6 research outputs found
Teachersâ perceptions of their principalsâ leadership styles and the impact on learnersâ academic performance in South Africa, Ilembe District.
The way teachers perceive the leadership styles of their principals has an impact on
learner performance. This quantitative study is aimed at examining teachersâ
perceptions of their principalsâ leadership styles as passive-avoidant, transactional or
transformational and the consequent impact on learner performance in their schools.
The study followed the survey research principles and adopted probability sampling.
A simple random sampling technique was employed in selecting teachers from 14
high schools at Ndwedwe Circuit Management Centre in iLembe District in KwaZuluNatal Province. This sampling technique was selected to avoid bias. Every teacher in
the three selected circuits stood an equal chance of being selected. The Multifactor
Leadership Questionnaire was used to measure the leadership behaviours and
attributes of principals as perceived by matriculation teachers. The National Senior
Certificate Examinations was used to measure learner performance from 2014 to
2016. Teachersâ demographics were also examined namely their age, gender,
teaching experience, the service at their current school, their employment status and
their level of education. A binomial test was conducted to assess whether a significant
proportion of respondents select one of a possible number of responses. Pearsonâs
correlation was used to measure correlations between variables. The principals were
reported to exhibit characteristics of transformational, transactional as well as
passive-avoidant leadership styles. Analyses showed that transformational leadership
style scored significantly higher than transactional leadership style. These results do
not support the theory that associates transformational leaders with positive effects in
predicting organisational commitment. However, it does support the theory in that the
effects of transformational leadership on learner performance are indirect. Principals
are not directly involved with the learners. They impact results through teachers. The
study illustrates the critical role played by teachers in improving learnersâ academic
performance. Therefore, this study recommends that principals integrate instructional
leadership with other leadership styles and that leadership should be always present.
Limitations of the study included a lack of generalizability due to the use of schools
from only one district.Abstract available in the PDF
āļāļĨāļ§āļąāļāļāļĢāļ°āļāļēāļāļĢ āđāļĨāļ°āļāļīāđāļ§āļĻāļ§āļīāļāļĒāļēāļāļĪāļāļīāļāļĢāļĢāļĄāļāļāļāļāļēāļāļāļ°āđāļĨāļŠāļēāļŦāļĢāđāļēāļĒāđāļāļĄāļ°āļāļĢāļđāļ Elysia pusilla (Bergh, 1872)
Master of Science (Biology (International Program)), 2022Elysia pusilla (Bergh, 1872) is a sacoglossan sea slug that feeds on calcified green algae, Halimeda spp. It can incorporate and maintain chloroplasts from its algal food in its digestive glands, exhibiting kleptoplasty. The slug distributes in tropical Indo-Pacific. Evolution, symbiotic relationship, and kleptoplastic ability of sea slug have been well documented. However, less is known about their temporal variation in natural populations including the relationship between abundance of slugs and its algal hosts. Therefore, in this study, population dynamics of E. pusilla, the relationship between abundance of E. pusilla and its algal hosts, Halimeda macroloba, and behavioral ecology of E. pusilla were investigated at Lidee Island, Satun province. The results show that there was temporal variation in density of H. macroloba and E. pusilla egg masses but there was no variation in density of E. pusilla individuals because the number of the slugs was low. The analysis suggested that density and total surface area of H. macroloba which is the habitat availability might determine the occurrence of the slugs and the egg masses. There was a higher occasion to find the slugs in dense patches of the algae in which it related to surface area of the algal host.
