43 research outputs found

    Type 2 diabetes increases and metformin reduces total, colorectal, liver and pancreatic cancer incidences in Taiwanese: a representative population prospective cohort study of 800,000 individuals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metformin protection against cancer risk in Orientals is uncertain. We examined the possible metformin effect on total, esophageal, gastric, colorectal (CRC), hepatocellular (HCC) and pancreatic cancers in a Taiwanese cohort.</p> <p>Methods</p> <p>A representative sample of 800,000 was drawn from the Taiwanese National Health Insurance data of 2000. A cohort of 480,984 participants 20 years or older, diabetes-cancer-free on 1st January 2000 was formed and categorized as four groups by DM and metformin usage status. Eligible incident cancer events had to occur one year after the index date until the end of 2007. The Cox proportional-hazards model evaluated relative risk of cancer for treated DM patients with or without metformin. The covariates included age, gender, other oral anti-hyperglycemic medication, Charlson comorbidity index (CCI) score and metformin exposure dosage and duration.</p> <p>Results</p> <p>With diabetes but no anti-hyperglycemic medication, cancer incidence density increased at least 2-fold for total, CRC and HCC. On metformin, total, CRC and HCC incidences decreased to near non-diabetic levels but to varying degrees depending on gender and cancer type (CRC in women, liver in men). Adjustment for other oral anti-hyperglycemic agents usage and CCI made the benefit of metformin more evident [hazard ratios (95% confidence intervals): total 0.12 (0.08-0.19), CRC 0.36 (0.13-0.98), liver 0.06 (0.02-0.16), pancreas 0.15 (0.03-0.79)]. There was a significant gender interaction with metformin in CRC which favored women. Metformin dosage for a significant decrease in cancer incidence was ≤500 mg/day.</p> <p>Conclusions</p> <p>Metformin can reduce the incidences of several gastroenterological cancers in treated diabetes.</p

    Targeting cancer metabolism: a therapeutic window opens

    Get PDF
    Genetic events in cancer activate signalling pathways that alter cell metabolism. Clinical evidence has linked cell metabolism with cancer outcomes. Together, these observations have raised interest in targeting metabolic enzymes for cancer therapy, but they have also raised concerns that these therapies would have unacceptable effects on normal cells. However, some of the first cancer therapies that were developed target the specific metabolic needs of cancer cells and remain effective agents in the clinic today. Research into how changes in cell metabolism promote tumour growth has accelerated in recent years. This has refocused efforts to target metabolic dependencies of cancer cells as a selective anticancer strategy.Burroughs Wellcome FundSmith Family FoundationStarr Cancer ConsortiumDamon Runyon Cancer Research FoundationNational Institutes of Health (U.S.

    Recent advances in catalytic hydrogenation of carbon dioxide

    Full text link

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication
    corecore