
This is a repository copy of Topological robot localization in a large-scale water pipe 
network.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/161418/

Version: Accepted Version

Proceedings Paper:
Worley, R. orcid.org/0000-0002-3607-2650 and Anderson, S. (2020) Topological robot 
localization in a large-scale water pipe network. In: Mohammad, A., Dong, X. and Russo, 
M., (eds.) Towards Autonomous Robotic Systems 21st Annual Conference, TAROS 2020, 
Nottingham, UK, September 16, 2020, Proceedings. 21st Annual Conference, TAROS: 
Annual Conference Towards Autonomous Robotic Systems, 16 Sep 2020, Nottingham, 
UK. Lecture Notes in Computer Science, 12228 . , pp. 77-89. ISBN 9783030634858 

https://doi.org/10.1007/978-3-030-63486-5_11

This is a post-peer-review, pre-copyedit version of an article published in Mohammad A., 
Dong X., Russo M. (eds) Towards Autonomous Robotic Systems. TAROS 2020. Lecture 
Notes in Computer Science, vol 12228. The final authenticated version is available online 
at: http://dx.doi.org/10.1007/978-3-030-63486-5_11.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Topological Robot Localization in a Large-Scale

Water Pipe Network

Rob Worley[0000−0002−3607−2650] and Sean Anderson ⋆
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Abstract. Topological localization is well suited to robots operating in
water pipe networks because the environment is well defined as a set of
discrete connected places like junctions, customer connections, and ac-
cess points. Topological methods are more computationally efficient than
metric methods, which is important for robots operating in pipes as they
will be small with limited computational power. A Hidden Markov Model
(HMM) based localization method is presented here, with novel incor-
poration of measured distance travelled. Improvements to the method
are presented which use a reduced definition of the robot state to im-
prove computational efficiency and an alternative motion model where
the probability of transitioning to each other state is uniform. Simulation
in a large realistic map shows that the use of measured distance travelled
improves the localization accuracy by around 70%, that the reduction of
the state definition gives an reduction in computational requirement by
75% with only a small loss to accuracy dependant on the robot parame-
ters, and that the alternative motion model gives a further improvement
to accuracy.

Keywords: Topological Localization · Pipe Inspection Robots.

1 Introduction

Buried water pipe infrastructure is in regular need of maintenance, the cost of
which may be reduced by more precisely locating faults. Robots could be used
for autonomous, persistent monitoring of a pipe network. A principal challenge
for this robotic system is to localize itself and faults in the network, and previous
work on robot localization in pipes has used metric information from vision [1],
inertial sensing [2] and acoustic sensing [3] [4]. However, while metric information
is required for precise localization of a fault, localization to a single discrete pipe
or junction would be sufficient for navigation and for isolating a fault to a part
of the network.

A topological localization method for a single robot in a network of pipes is
presented in this paper, where the robot is localized in a discrete set of places,
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the connection between which is described by a topological map. This is in con-
trast with metric localization methods, where a robot’s location is described in a
continuous space. The pipe environment is well defined by topological relations
alone, as discrete places like junctions between pipes, customer connections, and
above ground access points are connected together by pipes. Therefore, a topo-
logical method can be used in this application without the loss in precision that
might be found when discretizing other environments into a topological map. In
the pipe environment, typical metric methods have drawbacks. Methods that pa-
rameterise the robot state probability distribution, such as Kalman filtering and
pose-graph optimization, poorly describe the multimodal probability distribu-
tion expected in a discrete network. Non-parameteric methods such as particle
filtering have a higher computational cost, while a topological method would
reduce the computation required for localization compared to metric methods,
which is an advantage for robots with limited power and size which must operate
in a typical pipe of 150mm diameter.

Early work in robot localization uses a topological map defined by distinctive
places in a structured indoor environment [5] or segments between distinctive
places [6]. Grid based maps can be divided into regions separated by narrow
passages [7] or from a one-dimensional paths through the environment [8]. In
much of this existing work, the focus is on obtaining a topological map from
metric sensor data, which is less challenging in a pipe environment which is well
described by only a topological map. However, the methods used in localization
in the topological map are a useful foundation for this work.

A topological map representation has been shown to be useful in navigation
where a Hidden Markov Model (HMM) localization method is extended to a
Partially Observable Markov Decision Process (POMDP) [9]. Early work on
localization in a pipe network [10] also uses a POMDP for localization and
navigation, where the transition model between states is described, as is the
observation model which finds the likelihood of an observation of the robot’s
surroundings at a junction corresponding to a known discrete type of junction.

