88 research outputs found

    Synthesis of Indium Nanowires by Galvanic Displacement and Their Optical Properties

    Get PDF
    <p>Abstract</p> <p>Single crystalline indium nanowires were prepared on Zn substrate which had been treated in concentrated sulphuric acid by galvanic displacement in the 0.002 mol L<sup>&#8722;1</sup>In<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>-0.002 mol L<sup>&#8722;1</sup>SeO<sub>2</sub>-0.02 mol L<sup>&#8722;1</sup>SDS-0.01 mol L<sup>&#8722;1</sup>citric acid aqueous solution. The typical diameter of indium nanowires is 30 nm and most of the nanowires are over 30 &#956;m in length. XRD, HRTEM, SAED and structural simulation clearly demonstrate that indium nanowires are single-crystalline with the tetragonal structure, the growth direction of the nanowires is along [100] facet. The UV-Vis absorption spectra showed that indium nanowires display typical transverse resonance of SPR properties. The surfactant (SDS) and the pretreatment of Zn substrate play an important role in the growth process. The mechanism of indium nanowires growth is the synergic effect of treated Zn substrate (hard template) and SDS (soft template).</p

    Development of an in-vivo active reversible butyrylcholinesterase inhibitor

    Get PDF
    Alzheimer’s disease (AD) is characterized by severe basal forebrain cholinergic deficit, which results in progressive and chronic deterioration of memory and cognitive functions. Similar to acetylcholinesterase, butyrylcholinesterase (BChE) contributes to the termination of cholinergic neurotransmission. Its enzymatic activity increases with the disease progression, thus classifying BChE as a viable therapeutic target in advanced AD. Potent, selective and reversible human BChE inhibitors were developed. The solved crystal structure of human BChE in complex with the most potent inhibitor reveals its binding mode and provides the molecular basis of its low nanomolar potency. Additionally, this compound is noncytotoxic and has neuroprotective properties. Furthermore, this inhibitor moderately crosses the blood-brain barrier and improves memory, cognitive functions and learning abilities of mice in a model of the cholinergic deficit that characterizes AD, without producing acute cholinergic adverse effects. Our study provides an advanced lead compound for developing drugs for alleviating symptoms caused by cholinergic hypofunction in advanced AD

    Home Telehealth Uptake and Continued Use Among Heart Failure and Chronic Obstructive Pulmonary Disease Patients: a Systematic Review

    Get PDF
    Background Home telehealth has the potential to benefit heart failure (HF) and chronic obstructive pulmonary disease (COPD) patients, however large-scale deployment is yet to be achieved. Purpose The aim of this review was to assess levels of uptake of home telehealth by patients with HF and COPD and the factors that determine whether patients do or do not accept and continue to use telehealth. Methods This research performs a narrative synthesis of the results from included studies. Results Thirty-seven studies met the inclusion criteria. Studies that reported rates of refusal and/or withdrawal found that almost one third of patients who were offered telehealth refused and one fifth of participants who did accept later abandoned telehealth. Seven barriers to, and nine facilitators of, home telehealth use were identified. Conclusions Research reports need to provide more details regarding telehealth refusal and abandonment, in order to understand the reasons why patients decide not to use telehealth

    F-Spondin/spon1b Expression Patterns in Developing and Adult Zebrafish

    Get PDF
    F-spondin, an extracellular matrix protein, is an important player in embryonic morphogenesis and CNS development, but its presence and role later in life remains largely unknown. We generated a transgenic zebrafish in which GFP is expressed under the control of the F-spondin (spon1b) promoter, and used it in combination with complementary techniques to undertake a detailed characterization of the expression patterns of F-spondin in developing and adult brain and periphery. We found that F-spondin is often associated with structures forming long neuronal tracts, including retinal ganglion cells, the olfactory bulb, the habenula, and the nucleus of the medial longitudinal fasciculus (nMLF). F-spondin expression coincides with zones of adult neurogenesis and is abundant in CSF-contacting secretory neurons, especially those in the hypothalamus. Use of this new transgenic model also revealed F-spondin expression patterns in the peripheral CNS, notably in enteric neurons, and in peripheral tissues involved in active patterning or proliferation in adults, including the endoskeleton of zebrafish fins and the continuously regenerating pharyngeal teeth. Moreover, patterning of the regenerating caudal fin following fin amputation in adult zebrafish was associated with F-spondin expression in the blastema, a proliferative region critical for tissue reconstitution. Together, these findings suggest major roles for F-spondin in the CNS and periphery of the developing and adult vertebrate

    The Met oncogene and basal-like breast cancer: another culprit to watch out for?