In this study, the age of algae was categorized into 4 stages, stage 1 is the new recruitment and stage 4 is mature plant. The highest number of slugs, egg masses and grazing marks were found on stage 4 which has the largest surface area comparing to the other stages. The highest number of egg masses and segments with grazing marks were found on the terminal segments. This part of the thalli has high concentration of secondary metabolites. These secondary metabolites reported to be utilized by slugs to deter their predators. In addition, terminal segments have thin calcification which helped the slugs graze easier. Moreover, the upper segments including terminal segments have larger surface area than the basal segments, reflecting the larger area of habitat use for the slugs. It might be another reason of a high occurrence of egg masses and grazing marks. Therefore, the amount of surface area which is related to the availability of habitat might be the important factor of habitat selection in E. pusilla.Elysia pusilla (Bergh, 1872) āđāļāđāļāļāļēāļāļāļ°āđāļĨāđāļāļāļĨāļļāđāļĄ Sacoglossa āļāļķāđāļāđāļāđāļāļŠāļąāļāļ§āđāļāļīāļāļāļ·āļ āđāļāļĒāļāļīāļāđāļāļāļēāļ°āļŠāļēāļŦāļĢāđāļēāļĒāđāļāļĄāļ°āļāļĢāļđāļ (Halimeda spp.) āļāļēāļāļāļāļīāļāļāļĩāđāļŠāļēāļĄāļēāļĢāļāđāļāđāļāļāļĨāļāđāļĢāļāļĨāļēāļŠāļāđāļāļēāļāļŠāļēāļŦāļĢāđāļēāļĒāļāļĩāđāļĄāļąāļāļāļīāļāđāļāđāļēāđāļāđāļĨāļ°āļāļģāļĄāļēāđāļāđāļāļĢāļ°āđāļĒāļāļāđāđāļāđ āļāļļāļāļŠāļĄāļāļąāļāļīāļāļĩāđāđāļĢāļĩāļĒāļāļ§āđāļē Kleptoplasty āļāļēāļĢāļāļĢāļ°āļāļēāļĒāļāļąāļ§āļāļāļāļāļēāļāļāļāļīāļāļāļĩāđāļāļ°āļāļĒāļđāđāđāļāļāļĢāļīāđāļ§āļāđāļāļāļĢāđāļāļāļāļāļāļāļīāļāđāļ-āđāļāļāļīāļāļīāļ āļĄāļĩāļāļēāļĢāļĻāļķāļāļĐāļēāļĄāļēāļāļĄāļēāļĒāđāļāļĩāđāļĒāļ§āļāļąāļāļ§āļīāļ§āļąāļāļāļēāļāļēāļĢ āļāļ§āļēāļĄāļŠāļąāļĄāļāļąāļāļāđāđāļāļ symbiotic āļāļāļāļāļēāļāļāļąāļāļŠāļēāļŦāļĢāđāļēāļĒāļāļĩāđāđāļāđāļāđāļŦāļĨāđāļāļāļēāļĻāļąāļĒ āđāļĨāļ°āļāļļāļāļŠāļĄāļāļąāļāļī Kleptoplasty āđāļāđāļāļēāļĢāļĻāļķāļāļĐāļēāđāļāļāđāļēāļāļāļĨāļ§āļąāļāļĢāļāļĢāļ°āļāļēāļāļĢāļāļāļāļāļēāļāđāļāļāļĢāļĢāļĄāļāļēāļāļīāđāļāļāđāļ§āļāļĢāļ°āļĒāļ°āđāļ§āļĨāļēāļŦāļāļķāđāļāļĢāļ§āļĄāļāļķāļāļāļ§āļēāļĄāļŠāļąāļĄāļāļąāļāļāđāļĢāļ°āļŦāļ§āđāļēāļāļāļ§āļēāļĄāļāļļāļāļāļļāļĄāļāļāļāļāļēāļāđāļĨāļ°āļŠāļēāļŦāļĢāđāļēāļĒāļāļĩāđāđāļāđāļāļāļĩāđāđāļŦāļĨāđāļāļāļēāļĻāļąāļĒāļĒāļąāļāļĄāļĩāļāļēāļĢāļĻāļķāļāļĐāļēāļāđāļāļĒ āļāļąāļāļāļąāđāļāđāļāļāļēāļĢāļĻāļķāļāļĐāļēāļāļĢāļąāđāļāļāļĩāđāļāļķāļāļŠāļāđāļāļĻāļķāļāļĐāļēāļāļĨāļ§āļąāļāļĢāļāļĢāļ°āļāļēāļāļĢāļāļāļāļāļēāļ E. pusilla āđāļāļāļĢāļĢāļĄāļāļēāļāļī āļāļ§āļēāļĄāļŠāļąāļĄāļāļąāļāļāđāļĢāļ°āļŦāļ§āđāļēāļāļāļ§āļēāļĄāļāļļāļāļāļļāļĄāļāļāļāļāļēāļ E. pusilla āđāļĨāļ°āļŠāļēāļŦāļĢāđāļēāļĒāļāļĩāđāđāļāđāļāđāļŦāļĨāđāļāļāļēāļĻāļąāļĒ āđāļĨāļ°āļāļīāđāļ§āļĻāļ§āļīāļāļĒāļēāļāļĪāļāļīāļāļĢāļĢāļĄāļāļāļāļāļēāļ E. pusilla āļāļąāļāļŠāļēāļŦāļĢāđāļēāļĒ Halimeda macroloba āđāļāļĒāļāļĨāļāļēāļĢāļĻāļķāļāļĐāļēāđāļŠāļāļāđāļŦāđāđāļŦāđāļāļ§āđāļēāļāļ§āļēāļĄāļŦāļāļēāđāļāđāļāļāļāļāļŠāļēāļŦāļĢāđāļēāļĒ H. macroloba āđāļĨāļ°āļāđāļāļāđāļāđāļāļāļ E. pusilla āļĄāļĩāļāļ§āļēāļĄāđāļāļĢāļāļĢāļ§āļāđāļāļāđāļ§āļāļĢāļ°āļĒāļ°āđāļ§āļĨāļēāļāļĩāđāļāļģāļāļēāļĢāļĻāļķāļāļĐāļē āđāļāđāļāļ§āļēāļĄāļŦāļāļēāđāļāđāļāļāļāļāļāļąāļ§āļāļēāļāļāļĨāļąāļāđāļĄāđāļĄāļĩāļāļ§āļēāļĄāđāļāļĢāļāļĢāļ§āļāđāļāļāđāļ§āļāļĢāļ°āļĒāļ°āđāļ§āļĨāļēāļāļąāļāļāļĨāđāļēāļ§āđāļāļ·āđāļāļāļāļēāļāļāļģāļāļ§āļāļāļēāļāļāļĩāđāļāļāļĄāļĩāļāļģāļāļ§āļāļāđāļāļĒ āļāļĨāļāļēāļĢāļ§āļīāđāļāļĢāļēāļ°āļŦāđāļāļēāļāļ§āđāļēāļāļ§āļēāļĄāļŦāļāļēāđāļāđāļāđāļĨāļ°āļāļ·āđāļāļāļĩāđāļāļīāļ§āļāļāļ H. macroloba āļāļĩāđāļāļēāļāļŠāļēāļĄāļēāļĢāļāđāļāđāļāļĢāļ°āđāļĒāļāļāđāđāļāđ āļāļēāļāļāļ°āđāļāđāļāļāļąāļ§āļāļģāļŦāļāļāļāļēāļĢāļāļĢāļēāļāļāļāļāļāļāļēāļ E. pusilla āđāļĨāļ°āļāđāļāļāđāļāđ āđāļĨāļ°āļāļ°āļĄāļĩāđāļāļāļēāļŠāļŠāļđāļāļĄāļēāļāļāļĩāđāļāļ°āļāļāļāļēāļāđāļāļāļĢāļīāđāļ§āļāļāļĩāđāļĄāļĩ āļŦāļĒāđāļāļĄāļŠāļēāļŦāļĢāđāļēāļĒāļāļĩāđāļŦāļāļēāđāļāđāļāļŠāļđāļāđāļāļ·āđāļāļāļāļēāļāļĄāļĩāļāļ·āđāļāļāļĩāđāđāļāđāļāļĢāļ°āđāļĒāļāļāđāļāļĩāđāļĄāļēāļāļāļ§āđāļē
