93 research outputs found

    tRNASec is transcribed by RNA polymerase II in Trypanosoma brucei but not in humans

    Get PDF
    Nuclear-encoded tRNAs are universally transcribed by RNA polymerase III (Pol-III) and contain intragenic promoters. Transcription of vertebrate tRNASec however requires extragenic promoters similar to Pol-III transcribed U6 snRNA. Here, we present a comparative analysis of tRNASec transcription in humans and the parasitic protozoa Trypanosoma brucei, two evolutionary highly diverged eukaryotes. RNAi-mediated ablation of Pol-II and Pol-III as well as oligo-dT induced transcription termination show that the human tRNASec is a Pol-III transcript. In T. brucei protein-coding genes are polycistronically transcribed by Pol-II and processed by trans-splicing and polyadenylation. tRNA genes are generally clustered in between polycistrons. However, the trypanosomal tRNASec genes are embedded within a polycistron. Their transcription is sensitive to α-amanitin and RNAi-mediated ablation of Pol-II, but not of Pol-III. Ectopic expression of the tRNASec outside but not inside a polycistron requires an added external promoter. These experiments demonstrate that trypanosomal tRNASec, in contrast to its human counterpart, is transcribed by Pol-II. Synteny analysis shows that in trypanosomatids the tRNASec gene can be found in two different polycistrons, suggesting that it has evolved twice independently. Moreover, intron-encoded tRNAs are present in a number of eukaryotic genomes indicating that Pol-II transcription of tRNAs may not be restricted to trypanosomatids

    RNA-seq analysis of small RNPs in Trypanosoma brucei reveals a rich repertoire of non-coding RNAs

    Get PDF
    The discovery of a plethora of small non-coding RNAs (ncRNAs) has fundamentally changed our understanding of how genes are regulated. In this study, we employed the power of deep sequencing of RNA (RNA-seq) to examine the repertoire of ncRNAs present in small ribonucleoprotein particles (RNPs) of Trypanosoma brucei, an important protozoan parasite. We identified new C/D and H/ACA small nucleolar RNAs (snoRNAs), as well as tens of putative novel non-coding RNAs; several of these are processed from trans-spliced and polyadenylated transcripts. The RNA-seq analysis provided information on the relative abundance of the RNAs, and their 5′- and 3′-termini. The study demonstrated that three highly abundant snoRNAs are involved in rRNA processing and highlight the unique trypanosome-specific repertoire of these RNAs. Novel RNAs were studied using in situ hybridization, association in RNP complexes, and ‘RNA walk’ to detect interaction with their target RNAs. Finally, we showed that the abundance of certain ncRNAs varies between the two stages of the parasite, suggesting that ncRNAs may contribute to gene regulation during the complex parasite’s life cycle. This is the first study to provide a whole-genome analysis of the large repertoire of small RNPs in trypanosomes

    Efficacious Recombinant Influenza Vaccines Produced by High Yield Bacterial Expression: A Solution to Global Pandemic and Seasonal Needs

    Get PDF
    It is known that physical linkage of TLR ligands and vaccine antigens significantly enhances the immunopotency of the linked antigens. We have used this approach to generate novel influenza vaccines that fuse the globular head domain of the protective hemagglutinin (HA) antigen with the potent TLR5 ligand, flagellin. These fusion proteins are efficiently expressed in standard E. coli fermentation systems and the HA moiety can be faithfully refolded to take on the native conformation of the globular head. In mouse models of influenza infection, the vaccines elicit robust antibody responses that mitigate disease and protect mice from lethal challenge. These immunologically potent vaccines can be efficiently manufactured to support pandemic response, pre-pandemic and seasonal vaccines

    The transcription of bradyzoite genes in Toxoplasma gondii is controlled by autonomous promoter elements

    Get PDF
    Experimental evidence suggests that apicomplexan parasites possess bipartite promoters with basal and regulated cis-elements similar to other eukaryotes. Using a dual luciferase model adapted for recombinational cloning and use in Toxoplasma gondii, we show that genomic regions flanking 16 parasite genes, which encompass examples of constitutive and tachyzoite- and bradyzoite-specific genes, are able to reproduce the appropriate developmental stage expression in a transient luciferase assay. Mapping of cis-acting elements in several bradyzoite promoters led to the identification of short sequence spans that are involved in control of bradyzoite gene expression in multiple strains and under different bradyzoite induction conditions. Promoters that regulate the heat shock protein BAG1 and a novel bradyzoite-specific NTPase during bradyzoite development were fine mapped to a 6–8 bp resolution and these minimal cis-elements were capable of converting a constitutive promoter to one that is induced by bradyzoite conditions. Gel-shift experiments show that mapped cis-elements are bound by parasite protein factors with the appropriate functional sequence specificity. These studies are the first to identify the minimal sequence elements that are required and sufficient for bradyzoite gene expression and to show that bradyzoite promoters are maintained in a ‘poised’ chromatin state throughout the intermediate host life cycle in low passage strains. Together, these data demonstrate that conventional eukaryotic promoter mechanisms work with epigenetic processes to regulate developmental gene expression during tissue cyst formation