    Get PDF
    Recent findings suggest the involvement of the MET oncogene, encoding the tyrosine kinase receptor for hepatocyte growth factor, in the onset and progression of basal-like breast carcinoma. The expression profiles of basal-like tumors - but not those of other breast cancer subtypes - are enriched for gene sets that are coordinately over-represented in transcriptional signatures regulated by Met. Consistently, tissue microarray analyses have revealed that Met immunoreactivity is much higher in basal-like cases of human breast cancer than in other tumor types. Finally, mouse models expressing mutationally activated forms of Met develop a high incidence of mammary tumors, some of which exhibit basal characteristics. The present review summarizes current knowledge on the role and activity of Met in basal-like breast cancer, with a special emphasis on the correlation between this tumor subtype and the cellular hierarchy of the normal mammary gland

    Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci.

    Get PDF
    We report full-length draft de novo genome assemblies for 16 widely used inbred mouse strains and find extensive strain-specific haplotype variation. We identify and characterize 2,567 regions on the current mouse reference genome exhibiting the greatest sequence diversity. These regions are enriched for genes involved in pathogen defence and immunity and exhibit enrichment of transposable elements and signatures of recent retrotransposition events. Combinations of alleles and genes unique to an individual strain are commonly observed at these loci, reflecting distinct strain phenotypes. We used these genomes to improve the mouse reference genome, resulting in the completion of 10 new gene structures. Also, 62 new coding loci were added to the reference genome annotation. These genomes identified a large, previously unannotated, gene (Efcab3-like) encoding 5,874 amino acids. Mutant Efcab3-like mice display anomalies in multiple brain regions, suggesting a possible role for this gene in the regulation of brain development

    Somatic mutations affect key pathways in lung adenocarcinoma

    Full text link
    Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well- classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers - including NF1, APC, RB1 and ATM - and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.National Human Genome Research InstituteWe thank A. Lash, M.F. Zakowski, M.G. Kris and V. Rusch for intellectual contributions, and many members of the Baylor Human Genome Sequencing Center, the Broad Institute of Harvard and MIT, and the Genome Center at Washington University for support. This work was funded by grants from the National Human Genome Research Institute to E.S.L., R.A.G. and R.K.W.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62885/1/nature07423.pd

    2011 SOSORT guidelines: Orthopaedic and Rehabilitation treatment of idiopathic scoliosis during growth

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The International Scientific Society on Scoliosis Orthopaedic and Rehabilitation Treatment (SOSORT), that produced its first Guidelines in 2005, felt the need to revise them and increase their scientific quality. The aim is to offer to all professionals and their patients an evidence-based updated review of the actual evidence on conservative treatment of idiopathic scoliosis (CTIS).</p> <p>Methods</p> <p>All types of professionals (specialty physicians, and allied health professionals) engaged in CTIS have been involved together with a methodologist and a patient representative. A review of all the relevant literature and of the existing Guidelines have been performed. Documents, recommendations, and practical approach flow charts have been developed according to a Delphi procedure. A methodological and practical review has been made, and a final Consensus Session was held during the 2011 Barcelona SOSORT Meeting.</p> <p>Results</p> <p>The contents of the document are: methodology; generalities on idiopathic scoliosis; approach to CTIS in different patients, with practical flow-charts; literature review and recommendations on assessment, bracing, physiotherapy, Physiotherapeutic Specific Exercises (PSE) and other CTIS. Sixty-five recommendations have been given, divided in the following topics: Bracing (20 recommendations), PSE to prevent scoliosis progression during growth (8), PSE during brace treatment and surgical therapy (5), Other conservative treatments (3), Respiratory function and exercises (3), Sports activities (6), Assessment (20). No recommendations reached a Strength of Evidence level I; 2 were level II; 7 level III; and 20 level IV; through the Consensus procedure 26 reached level V and 10 level VI. The Strength of Recommendations was Grade A for 13, B for 49 and C for 3; none had grade D.</p> <p>Conclusion</p> <p>These Guidelines have been a big effort of SOSORT to paint the actual situation of CTIS, starting from the evidence, and filling all the gray areas using a scientific method. According to results, it is possible to understand the lack of research in general on CTIS. SOSORT invites researchers to join, and clinicians to develop good research strategies to allow in the future to support or refute these recommendations according to new and stronger evidence.</p

    Improved functionalization of oleic acid-coated iron oxide nanoparticles for biomedical applications

    Get PDF
    Superparamagnetic iron oxide nanoparticles can providemultiple benefits for biomedical applications in aqueous environments such asmagnetic separation or magnetic resonance imaging. To increase the colloidal stability and allow subsequent reactions, the introduction of hydrophilic functional groups onto the particles’ surface is essential. During this process, the original coating is exchanged by preferably covalently bonded ligands such as trialkoxysilanes. The duration of the silane exchange reaction, which commonly takes more than 24 h, is an important drawback for this approach. In this paper, we present a novel method, which introduces ultrasonication as an energy source to dramatically accelerate this process, resulting in high-quality waterdispersible nanoparticles around 10 nmin size. To prove the generic character, different functional groups were introduced on the surface including polyethylene glycol chains, carboxylic acid, amine, and thiol groups. Their colloidal stability in various aqueous buffer solutions as well as human plasma and serum was investigated to allow implementation in biomedical and sensing applications.status: publishe
    • …
    corecore