6 research outputs found

    Teachers’ perceptions of their principals’ leadership styles and the impact on learners’ academic performance in South Africa, Ilembe District.

    Get PDF
    The way teachers perceive the leadership styles of their principals has an impact on learner performance. This quantitative study is aimed at examining teachers‟ perceptions of their principals‟ leadership styles as passive-avoidant, transactional or transformational and the consequent impact on learner performance in their schools. The study followed the survey research principles and adopted probability sampling. A simple random sampling technique was employed in selecting teachers from 14 high schools at Ndwedwe Circuit Management Centre in iLembe District in KwaZuluNatal Province. This sampling technique was selected to avoid bias. Every teacher in the three selected circuits stood an equal chance of being selected. The Multifactor Leadership Questionnaire was used to measure the leadership behaviours and attributes of principals as perceived by matriculation teachers. The National Senior Certificate Examinations was used to measure learner performance from 2014 to 2016. Teachers‟ demographics were also examined namely their age, gender, teaching experience, the service at their current school, their employment status and their level of education. A binomial test was conducted to assess whether a significant proportion of respondents select one of a possible number of responses. Pearson‟s correlation was used to measure correlations between variables. The principals were reported to exhibit characteristics of transformational, transactional as well as passive-avoidant leadership styles. Analyses showed that transformational leadership style scored significantly higher than transactional leadership style. These results do not support the theory that associates transformational leaders with positive effects in predicting organisational commitment. However, it does support the theory in that the effects of transformational leadership on learner performance are indirect. Principals are not directly involved with the learners. They impact results through teachers. The study illustrates the critical role played by teachers in improving learners‟ academic performance. Therefore, this study recommends that principals integrate instructional leadership with other leadership styles and that leadership should be always present. Limitations of the study included a lack of generalizability due to the use of schools from only one district.Abstract available in the PDF

