437 research outputs found

    Coherent control of macroscopic quantum states in a single-Cooper-pair box

    Full text link
    A small superconducting electrode (a single-Cooper-pair box) connected to a reservoir via a Josephson junction constitutes an artificial two-level system, in which two charge states that differ by 2e are coupled by tunneling of Cooper pairs. Despite its macroscopic nature involving a large number of electrons, the two-level system shows coherent superposition of the two charge states, and has been suggested as a candidate for a qubit, i.e. a basic component of a quantum computer. Here we report on time-domain observation of the coherent quantum-state evolution in the two-level system by applying a short voltage pulse that modifies the energies of the two levels nonadiabatically to control the coherent evolution. The resulting state was probed by a tunneling current through an additional probe junction. Our results demonstrate coherent operation and measurement of a quantum state of a single two-level system, i.e. a qubit, in a solid-state electronic device.Comment: 4 pages, 4 figures; to be published in Natur

    Indian Ocean Dipole drives malaria resurgence in East African highlands

    Get PDF
    Malaria resurgence in African highlands in the 1990s has raised questions about the underlying drivers of the increase in disease incidence including the role of El-Niño-Southern Oscillation (ENSO). However, climatic anomalies other than the ENSO are clearly associated with malaria outbreaks in the highlands. Here we show that the Indian Ocean Dipole (IOD), a coupled ocean-atmosphere interaction in the Indian Ocean, affected highland malaria re-emergence. Using cross-wavelet coherence analysis, we found four-year long coherent cycles between the malaria time series and the dipole mode index (DMI) in the 1990s in three highland localities. Conversely, we found a less pronounced coherence between malaria and DMI in lowland localities. The highland/lowland contrast can be explained by the effects of mesoscale systems generated by Lake Victoria on its climate basin. Our results support the need to consider IOD as a driving force in the resurgence of malaria in the East African highlands

    The Cyprinodon variegatus genome reveals gene expression changes underlying differences in skull morphology among closely related species

    Get PDF
    Genes in durophage intersection set at 15 dpf. This is a comma separated table of the genes in the 15 dpf durophage intersection set. Given are edgeR results for each pairwise comparison. Columns indicating whether a gene is included in the intersection set at a threshold of 1.5 or 2 fold are provided. (CSV 13 kb

    Pavlovian Fear Conditioning Activates a Common Pattern of Neurons in the Lateral Amygdala of Individual Brains

    Get PDF
    Understanding the physical encoding of a memory (the engram) is a fundamental question in neuroscience. Although it has been established that the lateral amygdala is a key site for encoding associative fear memory, it is currently unclear whether the spatial distribution of neurons encoding a given memory is random or stable. Here we used spatial principal components analysis to quantify the topography of activated neurons, in a select region of the lateral amygdala, from rat brains encoding a Pavlovian conditioned fear memory. Our results demonstrate a stable, spatially patterned organization of amygdala neurons are activated during the formation of a Pavlovian conditioned fear memory. We suggest that this stable neuronal assembly constitutes a spatial dimension of the engram

    Benzyl Isothiocyanate, a Major Component from the Roots of Salvadora Persica Is Highly Active against Gram-Negative Bacteria

    Get PDF
    Plants produce a number of antimicrobial substances and the roots of the shrub Salvadora persica have been demonstrated to possess antimicrobial activity. Sticks from the roots of S. persica, Miswak sticks, have been used for centuries as a traditional method of cleaning teeth. Diverging reports on the chemical nature and antimicrobial repertoire of the chewing sticks from S. persica led us to explore its antibacterial properties against a panel of pathogenic or commensal bacteria and to identify the antibacterial component/s by methodical chemical characterization. S. persica root essential oil was prepared by steam distillation and solid-phase microextraction was used to sample volatiles released from fresh root. The active compound was identified by gas chromatography-mass spectrometry and antibacterial assays. The antibacterial compound was isolated using medium-pressure liquid chromatography. Transmission electron microscopy was used to visualize the effect on bacterial cells. The main antibacterial component of both S. persica root extracts and volatiles was benzyl isothiocyanate. Root extracts as well as commercial synthetic benzyl isothiocyanate exhibited rapid and strong bactericidal effect against oral pathogens involved in periodontal disease as well as against other Gram-negative bacteria, while Gram-positive bacteria mainly displayed growth inhibition or remained unaffected. The short exposure needed to obtain bactericidal effect implies that the chewing sticks and the essential oil may have a specific role in treatment of periodontal disease in reducing Gram-negative periodontal pathogens. Our results indicate the need for further investigation into the mechanism of the specific killing of Gram-negative bacteria by S. persica root stick extracts and its active component benzyl isothiocyanate

    Structural basis of the filamin A actin-binding domain interaction with F-actin

    Get PDF
    Cryo-EM reconstructions were deposited in the Electron Microscopy Data Bank with the following accession numbers: F20-F-actin-FLNaABD, EMD-7833; F20-F-actin-FLNaABD-Q170P, EMD-7832; F20-F-actin-FLNaABD-E254K, EMD-8918; Krios-F-actin-FLNaABD-E254K, EMD-7831. The corresponding FLNaABD-E254K filament model was deposited in the PDB with accession number 6D8C. Source data for F-actin-targeting analyses (Figs. 2c,d,g,h, 3b,c,e,f, 4d,e, 5c,d, and 6a,b) and co-sedimentation assays (Figs. 5g and 6d) are available with the paper online. Other data are available from the corresponding author upon reasonable request. We thank Z. Razinia for generating numerous FLNa constructs, S. Wu for expertise in using the Krios microscope, J. Lees for advice on model refinement, and M. Lemmon for helpful comments in preparing the manuscript. We also thank the Yale Center for Research Computing for guidance and use of the Farnam Cluster, as well as the staff at the YMS Center for Molecular Imaging for the use of the EM Core Facility. This work was funded by grants from the National Institutes of Health (R01-GM068600 (D.A.C.), R01-NS093704 (D.A.C.), R37-GM057247 (C.V.S.), R01-GM110530 (C.V.S.), T32-GM007324, T32-GM008283) and an award from American Heart Association (15PRE25700119 (D.V.I.)).Peer reviewedPostprin