āđāļāļāļēāļĢāļĻāļķāļāļĐāļēāļāļĢāļąāđāļāļāļĩāđ āļāļēāļĒāļļāļāļāļāļŠāļēāļŦāļĢāđāļēāļĒāļāļđāļāļāļąāļāļāļĨāļļāđāļĄāđāļāđāļ 4 āļĢāļ°āļĒāļ° āđāļāļĒāļĢāļ°āļĒāļ°āļāļĩāđ 1 āđāļāđāļāļĢāļ°āļĒāļ°āļāļĩāđāļŠāļēāļŦāļĢāđāļēāļĒāđāļāļīāđāļāļĨāļāđāļāļēāļ°āđāļŦāļĄāđāļāļāļāļķāļāļĢāļ°āļĒāļ°āļāļĩāđ 4 āļāļķāđāļāđāļāđāļāļĢāļ°āļĒāļ°āļāļĩāđāļŠāļēāļŦāļĢāđāļēāļĒāđāļāļĢāļīāļāđāļāļīāļāđāļāđāļāđāļĄāļāļĩāđ āļāļģāļāļ§āļāļŠāļđāļāļŠāļļāļāļāļāļāļāļēāļ āļāđāļāļāđāļāđ āđāļĨāļ°āļāđāļāļŠāļēāļŦāļĢāđāļēāļĒāļāļĩāđāļāļđāļāļāļīāļ āļāļāđāļāļŠāļēāļŦāļĢāđāļēāļĒāļĢāļ°āļĒāļ°āļāļĩāđ 4 āļāļķāđāļāđāļāđāļāļĢāļ°āļĒāļ°āļāļĩāđāļŠāļēāļŦāļĢāđāļēāļĒāđāļāļĢāļīāļāđāļāļīāļāđāļāđāļāđāļĄāļāļĩāđ āđāļĨāļ°āļĄāļĩāļāļ·āđāļāļāļĩāđāļāļīāļ§āļāļĩāđāļāļ§āđāļēāļāļāļĩāđāļŠāļļāļāļĄāļēāļāļāļ§āđāļēāļĢāļ°āļĒāļ°āļāļ·āđāļāđ āļāļģāļāļ§āļāļŠāļđāļāļŠāļļāļāļāļāļāļāđāļāļāđāļāđ āđāļĨāļ°āđāļāđāļāđāļ (segment) āļāļĩāđāļāļāļĢāļāļĒāļāļąāļāļāļāļāļāļēāļ āļāļāļāļāļāļĢāļīāđāļ§āļāļāļĨāļēāļĒāļŠāļļāļāļāļāļāđāļāđāļāđāļāļāļāļāļāđāļāļŠāļēāļŦāļĢāđāļēāļĒ āļāļķāđāļāļāļĢāļīāđāļ§āļāļāļĩāđāđāļāđāļāļāļĢāļīāđāļ§āļāļāļĩāđāļĄāļĩāļāļ§āļēāļĄāđāļāđāļĄāļāđāļāļāļāļ secondary metabolites āļŠāļđāļ āļŠāļēāļĢ secondary metabolites āđāļŦāļĨāđāļēāļāļĩāđāļāļ°āļāļđāļāļāļēāļāļāļģāđāļāđāļāđāđāļāļ·āđāļāļāļāļāđāļāļāļāļąāļ§āđāļāļāļāļēāļāļāļđāđāļĨāđāļē āļāļāļāļāļēāļāļāļĩāđāļāļĢāļīāđāļ§āļāļāļĨāļēāļĒāļŠāļļāļāļāļāļāđāļāđāļāđāļāđāļāđāļāļāļĢāļīāđāļ§āļāļāļĩāđāļĄāļĩāļāļēāļĢāļŠāļ°āļŠāļĄāļŦāļīāļāļāļđāļāļāđāļāļĒāļāļķāđāļāļāļ°āļāđāļ§āļĒāđāļŦāđāļāļēāļāļāļĢāļđāļāļŠāļēāļŦāļĢāđāļēāļĒāļāļīāļāđāļāđāļāđāļēāļĒāļāļķāđāļ āļŠāļąāļāļŠāđāļ§āļāļāļāļāļāļĢāļīāđāļ§āļāļāđāļēāļāļāļāļāļāļāđāļāđāļāđāļāđāļĨāļ°āļāļĢāļīāđāļ§āļāļāļĨāļēāļĒāļŠāļļāļāļāļāļāđāļāđāļāđāļ āļĄāļĩāļāļ·āđāļāļāļĩāđāļāļ§āđāļēāļāļāļ§āđāļēāļāļĢāļīāđāļ§āļāđāļāđāļāđāļāļŠāđāļ§āļāļāļēāļ āļāļąāļāļāļąāđāļāļāļĢāļīāđāļ§āļāļāđāļēāļāļāļāļāļāļāđāļāđāļāđāļāļāļ°āļāļĢāļāļāļāļĢāļāļāļāļ·āđāļāļāļĩāđāļĄāļēāļāļāļĩāđāļŠāļļāļāļāļķāđāļāđāļŠāļāļāļāļķāļāļāļ·āđāļāļāļĩāđāļāļīāļ§āļāļĩāđāļĄāļēāļāļāļ§āđāļē āļāļķāđāļāļāļēāļāļāļ°āđāļāđāļāļāļĩāļāļŦāļāļķāđāļāļāļąāļāļāļąāļĒāļāļĩāđāļŠāđāļāļāļĨāļāđāļāļāļēāļĢāļāļĢāļēāļāļāļāļāļāļāđāļāļāđāļāđāđāļĨāļ°āļĢāļāļĒāļāļąāļāļāļĩāđāļĄāļēāļāļāļ§āđāļē āđāļĨāļ°āļāļ·āđāļāļāļĩāđāļāļīāļ§āđāļāļāļāļāļŠāļēāļŦāļĢāđāļēāļĒāļāļēāļāđāļāđāļāļāļąāļāļāļąāļĒāļŠāļģāļāļąāļāđāļāļāļēāļĢāđāļĨāļ·āļāļāļāļĩāđāļāļĒāļđāđāļāļēāļĻāļąāļĒāļāļāļāļāļēāļāļāļāļīāļāļāļĩ