    āļžāļĨāļ§āļąāļ•āļ›āļĢāļ°āļŠāļēāļāļĢ āđāļĨāļ°āļ™āļīāđ€āļ§āļĻāļ§āļīāļ—āļĒāļēāļžāļĪāļ•āļīāļāļĢāļĢāļĄāļ‚āļ­āļ‡āļ—āļēāļāļ—āļ°āđ€āļĨāļŠāļēāļŦāļĢāđˆāļēāļĒāđƒāļšāļĄāļ°āļāļĢāļđāļ” Elysia pusilla (Bergh, 1872)

    No full text
    Master of Science (Biology (International Program)), 2022Elysia pusilla (Bergh, 1872) is a sacoglossan sea slug that feeds on calcified green algae, Halimeda spp. It can incorporate and maintain chloroplasts from its algal food in its digestive glands, exhibiting kleptoplasty. The slug distributes in tropical Indo-Pacific. Evolution, symbiotic relationship, and kleptoplastic ability of sea slug have been well documented. However, less is known about their temporal variation in natural populations including the relationship between abundance of slugs and its algal hosts. Therefore, in this study, population dynamics of E. pusilla, the relationship between abundance of E. pusilla and its algal hosts, Halimeda macroloba, and behavioral ecology of E. pusilla were investigated at Lidee Island, Satun province. The results show that there was temporal variation in density of H. macroloba and E. pusilla egg masses but there was no variation in density of E. pusilla individuals because the number of the slugs was low. The analysis suggested that density and total surface area of H. macroloba which is the habitat availability might determine the occurrence of the slugs and the egg masses. There was a higher occasion to find the slugs in dense patches of the algae in which it related to surface area of the algal host. In this study, the age of algae was categorized into 4 stages, stage 1 is the new recruitment and stage 4 is mature plant. The highest number of slugs, egg masses and grazing marks were found on stage 4 which has the largest surface area comparing to the other stages. The highest number of egg masses and segments with grazing marks were found on the terminal segments. This part of the thalli has high