio de Economía y Competitividad,
Spain (Grant PI16/01642) and European Regional Development Fund (ERDF/
FEDER funding), the European Community, and the Cátedra de Investigación
Anto nio Chamorro–Alejandro Otero, Universidad de Granada (CACH2017-1)
Generational Association Studies of Dopaminergic Genes in Reward Deficiency Syndrome (RDS) Subjects: Selecting Appropriate Phenotypes for Reward Dependence Behaviors
Abnormal behaviors involving dopaminergic gene polymorphisms often reflect an insufficiency of usual feelings of satisfaction, or Reward Deficiency Syndrome (RDS). RDS results from a dysfunction in the “brain reward cascade,” a complex interaction among neurotransmitters (primarily dopaminergic and opioidergic). Individuals with a family history of alcoholism or other addictions may be born with a deficiency in the ability to produce or use these neurotransmitters. Exposure to prolonged periods of stress and alcohol or other substances also can lead to a corruption of the brain reward cascade function. We evaluated the potential association of four variants of dopaminergic candidate genes in RDS (dopamine D1 receptor gene [DRD1]; dopamine D2 receptor gene [DRD2]; dopamine transporter gene [DAT1]; dopamine beta-hydroxylase gene [DBH]). Methodology: We genotyped an experimental group of 55 subjects derived from up to five generations of two independent multiple-affected families compared to rigorously screened control subjects (e.g., N = 30 super controls for DRD2 gene polymorphisms). Data related to RDS behaviors were collected on these subjects plus 13 deceased family members. Results: Among the genotyped family members, the DRD2 Taq1 and the DAT1 10/10 alleles were significantly (at least p < 0.015) more often found in the RDS families vs. controls. The TaqA1 allele occurred in 100% of Family A individuals (N = 32) and 47.8% of Family B subjects (11 of 23). No significant differences were found between the experimental and control positive rates for the other variants. Conclusions: Although our sample size was limited, and linkage analysis is necessary, the results support the putative role of dopaminergic polymorphisms in RDS behaviors. This study shows the importance of a nonspecific RDS phenotype and informs an understanding of how evaluating single subset behaviors of RDS may lead to spurious results. Utilization of a nonspecific “reward” phenotype may be a paradigm shift in future association and linkage studies involving dopaminergic polymorphisms and other neurotransmitter gene candidates
VIII Encuentro de Docentes e Investigadores en Historia del Diseño, la Arquitectura y la Ciudad
Acta de congresoLa conmemoración de los cien años de la Reforma Universitaria de 1918 se presentó como una ocasión propicia para debatir el rol de la historia, la teoría y la crítica en la formación y en la práctica profesional de diseñadores, arquitectos y urbanistas.
En ese marco el VIII Encuentro de Docentes e Investigadores en Historia del Diseño, la Arquitectura y la Ciudad constituyó un espacio de intercambio y reflexión cuya realización ha sido posible gracias a la colaboración entre Facultades de Arquitectura, Urbanismo y Diseño de la Universidad Nacional y la Facultad de Arquitectura de la Universidad Católica de Córdoba, contando además con la activa participación de mayoría de las Facultades, Centros e Institutos de Historia de la Arquitectura del país y la región.
Orientado en su convocatoria tanto a docentes como a estudiantes de Arquitectura y Diseño Industrial de todos los niveles de la FAUD-UNC promovió el debate de ideas a partir de experiencias concretas en instancias tales como mesas temáticas de carácter interdisciplinario, que adoptaron la modalidad de presentación de ponencias, entre otras actividades.
En el ámbito de VIII Encuentro, desarrollado en la sede Ciudad Universitaria de Córdoba, se desplegaron numerosas posiciones sobre la enseñanza, la investigación y la formación en historia, teoría y crítica del diseño, la arquitectura y la ciudad; sumándose el aporte realizado a través de sus respectivas conferencias de Ana Clarisa Agüero, Bibiana Cicutti, Fernando Aliata y Alberto Petrina. El conjunto de ponencias que se publican en este Repositorio de la UNC son el resultado de dos intensas jornadas de exposiciones, cuyos contenidos han posibilitado actualizar viejos dilemas y promover nuevos debates.
El evento recibió el apoyo de las autoridades de la FAUD-UNC, en especial de la Secretaría de Investigación y de la Biblioteca de nuestra casa, como así también de la Facultad de Arquitectura de la UCC; va para todos ellos un especial agradecimiento
Characterization of Severity in Zellweger Spectrum Disorder by Clinical Findings: A Scoping Review, Meta-Analysis and Medical Chart Review
Zellweger spectrum disorder (ZSD) is a rare, debilitating genetic disorder of peroxisome biogenesis that affects multiple organ systems and presents with broad clinical heterogeneity. Although severe, intermediate, and mild forms of ZSD have been described, these designations are often arbitrary, presenting difficulty in understanding individual prognosis and treatment effectiveness. The purpose of this study is to conduct a scoping review and meta-analysis of existing literature and a medical chart review to determine if characterization of clinical findings can predict severity in ZSD. Our PubMed search for articles describing severity, clinical findings, and survival in ZSD resulted in 107 studies (representing 307 patients) that were included in the review and meta-analysis. We also collected and analyzed these same parameters from medical records of 136 ZSD individuals from our natural history study. Common clinical findings that were significantly different across severity categories included seizures, hypotonia, reduced mobility, feeding difficulties, renal cysts, adrenal insufficiency, hearing and vision loss, and a shortened lifespan. Our primary data analysis also revealed significant differences across severity categories in failure to thrive, gastroesophageal reflux, bone fractures, global developmental delay, verbal communication difficulties, and cardiac abnormalities. Univariable multinomial logistic modeling analysis of clinical findings and very long chain fatty acid (VLCFA) hexacosanoic acid (C26:0) levels showed that the number of clinical findings present among seizures, abnormal EEG, renal cysts, and cardiac abnormalities, as well as plasma C26:0 fatty acid levels could differentiate severity categories. We report the largest characterization of clinical findings in relation to overall disease severity in ZSD. This information will be useful in determining appropriate outcomes for specific subjects in clinical trials for ZSD