    High-Resolution Characterization of Toxoplasma gondii Transcriptome with a Massive Parallel Sequencing Method†

    Get PDF
    For the last couple of years, a method that permits the collection of precise positional information of transcriptional start sites (TSSs) together with digital information of the gene-expression levels in a high-throughput manner was established. We applied this novel method, ‘tss-seq’, to elucidate the transcriptome of tachyzoites of the Toxoplasma gondii, which resulted in the identification of 124 000 TSSs, and they were clustered into 10 000 transcription regions (TRs) with a statistics-based analysis. The TRs and annotated ORFs were paired, resulting in the identification of 30% of the TRs and 40% of the ORFs without their counterparts, which predicted undiscovered genes and stage-specific transcriptions, respectively. The massive data for TSSs make it possible to execute the first systematic analysis of the T. gondii core promoter structure, and the information showed that T. gondii utilized an initiator-like motif for their transcription in the major and novel motif, the downstream thymidine cluster, which was similar to the Y patch observed in plants. This encyclopaedic analysis also suggested that the TATA box, and the other well-known core promoter elements were hardly utilized

    Influence of Ecto-Nucleoside Triphosphate Diphosphohydrolase Activity on Trypanosoma cruzi Infectivity and Virulence

    Get PDF
    The protozoan Trypanosoma cruzi is the causative agent of Chagas disease, an endemic zoonosis present in some countries of South and Central Americas. The World Health Organization estimates that 100 million people are at risk of acquiring this disease. The infection affects mainly muscle tissues in the heart and digestive tract. There are no vaccines or effective treatment, especially in the chronic phase when most patients are diagnosed, which makes a strong case for the development of new drugs to treat the disease. In this work we evaluate a family of proteins called Ecto-Nucleoside-Triphosphate-Diphosphohydrolase (Ecto-NTPDase) as new chemotherapy target to block T. cruzi infection in mammalian cells and in mice. We have used inhibitors and antibodies against this protein and demonstrated that T. cruzi Ecto-NTPDases act as facilitators of infection in mammalian cells and virulence factors in mice model. Two of the drugs used in this study (Suramin and Gadolinium) are currently used for other diseases in humans, supporting the possibility of their use in the treatment of Chagas disease

    Deficiency of a Niemann-Pick, Type C1-related Protein in Toxoplasma Is Associated with Multiple Lipidoses and Increased Pathogenicity

    Get PDF
    Several proteins that play key roles in cholesterol synthesis, regulation, trafficking and signaling are united by sharing the phylogenetically conserved ‘sterol-sensing domain’ (SSD). The intracellular parasite Toxoplasma possesses at least one gene coding for a protein containing the canonical SSD. We investigated the role of this protein to provide information on lipid regulatory mechanisms in the parasite. The protein sequence predicts an uncharacterized Niemann-Pick, type C1-related protein (NPC1) with significant identity to human NPC1, and it contains many residues implicated in human NPC disease. We named this NPC1-related protein, TgNCR1. Mammalian NPC1 localizes to endo-lysosomes and promotes the movement of sterols and sphingolipids across the membranes of these organelles. Miscoding patient mutations in NPC1 cause overloading of these lipids in endo-lysosomes. TgNCR1, however, lacks endosomal targeting signals, and localizes to flattened vesicles beneath the plasma membrane of Toxoplasma. When expressed in mammalian NPC1 mutant cells and properly addressed to endo-lysosomes, TgNCR1 restores cholesterol and GM1 clearance from these organelles. To clarify the role of TgNCR1 in the parasite, we genetically disrupted NCR1; mutant parasites were viable. Quantitative lipidomic analyses on the ΔNCR1 strain reveal normal cholesterol levels but an overaccumulation of several species of cholesteryl esters, sphingomyelins and ceramides. ΔNCR1 parasites are also characterized by abundant storage lipid bodies and long membranous tubules derived from their parasitophorous vacuoles. Interestingly, these mutants can generate multiple daughters per single mother cell at high frequencies, allowing fast replication in vitro, and they are slightly more virulent in mice than the parental strain. These data suggest that the ΔNCR1 strain has lost the ability to control the intracellular levels of several lipids, which subsequently results in the stimulation of lipid storage, membrane biosynthesis and parasite division. Based on these observations, we ascribe a role for TgNCR1 in lipid homeostasis in Toxoplasma

    he Role of Indigenous Knowledge System in Botswana

    No full text
    This is a project that focuses on the extent to which Indigenous Knowledge can be used to curb the AIDS epidemic in Botswana. Indigenous Knowledge has existed in Africa for the most part of its civilization. Traditional knowledge on local medicines and their effects on the human body have been used to control and cure diseases that have existed in the past. AIDS is not a new disease in Africa. In the past locals called it the \u27Old disease\u27. Many African Traditional Healers have a lot of insight into the variety of medications available and the mode of treating recurring diseases in a community. Western science for a large part has changed the way healthcare is given in many African communities. Structural Adjustment programs implemented in developing countries by the IMF or mere western cultural influence are to blame for this. We intend to investigate the extent to which an employment of both Western scientific ideas and Indigenous Knowledge could be used to help reduce the spread of AIDS in Botswana
    corecore