Recent work on topological localization adds the challenges of erroneous re-
peated observations of the environment at a topological map node, inclusion of
information assigned to nearby nodes, and failing to make an observation at a
node [11], the last of which is especially applicable where a robot has limited sens-
ing ability as is the case in a pipe environment. Use of geometric information on
the robot’s orientation has been applied using prior knowledge of the orientation
between two topological map nodes [12]. Recent work on localization in pipe net-
works also incorporates both metric and topological information [13], and similar
methods have been applied to autonomous road vehicles [14] [15] [16] [17].

The work presented in this paper presents an incorporation of measurement
of distance into the localization method, and improvements to the accuracy and
efficiency of the method from previous work [18]. Simulation on a large realistic
network of pipes has been used to compare the proposed methods with a typical
topological localization method. The effect of four uncertainty parameters on the
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Fig. 1. The example simulated network of pipes used in this work, consisting of 63
nodes, which represent junctions, each connected to 1, 3, or 4 other nodes.

localization accuracy is measured, and the accuracy and efficiency is measured
for the proposed methods.

2 Methods

2.1 State Definition

The robot moves in a network of pipes, shown in Fig. 1. The full robot state
is defined as sxtxt−1θt = [xt, xt−1, θt] and is composed of three components,
facilitating localization of the robot [18]. The first component is the robot’s
discrete position, which is the junction index x at time index t. The second
is the robot’s discrete direction θt which is the index of the pipe which is has
arrived from, allowing information about the robot’s choice of action to be used in
localization. The third is the robot’s previous position xt−, allowing information
about the length of the journey between junctions to be used in localization.
The robot state is only updated at junctions or at ends of pipes, and the robot’s
position and orientation are not considered in transitions between these states.

The robot’s belief in the state is represented as a vector b(sxtxt−1θt) over
all possible values of the state, where each value is the estimated likelihood
of being in that particular state. For the full state definition, there are X2D
possible states, where X is the number of nodes in the network and D is the
maximum number of connections between nodes. The size of this vector is not a
problem for small networks, however for the network in Fig. 1 there are 63 nodes
and a maximum of 4 connection giving 15876 possible values of the state. The
computational requirement for a vector this size is expected to be infeasible for
the small robot required in this application, therefore alternatives to this state
definition are proposed here.

The first improvement proposed is partial robot state definitions which re-
duce the size of the belief vector. The state definition sxtθt includes only the
current position and direction of the robot. Measurements of the length of the
journey between junctions can therefore not be incorporated exactly, however
an approximation can be made which is described in section 2.4. The state def-
inition sxt

includes only the current position of the robot. The choice of action
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can not be incorporated exactly, and an approximate means of doing this is not
presented in this work.

The second improvement proposed is to truncate the belief vector at each
step, and compute the updated belief only for states that have a predicted like-
lihood over a threshold, using only information relating to states that have a
likelihood over another threshold. The belief in other states is set to a small
default value. This is similar to previous implementations [10].

2.2 Robot Model

At a junction, the robot chooses a direction at random, relative to its own
unknown orientation. In practice, this action would be chosen to best inspect
the network, however this would not affect the localization result so is neglected
here. There are four sources of uncertainty in the robot motion. Three of these
are discrete uncertainties: There is a chance that the robot incorrectly executes
the action and moves in a different direction [10]. Between junctions there is a
chance that the robot is turned around and returns to the previous junction.
When arriving at a junction there is a chance that the robot does not detect
it, and continues moving in a random unknown direction, without updating the
state estimate [11]. This model is illustrated as a discrete probability distribution
shown in Fig. 2(a). The robot is modelled as moving at a constant velocity with
multiplicative Gaussian noise, which is the fourth source of uncertainty.

It is assumed that the robot can make two kinds of observation. Firstly, it
can detect the number of exits from a junction, which could be done using a
camera, sonar, or a number of other sensing modes. For a robot which is able
to control its motion, this measurement is assumed to be accurate as it would
be able to hold position to confirm the observation. However in the case where
a robot is moved with the flow in the pipe this assumption may be violated.
Secondly, it can estimate the distance travelled since its last state update. This
could be done using odometry or dead reckoning. To model the distance travelled
in the case where a robot is turned around in a pipe and returns to the previous
junction, a uniform probability distribution over twice the length of the pipe
is used. These observations could be removed, changed, or added to without
affecting the localization method. For example, use of an inertial measurement
unit (IMU) might be useful for estimating the direction.

