21 research outputs found

    The Experience of Quality in Higher Education in the United Arab Emirates: In Times of Rapid Change and Complexities

    Get PDF
    In less than five decades, from offering formal education only in a few schools to a small tribal community to providing a selection of three public and approximately 100 private higher education institutions to the citizens of seven emirates creates a unique context in the United Arab Emirates (UAE). It is an evolution that corresponds with its remarkable economic growth. Quality assurance of diverse higher educational institutions requires complex schemes to ensure their fitness for purpose, while perhaps development and enhancement aspects need time to mature. The quality of the education is especially important because the UAE yearns for the diversified and knowledge-based economy; one that is led by its own citizens whose contribution to the workforce is currently less than 10%. This chapter highlights contextual complexities in the UAE that might have direct and/or indirect impacts on the quality experiences in the higher education sector, with proposed recommendations

    Efficient isolation, biophysical characterisation and molecular composition of extracellular vesicles secreted by primary and immortalised cells of reproductive origin

    Get PDF
    Effective communication between the maternal reproductive tract, gametes and the pre-implantation embryo is essential for the successful establishment of pregnancy. Recent studies have recognised extracellular vesicles (EVs) as potent vehicles for intercellular communication, potentially via their transport of microRNAs (miRNAs). The aim of the current investigation was to determine the size, concentration and electrical surface properties (zeta potential) of EVs secreted by; (1) primary cultures of porcine oviductal epithelial cells (POECs) from the isthmus and ampullary regions of the female reproductive tract; (2) Ishikawa and RL95-2 human endometrial epithelial cell line cultures; and (3) the non-reproductive epithelial cell line HEK293T. In addition, this study investigated whether EVs secreted by POECs contained miRNAs. All cell types were cultured in EV-depleted medium for 24 or 48 h. EVs were successfully isolated from conditioned culture media using size exclusion chromatography. Nanoparticle tracking analysis (NTA) was performed to evaluate EV size, concentration and zeta potential. QRT-PCR was performed to quantify the expression of candidate miRNAs (miR-103, let-7a, miR-19a, miR-203, miR-126, miR-19b, RNU44, miR-92, miR-196a, miR-326 and miR-23a). NTA confirmed the presence of EVs with diameters of 50–150 nm in all cell types. EV size distribution was significantly different between cell types after 24 and 48 h of cell culture and the concentration of EVs secreted by POECs and Ishikawa cells was also time dependent. The distribution of EVs with specific electrokinetic potential measurements varied between cell types, indicating that EVs of differing cellular origin have varied membrane components. In addition, EVs secreted by POECs exhibited significantly different time dependant changes in zeta potential. QRT-PCR confirmed the presence of miR-103, let-7a, miR-19a, miR-203, miR-126, and miR-19b in EVs secreted by POECs (CT ≥ 29). Bioinformatics analysis suggests that these miRNAs are involved in cell proliferation, innate immune responses, apoptosis and cellular migration. In conclusion, reproductive epithelial cells secrete distinct populations of EVs containing miRNAs, which potentially act in intercellular communication in order to modulate the periconception events leading to successful establishment of pregnancy

    Prevalence and correlates of prescription opioid residue injection

    Get PDF
    Abstract: BACKGROUND: There is growing evidence of intravenous administration of prescription opioids (POs) in several countries. Preparation of POs for injection may leave residues in containers and filters used by people who inject drugs and may lead to adverse health outcomes if they are injected. METHODS: This exploratory study used cross-sectional data from the COSMO study, a prospective cohort of out-of-treatment cocaine users carried out in Montréal (Canada) between October 2010 and August 2015. For this analysis, only one visit per participant was selected, that is, the first time the participant reported PO injection during the study. The outcome of interest, "injection of PO residues", was defined as having injected PO residues from a filter and/or a container in the last month. Correlates of this outcome were identified using logistic regression analyses. RESULTS: Of the 122 participants who reported PO injection during the study period, 41.8% had injected PO residues. Reporting an unstable source of income (AOR=4.26; 95% CI: 1.03-17.69), a recent overdose (AOR=5.45; 95% CI: 1.50-19.88) and a preponderant use of opiates (mostly opiate use versus other drugs excluding alcohol and cannabis) (AOR=2.46; 95% CI: 1.08-5.63) increased the risk of PO residue injection. The odds of reporting PO residue injection rose by 7% per unit increase in the score of psychological distress (AOR=1.07 per unit increase; 95% CI: 1.01-1.12). CONCLUSIONS: The findings of this study suggest that PO residue injection is associated with markers of vulnerability. Further investigation is needed in order to better understand this understudied drug injection practice

    Identification of mechanism of cancer-cell-specific reactivation of hTERT offers therapeutic opportunities for blocking telomerase specifically in human colorectal cancer

    No full text
    Transcriptional reactivation of hTERT is the limiting step in tumorigenesis. While mutations in hTERT promoter present in 19% of cancers are recognized as key drivers of hTERT reactivation, mechanisms by which wildtype hTERT (WT-hTERT) promoter is reactivated, in majority of human cancers, remain unknown. Using primary colorectal cancers (CRC) we identified Tert INTeracting region 2 (T-INT2), the critical chromatin region essential for reactivating WT-hTERT promoter in CRCs. Elevated β-catenin and JunD level in CRC facilitates chromatin interaction between hTERT promoter and T-INT2 that is necessary to turn on hTERTexpression. Pharmacological screens uncovered salinomycin, which inhibits JunD mediated hTERT-T-INT2 interaction that is required for the formation of a stable transcription complex on the hTERT promoter. Our results showed for the first time how known CRC alterations, such as APC, lead to WT-hTERT promoter reactivation during stepwise-tumorigenesis and provide a new perspective for developing cancer-specific drugs.Agency for Science, Technology and Research (A*STAR)Ministry of Education (MOE)National Research Foundation (NRF)Published versionNational Research Foundation under its Competitive Research Programme [NRF-CRP17-2017-02 to V.T.]; Agency for Science Technology and Research, Singapore (A*STAR) for funding and supporting the Tergaonkar laboratory and this project; NRF Singapore and the Singapore Ministry of Education under its Research Centres of Excellence initiative; Singapore Ministry of Education Academic Research Fund Tier 2 grant [MOET2EP30120-0009 to M.J.F.]. Funding for open access charge: The V.T. laboratory is supported by the National Research Foundation-Competitive Research Programme [NRF-CRP17-2017-02]; IMCB A*STAR

    HoxC5 and miR-615-3p target newly evolved genomic regions to repress hTERT and inhibit tumorigenesis

    No full text
    The repression of telomerase activity during cellular differentiation promotes replicative aging and functions as a physiological barrier for tumorigenesis in long-lived mammals, including humans. However, the underlying mechanisms remain largely unclear. Here we describe how miR-615-3p represses hTERT expression. mir-615-3p is located in an intron of the HOXC5 gene, a member of the highly conserved homeobox family of transcription factors controlling embryogenesis and development. Unexpectedly, we found that HoxC5 also represses hTERT expression by disrupting the long-range interaction between hTERT promoter and its distal enhancer. The 3′UTR of hTERT and its upstream enhancer region are well conserved in long-lived primates. Both mir-615-3p and HOXC5 are activated upon differentiation, which constitute a feed-forward loop that coordinates transcriptional and post-transcriptional repression of hTERT during cellular differentiation. Deregulation of HOXC5 and mir-615-3p expression may contribute to the activation of hTERT in human cancers.NRF (Natl Research Foundation, S’pore)MOE (Min. of Education, S’pore)Published versio
    corecore