758 research outputs found

    Multiprocessing techniques for unmanned multifunctional satellites Final report,

    Get PDF
    Simulation of on-board multiprocessor for long lived unmanned space satellite contro

    Genomic epidemiology of the first epidemic wave of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Palestine.

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the novel coronavirus responsible for the COVID-19 pandemic, continues to cause a significant public-health burden and disruption globally. Genomic epidemiology approaches point to most countries in the world having experienced many independent introductions of SARS-CoV-2 during the early stages of the pandemic. However, this situation may change with local lockdown policies and restrictions on travel, leading to the emergence of more geographically structured viral populations and lineages transmitting locally. Here, we report the first SARS-CoV-2 genomes from Palestine sampled from early March 2020, when the first cases were observed, through to August of 2020. SARS-CoV-2 genomes from Palestine fall across the diversity of the global phylogeny, consistent with at least nine independent introductions into the region. We identify one locally predominant lineage in circulation represented by 50 Palestinian SARS-CoV-2, grouping with genomes generated from Israel and the UK. We estimate the age of introduction of this lineage to 05/02/2020 (16/01/2020-19/02/2020), suggesting SARS-CoV-2 was already in circulation in Palestine predating its first detection in Bethlehem in early March. Our work highlights the value of ongoing genomic surveillance and monitoring to reconstruct the epidemiology of COVID-19 at both local and global scales

    An environmental and economic comparison of cooling system designs for steam-electric power plants

    Get PDF
    Originally presented as a thesis (M.S.), M.I.T., Dept. of Civil Engineering, 1978, by Kenneth F. Najjar.The selection of waste heat rejection systems for steam-electric power plants involves a trade-off among environmental, energy and water conservation, and economic factors. This study compares four general types of cooling systems on the basis of these factors. The cooling systems chosen for study are: once-through systems including surface canals and submerged multiport diffusers; shallow closed cycle cooling ponds; mechanical and natural draft evaporative cooling towers; and mechanical draft dry towers. The cooling system comparison involves, first, an optimization of each cooling system and then a comparison among optimal systems. Comparison is made for an 800 MWe fossil unit and a 1200 MWe nuclear unit located at a hypothetical midwestern river site. A set of models has been developed to optimize the components of each cooling system based on the local meteorological and hydrological conditions at the site in accordance with a fixed demand, scalable plant concept. This concept allows one to compare the costs of producing the same net power from each plant/cooling system. Base case economic parameters were used to evaluate the optimum system for each of the four general cooling systems followed by a sensitivity study for each parameter. Comparison of energy and water consumption follows from the results of the performance model, while comparison of environmental impacts is mostly qualitative. Some quantitative modelling was performed for the environmental effects of thermal discharges from once-through systems, fogging from wet cooling towers and water consumption from the ponds, wet towers and once-through. The results of the optimization models of each of the systems are compared on the basis of: performance - discrete distributions of environmental conditions and transient simulation; economics - using base case scenarios and sensitivity values to arrive at costs expressed in terms of production costs, annualized costs and present value costs; energy and water consumption; and environmental effects. The once-through systems were found to be the least expensive of the four systems, the most energy efficient, but potentially the most environmentally damaging. On the other extreme, dry cooling towers are the most environmentally sound while being the most expensive and least energy efficient. Finally, the results of the economic optimization are compared with results from previous comparative studies

    Late capsular bag contraction and intraocular lens subluxation in retinitis pigmentosa: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Retinitis pigmentosa is clinically characterized by loss of predominantly rod photoreceptor function as well as loss of peripheral vision. The classic clinical triad is considered to be the presence of bone spicule pigmentation in the peripheral retina, arteriolar attenuation, and waxy disc pallor. Cataracts, most commonly of the posterior subcapsular type, are often found in all forms of retinitis pigmentosa. Ectopia lentis and lens dislocation are known risk factors for those with retinitis pigmentosa, presumably secondary to zonular fiber weakness and vitreous degeneration. The post-operative complication of lens dislocation following cataract extraction in patients with retinitis pigmentosa has also been documented.</p> <p>Case presentation</p> <p>We report a case of severe capsular bag contraction with intraocular lens subluxation following cataract extraction in a 58-year-old Hispanic woman with retinitis pigmentosa.</p> <p>Conclusion</p> <p>Patients with retinitis pigmentosa undergoing cataract surgery should be notified of this potentially late complication of surgery.</p

    Anti-Insulin Receptor Autoantibodies Are Not Required for Type 2 Diabetes Pathogenesis in NZL/Lt Mice, a New Zealand Obese (NZO)-Derived Mouse Strain