2.3 Localization Model

For the transition model between states, written as T , the localization model
parameters used are set approximately to the values in the robot model described
previously, as shown in Fig. 2(a), so that the robot does not have exact knowledge
of the true motion model. An alternative model is also proposed, referred to as
T̄ , where the transition probabilities are distributed more evenly. In this work
the extreme case of a uniform distribution is used.

For the measurement model, written as M , the probability of making a given
continuous measurement must be found. For a given state transition with a
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Fig. 2. (a) An example of the probability distribution for robot motion, in this case
from node 2 in a 12 node network, showing the motion model used to simulate the robot
motion, the estimate of this distribution used for localization, and the full localization
model considering the probability of missing a node. (b) An example continuous prob-
ability distribution over possible measurements of distance between a pair of nodes.

number of possible transition lengths, the probability distribution over possible
measurements is given by a sum of Gaussian distributions, illustrated in Fig.
2(b). A probability estimate is found as in equation 1 where p̃ is the relative
probability estimate for measurement m given the possible state s′, Ks′ is the
number of Gaussian components, and σi,s′ and µi,s′ are the standard deviation
and mean for component i. The Gaussian model is relative and does not sum to
one, as this would reduce the probabilities found for junction pairs with multiple
short paths between them compared to junction pairs with single short paths
where all the probability is concentrated around a single measurement.

p̃(m|s′) =
Ks′∑

i=1

1

σi,s′
√
2π

e
−

1

2

(

x−µ
i,s′

σ
i,s′

)

(1)

As with the transition model, the parameters of the distribution used for local-
ization are set to be different to those used to model the motion. In Fig. 2(b)
the narrow Gaussian components represent simple transitions where the robot
moves to a different junction. The wider Gaussian components model the added
uniform distribution used to model the distance travelled when the robot returns
to the junction it just left. For a single return incident this is not very accurate
as the Gaussian distribution is a poor representation of the uniform distribution.
However for multiple return incidents this is more accurate as the sum of mul-
tiple uniformly distributed variables is closer to the Gaussian distribution. This
broad distribution should challenge the localization method, as a measurement
is more likely to be seen as a good match for any given transition.

2.4 State Estimation

The forward algorithm is used to compute the discrete probability distribution,
or belief, over the possible robot states in the Hidden Markov Model (HMM).
With the state s = sxtxt−1θt , the typical form in Equation 2 is used to compute
the updated belief b′ over a vector of all possible new states s′, based on the
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belief b over a vector of possible states s, the observation at the new position
o, observation between positions m, action a, and transition and observation
models T and P , decomposed into O and M . As the robot’s previous position
is used, this is similar to a second order HMM.

b′(s′) = P (m, o|s′)T (s′|s, a)b(s) = M(m|s′)O(o|s′)T (s′|s, a)b(s) (2)

When the state is s = sxtθt , a modified form shown in Equation 3 is used to
approximately incorporate information when measurements of distance between
positions do not fit the typical form. A further modified form is used where the
state is s = sxt

, shown in Equation 4.

b′(s′) = H(m|s′, b(s))O(o|s′)T (s′|s, a)b(s) (3)

b′(s′) = H(m|s′, b(s))O(o|s′)T (s′|s)b(s) (4)

where H is a diagonal matrix with each element given by Equation 5.

H(m|s′, b(s))s′ = g(m|s′)b(s) (5)

In these equations M is a diagonal matrix where each element is computed as in
equation 1, and the vector g is the probability of measuring m for a transition to
state s′ from each state s and is computed similarly. The observation model O
is similarly a diagonal matrix where each element is equal to one where the ob-
servation of number of exits from the junction matches the expected observation
for the corresponding state. The transition model T is computed as described in
section 2.3.

Where the robot’s position is to be estimated, and the belief in each dis-
crete position is distributed over a number of states corresponding to different
directions and previous positions, some inference must be made. Summing the
probabilities for all states for each discrete position and finding the largest value
over positions does not necessarily give the same result as finding the largest
probability over all states and finding the corresponding position. In this work
the former method is used as it was observed to give a slightly better result.

Alternative algorithms such as the forward-backward algorithm or the Viterbi
algorithm could be used instead of the forward algorithm. These would give bet-
ter estimates of the full robot trajectory, at the cost of increased computation,
which may be useful for path planning. The sensitivity to parameters and effi-
ciency over each state and motion model definition are expected to be similar
using these other algorithms, however this is not investigated in this work.

2.5 Practical Considerations

As the problem is considering only localization in a known environment, rather
than mapping, the possible transition and measurement models can be pre-
computed for a given network [11].