Inactivation of aerosolized surrogates of <i>Bacillus anthracis</i> spores by combustion products of aluminum- and magnesium-based reactive materials: Effect of exposure time
<p>Targeting bioweapon facilities may release biothreat agents into the atmosphere. Bacterial spores such as <i>Bacillus anthracis</i> (Ba) escaping from direct exposure to the fireball potentially represent a high health risk. To mitigate it, reactive materials with biocidal properties are being developed. Aluminum-based iodine-containing compositions (e.g., Al·I<sub>2</sub> and Al·B·I<sub>2</sub>) have been shown to inactivate aerosolized simulants of Ba effectively, i.e., by factors exceeding 10<sup>4</sup> when the spores are exposed to their combustion products over a short time (âž0.33 s). This follow-up study aimed at establishing an association between the spore inactivation caused by exposure to combustion products of different materials and the exposure time. Powders of Al, Al·I<sub>2</sub>, Al·B·I<sub>2</sub>, Mg, Mg·S, and Mg·B·I<sub>2</sub> were combusted, and viable aerosolized endospores of <i>B. thuringiensis var kurstaki</i> (a well-established Ba simulant) were exposed to the released products for relatively short time periods: from âž0.1 to âž2 s. The tests were performed at two temperatures in the exposure chamber: âž170°C and âž260°C; both temperatures are lower than required for quick thermal inactivation of the spores. The higher temperature and exposure times above 0.33 s generated distinctively higher inactivation levels (as high as âž10<sup>5</sup>) for iodine-containing materials. We also observed inactivation levels of up to âž10<sup>3</sup> at very short exposure times, 0.12s, in the presence of condensing MgO. However, the effect of MgO at longer exposure times became negligible. The biocidal effect of sulfur oxides was found to be weak. The study findings are crucial for establishing strategies and developing reaction models that target specific bioagent inactivation levels.</p> <p>Copyright ÂĐ 2018 American Association for Aerosol Research</p