    Get PDF
    The New Zealand obese (NZO) mouse strain shares with the related New Zealand black (NZB) strain a number of immunophenotypic traits. Among these is a high proportion of B-1 B lymphocytes, a subset associated with autoantibody production. Approximately 50% of NZO/HlLt males develop a chronic insulin-resistant type 2 diabetes syndrome associated with 2 unusual features: the presence of B lymphocyte–enriched peri-insular infiltrates and the development of anti-insulin receptor autoantibodies (AIRAs). To establish the potential pathogenic contributions ofBlymphocytes and AIRAs in this model, a disrupted immunoglobulin heavy chain gene (Igh-6) congenic on the NZB/BlJ background was backcrossed 4 generations into the NZO/HlLt background and was then intercrossed to produce mice that initially segregated for wild-type versus the mutant Igh-6 allele and thus permitted comparison of syndrome development. A new flow cytometric assay (AIRA binding to transfected Chinese hamster ovary cells stably expressing mouse insulin receptor) showed IgM and IgG subclass AIRAs in serum from Igh-6 intact males, but not in Igh6null male serum. However, the absence of B lymphocytes and antibodies distinguishing mutant from wild-type males failed to significantly affect diabetes-free survival. The Igh6nullmales gained weight less rapidly than wild-type males, probably accounting for a retardation, but not prevention, of hyperglycemia. Thus, AIRA and the Blymphocyte component of the peri-insulitis in chronic diabetics were not essential either to development of insulin resistance or to eventual pancreatic beta cell failure and loss. A new substrain, designated NZL, was generated by inbreeding Igh-6 wild-type segregants. Currently at the F10 generation, NZL mice exhibit the same juvenile-onset obesity as NZO/HlLt males, but develop type 2 diabetes at a higher frequency (> 80%). Also, unlike NZO/HlLt mice that are difficult to breed, the NZL/Lt strain breeds well and thus offers clear advantages to obesity/diabetes researchers

    Topological robot localization in a large-scale water pipe network

    Get PDF
    Topological localization is well suited to robots operating in water pipe networks because the environment is well defined as a set of discrete connected places like junctions, customer connections, and access points. Topological methods are more computationally efficient than metric methods, which is important for robots operating in pipes as they will be small with limited computational power. A Hidden Markov Model (HMM) based localization method is presented here, with novel incorporation of measured distance travelled. Improvements to the method are presented which use a reduced definition of the robot state to improve computational efficiency and an alternative motion model where the probability of transitioning to each other state is uniform. Simulation in a large realistic map shows that the use of measured distance travelled improves the localization accuracy by around 70%, that the reduction of the state definition gives an reduction in computational requirement by 75% with only a small loss to accuracy dependant on the robot parameters, and that the alternative motion model gives a further improvement to accuracy

    Contracting for the unknown and the logic of innovation

    Get PDF
    This paper discusses the components of contracts adequatefor governing innovation, and their microfoundations in the logic of innovative decision processes. Drawing on models of discovery and design processes, distinctive logical features of innovative decision making are specified and connected to features of contracts that can sustain innovation processes and do not fail under radical uncertainty. It is argued that if new knowledge is to be generated under uncertainty and risk, 'relational contracts', as usually intended, are not enough and a more robust type of contracting is needed and it is actually often used: formal constitutional contracts that associate resources, leave their uses rationally unspecified, but exhaustively specify the assignment of residual decision rights and other property rights, and the decision rules to be followed in governance. The argument is supported by an analysis of a large international database on the governance of multi-party projects in discovery-intensive and design-intensive industries

    The role of AtMUS81 in DNA repair and its genetic interaction with the helicase AtRecQ4A

    Get PDF
    The endonuclease MUS81 has been shown in a variety of organisms to be involved in DNA repair in mitotic and meiotic cells. Homologues of the MUS81 gene exist in the genomes of all eukaryotes, pointing to a conserved role of the protein. However, the biological role of MUS81 varies between different eukaryotes. For example, while loss of the gene results in strongly impaired fertility in Saccharomyces cerevisiae and nearly complete sterility in Schizosaccharomyces pombe, it is not essential for meiosis in mammals. We identified a functional homologue (AtMUS81/At4g30870) in the genome of Arabidopsis thaliana and isolated a full-length cDNA of this gene. Analysing two independent T-DNA insertion lines of AtMUS81, we found that they are sensitive to the mutagens MMS and MMC. Both mutants have a deficiency in homologous recombination in somatic cells but only after induction by genotoxic stress. In contrast to yeast, no meiotic defect of AtMUS81 mutants was detectable and the mutants are viable. Crosses with a hyperrecombinogenic mutant of the AtRecQ4A helicase resulted in synthetic lethality in the double mutant. Thus, the nuclease AtMUS81 and the helicase AtRecQ4A seem to be involved in two alternative pathways of resolution of replicative DNA structures in somatic cells

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair
    • 

    corecore