For each junction for each direction, the transition model can be computed for
each possible action, assuming that the connectivity between junctions is known.
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When junctions can be missed, the state transition model is difficult to compute
exactly. For a given network a Monte Carlo method is used to approximate
the probability of transition between each state. The measurement model for
distance travelled between junctions is also computed using the Monte Carlo
method as all junction pairs have multiple possible paths between them. This is
done assuming that the path length between junctions is known accurately. In
this work using an idealised model network this is the case as all of the pipes are
straight lines and the junction positions are known precisely. In practice there
may be some uncertainty in these metric values, so a simultaneous localization
and mapping approach may be required which uses the robot’s measurements of
distance travelled as well as prior information to find an accurate model.

3 Results

Experiments are done in simulation to compare the performance and computa-
tional requirements of localization using each of the proposed robot state defini-
tions and improvements to efficiency. Aspects of the performance of the method
in general can also be observed. An example of the result of the localization in
the discrete space is shown in Fig. 3, where it is seen that the use of measured
distance travelled improves the localization accuracy considerably.
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Fig. 3. An example of the localization method. (a) A subset of Fig. 1 showing the
nodes labelled as state indices. (b, c) Part of the belief vector over each time step. The
darkness corresponds to the belief for each state. The maximum belief at each step is
labelled in blue if it is correct and red if it is incorrect. The true robot path through
the states is shown by the bordered cells. (b) shows the result found without using the
measured distance travelled, (c) shows the result using this measured distance.
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Fig. 4. Variation in localization error in a network with each combination of 4 values for
each of the 4 uncertainty parameters: p(correct)/p(incorrect), the relative probability
of correctly executing an action, p(back), the probability of returning to the previous
node, p(miss), the probability of missing a node, and the measurement noise amplitude.
The total relative error is the proportion of the steps for which the localization is
incorrect. The axes are labelled directly for each cell as the two quantities on each axis
are varied to best visualise the four dimensional data.

3.1 Evaluation of Sensitivity to Model Parameters

The accuracy of the localization method is evaluated for different values for the
uncertainty parameters described in section 2.2. The robot is simulated moving
for 100 steps through the network shown in Fig. 1, and localization is done at
each step. This is done ten times, starting from different points, and this is done
for four different values for each of the four parameters.

For localization using the state definition sxtxt−1θt the total relative error,
the proportion of steps for which the localization estimate is incorrect, is shown
for each of the 256 parameters sets in Fig. 4. Parameter sets which give low esti-
mation error have low measurement noise, low probability of missing a junction
and low probability of incorrectly returning to a junction. The relative proba-
bility of correctly executing an action is seen not to have much of an effect. It
is expected that for a system with no uncertainty, the estimation error will be
equal to zero, and that for a desired maximum error lower than that shown here,
the required parameter values could be found by following the relationship to
accuracy shown here.

These results are as expected. The probability of correctly executing an ac-
tion affects only the discrete part of the model shown in Fig. 2(a), which is always
quite accurate as the localization model in each case uses estimates of the pa-
rameter set. The other parameters have an effect on the measurement model
shown in Fig. 2(b). The measurement noise directly affects the variance of the
Gaussian components, so a larger magnitude of noise will increase the likelihood
of an incorrect state appearing to be a good match for the measurement made.
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Fig. 5. A comparison of the results using each of the three state definitions (sxt , sxtθt ,
sxtxt−1θt

), and without using the measured distancem (O only). This is done for each of
the three error metrics: Total Error, the proportion of steps for which the localization is
incorrect, Error Starts, the proportion of steps where an initial mislocalization occurs,
and the mean Error Length, the mean number of steps before relocalizing. The box
plots show the quartiles for each value over a range of parameter sets determining the
uncertainty in robot motion. The parameter values used are a subset of those shown
in Fig. 4, using only the two values for each corresponding to the lower uncertainty.

The probability of moving back to the previous node increases the impact of
the uniformly distributed measurements which are not modelled accurately in
the localization model. The probability of missing a node increases the impact
of the Gaussian components with higher mean values, which tend to be close
together due to many longer paths existing with similar lengths. Therefore it is
unsurprising that these parameters have an effect on the localization accuracy.

3.2 Comparison of Methods

Fig. 5 compares the results found using each state definition, over the subset
of the parameter sets which correspond to the lower uncertainty, indicative of a
good performance. The total error in localization is decomposed into two com-
ponents: the number of steps at which an initial mislocalization occurs, and the
mean number of steps before relocalization.