concentration of secondary metabolites. These secondary metabolites reported to be utilized by slugs to deter their predators. In addition, terminal segments have thin calcification which helped the slugs graze easier. Moreover, the upper segments including terminal segments have larger surface area than the basal segments, reflecting the larger area of habitat use for the slugs. It might be another reason of a high occurrence of egg masses and grazing marks. Therefore, the amount of surface area which is related to the availability of habitat might be the important factor of habitat selection in E. pusilla.Elysia pusilla (Bergh, 1872) āđ€āļ›āđ‡āļ™āļ—āļēāļāļ—āļ°āđ€āļĨāđƒāļ™āļāļĨāļļāđˆāļĄ Sacoglossa āļ‹āļķāđˆāļ‡āđ€āļ›āđ‡āļ™āļŠāļąāļ•āļ§āđŒāļāļīāļ™āļžāļ·āļŠ āđ‚āļ”āļĒāļāļīāļ™āđ€āļ‰āļžāļēāļ°āļŠāļēāļŦāļĢāđˆāļēāļĒāđƒāļšāļĄāļ°āļāļĢāļđāļ” (Halimeda spp.) āļ—āļēāļāļŠāļ™āļīāļ”āļ™āļĩāđ‰āļŠāļēāļĄāļēāļĢāļ–āđ€āļāđ‡āļšāļ„āļĨāļ­āđ‚āļĢāļžāļĨāļēāļŠāļ•āđŒāļˆāļēāļāļŠāļēāļŦāļĢāđˆāļēāļĒāļ—āļĩāđˆāļĄāļąāļ™āļāļīāļ™āđ€āļ‚āđ‰āļēāđ„āļ›āđāļĨāļ°āļ™āļģāļĄāļēāđƒāļŠāđ‰āļ›āļĢāļ°āđ‚āļĒāļŠāļ™āđŒāđ„āļ”āđ‰ āļ„āļļāļ“āļŠāļĄāļšāļąāļ•āļīāļ™āļĩāđ‰āđ€āļĢāļĩāļĒāļāļ§āđˆāļē Kleptoplasty āļāļēāļĢāļāļĢāļ°āļˆāļēāļĒāļ•āļąāļ§āļ‚āļ­āļ‡āļ—āļēāļāļŠāļ™āļīāļ”āļ™āļĩāđ‰āļˆāļ°āļ­āļĒāļđāđˆāđƒāļ™āļšāļĢāļīāđ€āļ§āļ“āđ€āļ‚āļ•āļĢāđ‰āļ­āļ™āļ‚āļ­āļ‡āļ­āļīāļ™āđ‚āļ”-āđāļ›āļ‹āļīāļŸāļīāļ āļĄāļĩāļāļēāļĢāļĻāļķāļāļĐāļēāļĄāļēāļāļĄāļēāļĒāđ€āļāļĩāđˆāļĒāļ§āļāļąāļšāļ§āļīāļ§āļąāļ’āļ™āļēāļāļēāļĢ āļ„āļ§āļēāļĄāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāđāļšāļš symbiotic āļ‚āļ­āļ‡āļ—āļēāļāļāļąāļšāļŠāļēāļŦāļĢāđˆāļēāļĒāļ—āļĩāđˆāđ€āļ›āđ‡āļ™āđāļŦāļĨāđˆāļ‡āļ­āļēāļĻāļąāļĒ āđāļĨāļ°āļ„āļļāļ“āļŠāļĄāļšāļąāļ•āļī Kleptoplasty āđāļ•āđˆāļāļēāļĢāļĻāļķāļāļĐāļēāđƒāļ™āļ”āđ‰āļēāļ™āļžāļĨāļ§āļąāļ•āļĢāļ›āļĢāļ°āļŠāļēāļāļĢāļ‚āļ­āļ‡āļ—āļēāļāđƒāļ™āļ˜āļĢāļĢāļĄāļŠāļēāļ•āļīāđƒāļ™āļŠāđˆāļ§āļ‡āļĢāļ°āļĒāļ°āđ€āļ§āļĨāļēāļŦāļ™āļķāđˆāļ‡āļĢāļ§āļĄāļ–āļķāļ‡āļ„āļ§āļēāļĄāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļĢāļ°āļŦāļ§āđˆāļēāļ‡āļ„āļ§āļēāļĄāļŠāļļāļāļŠāļļāļĄāļ‚āļ­āļ‡āļ—āļēāļāđāļĨāļ°āļŠāļēāļŦāļĢāđˆāļēāļĒāļ—āļĩāđˆāđ€āļ›āđ‡āļ™āļ—āļĩāđˆāđāļŦāļĨāđˆāļ‡āļ­āļēāļĻāļąāļĒāļĒāļąāļ‡āļĄāļĩāļāļēāļĢāļĻāļķāļāļĐāļēāļ™āđ‰āļ­āļĒ āļ”āļąāļ‡āļ™āļąāđ‰āļ™āđƒāļ™āļāļēāļĢāļĻāļķāļāļĐāļēāļ„āļĢāļąāđ‰āļ‡āļ™āļĩāđ‰āļˆāļķāļ‡āļŠāļ™āđƒāļˆāļĻāļķāļāļĐāļēāļžāļĨāļ§āļąāļ•āļĢāļ›āļĢāļ°āļŠāļēāļāļĢāļ‚āļ­āļ‡āļ—āļēāļ E. pusilla āđƒāļ™āļ˜āļĢāļĢāļĄāļŠāļēāļ•āļī āļ„āļ§āļēāļĄāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļĢāļ°āļŦāļ§āđˆāļēāļ‡āļ„āļ§āļēāļĄāļŠāļļāļāļŠāļļāļĄāļ‚āļ­āļ‡āļ—āļēāļ E. pusilla āđāļĨāļ°āļŠāļēāļŦāļĢāđˆāļēāļĒāļ—āļĩāđˆāđ€āļ›āđ‡āļ™āđāļŦāļĨāđˆāļ‡āļ­āļēāļĻāļąāļĒ āđāļĨāļ°āļ™āļīāđ€āļ§āļĻāļ§āļīāļ—āļĒāļēāļžāļĪāļ•āļīāļāļĢāļĢāļĄāļ‚āļ­āļ‡āļ—āļēāļ E. pusilla āļāļąāļšāļŠāļēāļŦāļĢāđˆāļēāļĒ Halimeda macroloba āđ‚āļ”āļĒāļœāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļēāļ„āļ§āļēāļĄāļŦāļ™āļēāđāļ™āđˆāļ™āļ‚āļ­āļ‡āļŠāļēāļŦāļĢāđˆāļēāļĒ H. macroloba āđāļĨāļ°āļāđ‰āļ­āļ™āđ„āļ‚āđˆāļ‚āļ­āļ‡ E. pusilla āļĄāļĩāļ„āļ§āļēāļĄāđāļ›āļĢāļ›āļĢāļ§āļ™āđƒāļ™āļŠāđˆāļ§āļ‡āļĢāļ°āļĒāļ°āđ€āļ§āļĨāļēāļ—āļĩāđˆāļ—āļģāļāļēāļĢāļĻāļķāļāļĐāļē āđāļ•āđˆāļ„āļ§āļēāļĄāļŦāļ™āļēāđāļ™āđˆāļ™āļ‚āļ­āļ‡āļ•āļąāļ§āļ—āļēāļāļāļĨāļąāļšāđ„āļĄāđˆāļĄāļĩāļ„āļ§āļēāļĄāđāļ›āļĢāļ›āļĢāļ§āļ™āđƒāļ™āļŠāđˆāļ§āļ‡āļĢāļ°āļĒāļ°āđ€āļ§āļĨāļēāļ”āļąāļ‡āļāļĨāđˆāļēāļ§āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāļˆāļģāļ™āļ§āļ™āļ—āļēāļāļ—āļĩāđˆāļžāļšāļĄāļĩāļˆāļģāļ™āļ§āļ™āļ™āđ‰āļ­āļĒ āļœāļĨāļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ„āļēāļ”āļ§āđˆāļēāļ„āļ§āļēāļĄāļŦāļ™āļēāđāļ™āđˆāļ™āđāļĨāļ°āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļœāļīāļ§āļ‚āļ­āļ‡ H. macroloba āļ—āļĩāđˆāļ—āļēāļāļŠāļēāļĄāļēāļĢāļ–āđƒāļŠāđ‰āļ›āļĢāļ°āđ‚āļĒāļŠāļ™āđŒāđ„āļ”āđ‰ āļ­āļēāļˆāļˆāļ°āđ€āļ›āđ‡āļ™āļ•āļąāļ§āļāļģāļŦāļ™āļ”āļāļēāļĢāļ›āļĢāļēāļāļāļ‚āļ­āļ‡āļ—āļēāļ E. pusilla āđāļĨāļ°āļāđ‰āļ­āļ™āđ„āļ‚āđˆ āđāļĨāļ°āļˆāļ°āļĄāļĩāđ‚āļ­āļāļēāļŠāļŠāļđāļ‡āļĄāļēāļāļ—āļĩāđˆāļˆāļ°āļžāļšāļ—āļēāļāđƒāļ™āļšāļĢāļīāđ€āļ§āļ“āļ—āļĩāđˆāļĄāļĩ āļŦāļĒāđˆāļ­āļĄāļŠāļēāļŦāļĢāđˆāļēāļĒāļ—āļĩāđˆāļŦāļ™āļēāđāļ™āđˆāļ™āļŠāļđāļ‡āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāļĄāļĩāļžāļ·āđ‰āļ™āļ—āļĩāđˆāđƒāļŠāđ‰āļ›āļĢāļ°āđ‚āļĒāļŠāļ™āđŒāļ—āļĩāđˆāļĄāļēāļāļāļ§āđˆāļē āđƒāļ™āļāļēāļĢāļĻāļķāļāļĐāļēāļ„āļĢāļąāđ‰āļ‡āļ™āļĩāđ‰ āļ­āļēāļĒāļļāļ‚āļ­āļ‡āļŠāļēāļŦāļĢāđˆāļēāļĒāļ–āļđāļāļˆāļąāļ”āļāļĨāļļāđˆāļĄāđ€āļ›āđ‡āļ™ 4 āļĢāļ°āļĒāļ° āđ‚āļ”āļĒāļĢāļ°āļĒāļ°āļ—āļĩāđˆ 1 āđ€āļ›āđ‡āļ™āļĢāļ°āļĒāļ°āļ—āļĩāđˆāļŠāļēāļŦāļĢāđˆāļēāļĒāđ€āļžāļīāđˆāļ‡āļĨāļ‡āđ€āļāļēāļ°āđƒāļŦāļĄāđˆāļˆāļ™āļ–āļķāļ‡āļĢāļ°āļĒāļ°āļ—āļĩāđˆ 4 āļ‹āļķāđˆāļ‡āđ€āļ›āđ‡āļ™āļĢāļ°āļĒāļ°āļ—āļĩāđˆāļŠāļēāļŦāļĢāđˆāļēāļĒāđ€āļˆāļĢāļīāļāđ€āļ•āļīāļšāđ‚āļ•āđ€āļ•āđ‡āļĄāļ—āļĩāđˆ āļˆāļģāļ™āļ§āļ™āļŠāļđāļ‡āļŠāļļāļ”āļ‚āļ­āļ‡āļ—āļēāļ āļāđ‰āļ­āļ™āđ„āļ‚āđˆ āđāļĨāļ°āļ•āđ‰āļ™āļŠāļēāļŦāļĢāđˆāļēāļĒāļ—āļĩāđˆāļ–āļđāļāļāļīāļ™ āļžāļšāđƒāļ™āļŠāļēāļŦāļĢāđˆāļēāļĒāļĢāļ°āļĒāļ°āļ—āļĩāđˆ 4 āļ‹āļķāđˆāļ‡āđ€āļ›āđ‡āļ™āļĢāļ°āļĒāļ°āļ—āļĩāđˆāļŠāļēāļŦāļĢāđˆāļēāļĒāđ€āļˆāļĢāļīāļāđ€āļ•āļīāļšāđ‚āļ•āđ€āļ•āđ‡āļĄāļ—āļĩāđˆ āđāļĨāļ°āļĄāļĩāļžāļ·āđ‰āļ™āļ—āļĩāđˆāļœāļīāļ§āļ—āļĩāđˆāļāļ§āđ‰āļēāļ‡āļ—āļĩāđˆāļŠāļļāļ”āļĄāļēāļāļāļ§āđˆāļēāļĢāļ°āļĒāļ°āļ­āļ·āđˆāļ™āđ† āļˆāļģāļ™āļ§āļ™āļŠāļđāļ‡āļŠāļļāļ”āļ‚āļ­āļ‡āļāđ‰āļ­āļ™āđ„āļ‚āđˆ āđāļĨāļ°āđāļœāđˆāļ™āđƒāļš (segment) āļ—āļĩāđˆāļžāļšāļĢāļ­āļĒāļāļąāļ”āļ‚āļ­āļ‡āļ—āļēāļ āļžāļšāļšāļ™āļšāļĢāļīāđ€āļ§āļ“āļ›āļĨāļēāļĒāļŠāļļāļ”āļ‚āļ­āļ‡āđāļœāđˆāļ™āđƒāļšāļ‚āļ­āļ‡āļ•āđ‰āļ™āļŠāļēāļŦāļĢāđˆāļēāļĒ āļ‹āļķāđˆāļ‡āļšāļĢāļīāđ€āļ§āļ“āļ™āļĩāđ‰āđ€āļ›āđ‡āļ™āļšāļĢāļīāđ€āļ§āļ“āļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāđ€āļ‚āđ‰āļĄāļ‚āđ‰āļ™āļ‚āļ­āļ‡ secondary metabolites āļŠāļđāļ‡ āļŠāļēāļĢ secondary metabolites āđ€āļŦāļĨāđˆāļēāļ™āļĩāđ‰āļˆāļ°āļ–āļđāļāļ—āļēāļāļ™āļģāđ„āļ›āđƒāļŠāđ‰āđ€āļžāļ·āđˆāļ­āļ›āļāļ›āđ‰āļ­āļ‡āļ•āļąāļ§āđ€āļ­āļ‡āļˆāļēāļāļœāļđāđ‰āļĨāđˆāļē āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰āļšāļĢāļīāđ€āļ§āļ“āļ›āļĨāļēāļĒāļŠāļļāļ”āļ‚āļ­āļ‡āđāļœāđˆāļ™āđƒāļšāđ€āļ›āđ‡āļ™āļšāļĢāļīāđ€āļ§āļ“āļ—āļĩāđˆāļĄāļĩāļāļēāļĢāļŠāļ°āļŠāļĄāļŦāļīāļ™āļ›āļđāļ™āļ™āđ‰āļ­āļĒāļ‹āļķāđˆāļ‡āļˆāļ°āļŠāđˆāļ§āļĒāđƒāļŦāđ‰āļ—āļēāļāļ„āļĢāļđāļ”āļŠāļēāļŦāļĢāđˆāļēāļĒāļāļīāļ™āđ„āļ”āđ‰āļ‡āđˆāļēāļĒāļ‚āļķāđ‰āļ™ āļŠāļąāļ”āļŠāđˆāļ§āļ™āļ‚āļ­āļ‡āļšāļĢāļīāđ€āļ§āļ“āļ”āđ‰āļēāļ™āļšāļ™āļ‚āļ­āļ‡āđāļœāđˆāļ™āđƒāļšāđāļĨāļ°āļšāļĢāļīāđ€āļ§āļ“āļ›āļĨāļēāļĒāļŠāļļāļ”āļ‚āļ­āļ‡āđāļœāđˆāļ™āđƒāļš āļĄāļĩāļžāļ·āđ‰āļ™āļ—āļĩāđˆāļāļ§āđ‰āļēāļ‡āļāļ§āđˆāļēāļšāļĢāļīāđ€āļ§āļ“āđāļœāđˆāļ™āđƒāļšāļŠāđˆāļ§āļ™āļāļēāļ™ āļ”āļąāļ‡āļ™āļąāđ‰āļ™āļšāļĢāļīāđ€āļ§āļ“āļ”āđ‰āļēāļ™āļšāļ™āļ‚āļ­āļ‡āđāļœāđˆāļ™āđƒāļšāļˆāļ°āļ„āļĢāļ­āļšāļ„āļĢāļ­āļ‡āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļĄāļēāļāļ—āļĩāđˆāļŠāļļāļ”āļ‹āļķāđˆāļ‡āđāļŠāļ”āļ‡āļ–āļķāļ‡āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļœāļīāļ§āļ—āļĩāđˆāļĄāļēāļāļāļ§āđˆāļē āļ‹āļķāđˆāļ‡āļ­āļēāļˆāļˆāļ°āđ€āļ›āđ‡āļ™āļ­āļĩāļāļŦāļ™āļķāđˆāļ‡āļ›āļąāļˆāļˆāļąāļĒāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļāļēāļĢāļ›āļĢāļēāļāļāļ‚āļ­āļ‡āļāđ‰āļ­āļ™āđ„āļ‚āđˆāđāļĨāļ°āļĢāļ­āļĒāļāļąāļ”āļ—āļĩāđˆāļĄāļēāļāļāļ§āđˆāļē āđāļĨāļ°āļžāļ·āđ‰āļ™āļ—āļĩāđˆāļœāļīāļ§āđƒāļšāļ‚āļ­āļ‡āļŠāļēāļŦāļĢāđˆāļēāļĒāļ­āļēāļˆāđ€āļ›āđ‡āļ™āļ›āļąāļˆāļˆāļąāļĒāļŠāļģāļ„āļąāļāđƒāļ™āļāļēāļĢāđ€āļĨāļ·āļ­āļāļ—āļĩāđˆāļ­āļĒāļđāđˆāļ­āļēāļĻāļąāļĒāļ‚āļ­āļ‡āļ—āļēāļāļŠāļ™āļīāļ”āļ™āļĩ