    Cytokine Profiles in Asthma Families Depend on Age and Phenotype

    Get PDF
    Background: Circulating cytokine patterns may be relevant for the diagnosis of asthma, for the discrimination of certain phenotypes, and prognostic factors for exacerbation of disease. Methodology/Principal Findings: In this study we investigated serum samples from 944 individuals of 218 asthma-affected families by a multiplex, microsphere based system detecting at high sensitivity eleven asthma associated mediators: eotaxin (CCL11), granulocyte macrophage stimulating factor (GM-CSF), interferon gamma (IFNγ), interleukin-4 (IL-4), IL-5, IL-8, IL-10, IL-12 (p40), IL-13, IL-17 and tumor necrosis factor alpha (TNFα). Single cytokine levels were largely similar between asthmatic and healthy individuals when analysing asthma as single disease entity. Regulatory differences between parental and pediatric asthma were reflected by six of the eleven mediators analyzed (eotaxin, IL-4, IL-5, IL-10, IL-12, TNFα). IL-12 (p40) and IL-5 were the best predictor for extrinsic asthma in children with an increased odds ratio of 2.85 and 1.96 per log pg/ml increase (IL-12 (p40): 1.2-6.8, p = 0.019, and IL-5: 1.2-2.5, p = 0.025). Frequent asthma attacks in children are associated with elevated IL-5 serum levels (p = 0.013). Cytokine patterns seem to be individually balanced in both, healthy and diseased adults and children, with various cytokines correlating among each other (IL-17 and IFNγ (rs = 0.67), IL-4 and IL-5 (rs = 0.55), IFNγ and GM-CSF (rs = 0.54)). Conclusion/Significance: Our data support mainly an age- but also an asthma phenotype-dependent systemic immune regulation. © 2010 Pukelsheim et al

    Formation of H2 and CH4 by weathering of olivine at temperatures between 30 and 70°C

    Get PDF
    Hydrocarbons such as CH4 are known to be formed through the Fischer-Tropsch or Sabatier type reactions in hydrothermal systems usually at temperatures above 100°C. Weathering of olivine is sometimes suggested to account for abiotic formation of CH4 through its redox lowering and water splitting properties. Knowledge about the CH4 and H2 formation processes at low temperatures is important for the research about the origin and cause of early Earth and Martian CH4 and for CO2 sequestration. We have conducted a series of low temperature, long-term weathering experiments in which we have tested the CH4 and H2 formation potential of forsteritic olivine

    Slab melting as a barrier to deep carbon subduction

    Get PDF
    Interactions between crustal and mantle reservoirs dominate the surface inventory of volatile elements over geological time, moderating atmospheric composition and maintaining a lifesupporting planet1. While volcanoes expel volatile components into surface reservoirs, subduction of oceanic crust is responsible for replenishment of mantle reservoirs2,3. Many natural, ‘superdeep’ diamonds originating in the deep upper mantle and transition zone host mineral inclusions, indicating an affinity to subducted oceanic crust4–7. Here we show that the majority of slab geotherms will intersect a deep depression along the melting curve of carbonated oceanic crust at depths of approximately 300 to 700 kilometres, creating a barrier to direct carbonate recycling into the deep mantle. Low-degree partial melts are alkaline carbonatites that are highly reactive with reduced ambient mantle, producing diamond. Many inclusions in superdeep diamonds are best explained by carbonate melt–peridotite reaction. A deep carbon barrier may dominate the recycling of carbon in the mantle and contribute to chemical and isotopic heterogeneity of the mantle reservoir

    Genome-Wide Analyses of Nkx2-1 Binding to Transcriptional Target Genes Uncover Novel Regulatory Patterns Conserved in Lung Development and Tumors

    Get PDF
    The homeodomain transcription factor Nkx2-1 is essential for normal lung development and homeostasis. In lung tumors, it is considered a lineage survival oncogene and prognostic factor depending on its expression levels. The target genes directly bound by Nkx2-1, that could be the primary effectors of its functions in the different cellular contexts where it is expressed, are mostly unknown. In embryonic day 11.5 (E11.5) mouse lung, epithelial cells expressing Nkx2-1 are predominantly expanding, and in E19.5 prenatal lungs, Nkx2-1-expressing cells are predominantly differentiating in preparation for birth. To evaluate Nkx2-1 regulated networks in these two cell contexts, we analyzed genome-wide binding of Nkx2-1 to DNA regulatory regions by chromatin immunoprecipitation followed by tiling array analysis, and intersected these data to expression data sets. We further determined expression patterns of Nkx2-1 developmental target genes in human lung tumors and correlated their expression levels to that of endogenous NKX2-1. In these studies we uncovered differential Nkx2-1 regulated networks in early and late lung development, and a direct function of Nkx2-1 in regulation of the cell cycle by controlling the expression of proliferation-related genes. New targets, validated in Nkx2-1 shRNA transduced cell lines, include E2f3, Cyclin B1, Cyclin B2, and c-Met. Expression levels of Nkx2-1 direct target genes identified in mouse development significantly correlate or anti-correlate to the levels of endogenous NKX2-1 in a dosage-dependent manner in multiple human lung tumor expression data sets, supporting alternative roles for Nkx2-1 as a transcriptional activator or repressor, and direct regulator of cell cycle progression in development and tumors
    corecore