The median total error increases for the more reduced state definitions,
largely due to the increase in mean number of steps before relocalizing after
an error. Compared to only using observations at junctions, the use of measured
distance travelled is seen to reduce the median localization error over the pa-
rameter sets by 66%, 62%, and 43% for each of the state definitions respectively,
from least to most reduced. However, the results with the best set of parameters
for each state definition are similar, giving around a 70% reduction in error.

Table 1 compares the median computation time per step for each of the state
definitions in the exact and truncated methods, for two maps, one with 12 nodes
and one with 63 nodes. Note that the exact values are expected to be different
in practice on different hardware. The truncated method is shown to reduce the
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Table 1. Median computation time τ with each state definition.

Time sxt (s) Time sxtθt (s) Time sxtxt−1θt
(s)

Network Exacta Truncatedb Exact Truncated Exact Truncated

Map 1 0.003 0.002 0.007 0.003 0.016 0.007
Map 2 0.062 0.005 0.145 0.010 0.838 0.022

aBelief is computed for all possible states.
bBelief is computed for likely new states using likely states.

computation time significantly, especially for the larger map. Reducing the state
definition is also shown to reduce the computation time substantially.

With a measure of computation time for each set of parameters, a measure
of localization efficiency can be found for each method, given by

η = (1− ǫ)/τ (6)

where ǫ is the total relative localization error (the proportion of steps at which
the estimate is incorrect), − ǫ is the relative localization accuracy, and τ is the
computation time. This is shown for four sets of parameters in Table 2. For each
method it can be seen that the ratio of accuracy to computation time is higher
for parameters that give higher accuracy, suggesting that a robot able to give
low uncertainty would give an improved accuracy and a lower computational
power requirement. It is also seen here that this efficiency ratio is better for the
more reduced state methods, especially for higher accuracy parameters.

Finally, Fig. 6 compares the localization estimate when using the motion
models T and T̄ (described in section 2.3), done here for the state definition sxt

over the range of parameter sets. It is seen that the localization error is generally
lower when using T̄ , especially at lower probabilities of missing a junction and
lower noise. This is seen to be due to a decrease in the relocalization time, which
compensates for a generally increased rate of mislocalization.

Over all of these comparisons between state definitions, the results found
using the reduced state definition sxt

are more efficient than those found with
more full state definitions. This result is improved by using an alternative motion
model T̄ , which is initially a surprising result, as this method is unable to incor-
porate information about the choice of action into the estimation. From this, it
is suggested that the use of measured distance and observed number of exits at a
junction are more important for successful localization than the motion model.

Table 2. Ratio (η) of accuracy (− ǫ) to time taken (τ) for four sets of parameters.

sxt sxtθt sxtxt−1θt

Parametersa Accuracy Ratio Accuracy Ratio Accuracy Ratio

[8,0.5,0.4,0.005] 0.2 10 0.19 15 0.23 4.7
[8,0.125,0.2,0.005] 0.37 40 0.58 51 0.62 18
[16,0.25,0.1,0.0013] 0.65 170 0.63 64 0.67 23

[16,0.0625,0.05,0.0013] 0.87 310 0.85 100 0.86 45
aThe parameters are: probability(correct)/probability(incorrect),
probability(back), probability(miss), measurement noise.
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Fig. 6. A comparison between the results found using the models T and T̄ with the
state definition sxt , over the range of parameter sets. (a) shows the relative total error,
(b) shows the relative mislocalization error, which is the proportion of initial incorrect
estimates, and (c) shows the relative relocalization time, which is the mean number of
steps before the estimate becomes correct. The value in each cell is equal to the result
found using the T̄ model divided by that using the T model. The axes are not labelled
for conciseness, however they are identical to those found in Fig. 4.

It is speculated that the T̄ model localization has an improved result as it keeps
a more diverse belief across the possible states, so mislocalization is more likely
but it is able to recover from error more quickly when a good measurement is
made. This will be investigated in future work.

4 Conclusions and Further Work

Simulated results for topological robot localization in a network of pipes have
been presented. The effect of four uncertainty parameters on the accuracy has
been investigated and results are as would be expected. Parameter values re-
quired for good performance in this model are identified.

To improve on identified problems with complexity, two alternative state def-
initions have been developed and compared to the typical HMM-based method.
It is seen more efficient performance is found using a reduced definition of robot
state and an augmented HMM. An alternative motion model is also proposed
which shows an improvement in accuracy. Future work will investigate this alter-
nate method in more detail, and compare the methods in other network topolo-
gies. Further work could extend this method to a multi-robot case.
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