    Inactivation of aerosolized surrogates of <i>Bacillus anthracis</i> spores by combustion products of aluminum- and magnesium-based reactive materials: Effect of exposure time

    No full text
    <p>Targeting bioweapon facilities may release biothreat agents into the atmosphere. Bacterial spores such as <i>Bacillus anthracis</i> (Ba) escaping from direct exposure to the fireball potentially represent a high health risk. To mitigate it, reactive materials with biocidal properties are being developed. Aluminum-based iodine-containing compositions (e.g., Al·I<sub>2</sub> and Al·B·I<sub>2</sub>) have been shown to inactivate aerosolized simulants of Ba effectively, i.e., by factors exceeding 10<sup>4</sup> when the spores are exposed to their combustion products over a short time (∞0.33 s). This follow-up study aimed at establishing an association between the spore inactivation caused by exposure to combustion products of different materials and the exposure time. Powders of Al, Al·I<sub>2</sub>, Al·B·I<sub>2</sub>, Mg, Mg·S, and Mg·B·I<sub>2</sub> were combusted, and viable aerosolized endospores of <i>B. thuringiensis var kurstaki</i> (a well-established Ba simulant) were exposed to the released products for relatively short time periods: from ∞0.1 to ∞2 s. The tests were performed at two temperatures in the exposure chamber: ∞170°C and ∞260°C; both temperatures are lower than required for quick thermal inactivation of the spores. The higher temperature and exposure times above 0.33 s generated distinctively higher inactivation levels (as high as ∞10<sup>5</sup>) for iodine-containing materials. We also observed inactivation levels of up to ∞10<sup>3</sup> at very short exposure times, 0.12s, in the presence of condensing MgO. However, the effect of MgO at longer exposure times became negligible. The biocidal effect of sulfur oxides was found to be weak. The study findings are crucial for establishing strategies and developing reaction models that target specific bioagent inactivation levels.</p> <p>Copyright ÂĐ 2018 American Association for Aerosol Research</p
    corecore