5 research outputs found

    A global database of nitrogen and phosphorous excretion rates of aquatic animals

    Get PDF
    Animals can be important in modulating ecosystem-level nutrient cycling, although their importance varies greatly among species and ecosystems. Nutrient cycling rates of individual animals represent valuable data for testing the predictions of important frameworks such as the Metabolic Theory of Ecology (MTE) and ecological stoichiometry (ES). They also represent an important set of functional traits that may reflect both environmental and phylogenetic influences. Over the past two decades, studies of animal-mediated nutrient cycling have increased dramatically, especially in aquatic ecosystems. Here we present a global compilation of aquatic animal nutrient excretion rates. The dataset includes 10,534 observations from freshwater and marine animals of N and/or P excretion rates. These observations represent 491 species, including most aquatic phyla. Coverage varies greatly among phyla and other taxonomic levels. The dataset includes information on animal body size, ambient temperature, taxonomic affiliations, and animal body N:P. This data set was used to test predictions of MTE and ES, as described in Vanni and McIntyre (2016; Ecology DOI: 10.1002/ecy.1582). © 2017 Ecological Society of Americ

    Climate change in the Baltic Sea:2021 fact sheet

    No full text
    Abstract Climate change effects on the Baltic Sea environment are manifold. It is for example expected that water temperature and sea level will rise, and sea ice cover will decrease. This will affect ecosystems and biota; for example, range shifts are expected for a number of marine species, benthic productivity will decrease, and breeding success of ringed seals will be reduced. The impacts will hence affect the overall ecosystem function and also extend to human uses of the sea; trawling will follow the fish towards southern areas, aquaculture will likely face a shift towards species diversification, and the value of most ecosystem services is expected to change — to name a few. This Climate Change Fact Sheet provides the latest scientific knowledge on how climate change is currently affecting the Baltic Sea and how it is expected to develop in the foreseeable future. It is aimed at guiding policy makers to take climate change into account, but also to the general public. Updated Baltic Sea Climate Change Fact Sheets are expected to be published approximately every seven years

    A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions

    Get PDF
    10.1016/j.scitotenv.2021.147868Science of the Total Environment78814786

    A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions

    No full text
    The threat posed by invasive non-native species worldwide requires a global approach to identify which introduced species are likely to pose an elevated risk of impact to native species and ecosystems. To inform policy, stakeholders and management decisions on global threats to aquatic ecosystems, 195 assessors representing 120 risk assessment areas across all six inhabited continents screened 819 non-native species from 15 groups of aquatic organisms (freshwater, brackish, marine plants and animals) using the Aquatic Species Invasiveness Screening Kit. This multi-lingual decision-support tool for the risk screening of aquatic organisms provides assessors with risk scores for a species under current and future climate change conditions that, following a statistically based calibration, permits the accurate classification of species into high-, medium- and low-risk categories under current and predicted climate conditions. The 1730 screenings undertaken encompassed wide geographical areas (regions, political entities, parts thereof, water bodies, river basins, lake drainage basins, and marine regions), which permitted thresholds to be identified for almost all aquatic organismal groups screened as well as for tropical, temperate and continental climate classes, and for tropical and temperate marine ecoregions. In total, 33 species were identified as posing a ‘very high risk’ of being or becoming invasive, and the scores of several of these species under current climate increased under future climate conditions, primarily due to their wide thermal tolerances. The risk thresholds determined for taxonomic groups and climate zones provide a basis against which area-specific or climate-based calibrated thresholds may be interpreted. In turn, the risk rankings help decision-makers identify which species require an immediate ‘rapid’ management action (e.g. eradication, control) to avoid or mitigate adverse impacts, which require a full risk assessment, and which are to be restricted or banned with regard to importation and/or sale as ornamental or aquarium/fishery enhancement
    corecore