138 research outputs found

    Pressure and Volume Limited Ventilation for the Ventilatory Management of Patients with Acute Lung Injury: A Systematic Review and Meta-Analysis

    Get PDF
    Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life threatening clinical conditions seen in critically ill patients with diverse underlying illnesses. Lung injury may be perpetuated by ventilation strategies that do not limit lung volumes and airway pressures. We conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) comparing pressure and volume-limited (PVL) ventilation strategies with more traditional mechanical ventilation in adults with ALI and ARDS.We searched Medline, EMBASE, HEALTHSTAR and CENTRAL, related articles on PubMed™, conference proceedings and bibliographies of identified articles for randomized trials comparing PVL ventilation with traditional approaches to ventilation in critically ill adults with ALI and ARDS. Two reviewers independently selected trials, assessed trial quality, and abstracted data. We identified ten trials (n = 1,749) meeting study inclusion criteria. Tidal volumes achieved in control groups were at the lower end of the traditional range of 10-15 mL/kg. We found a clinically important but borderline statistically significant reduction in hospital mortality with PVL [relative risk (RR) 0.84; 95% CI 0.70, 1.00; p = 0.05]. This reduction in risk was attenuated (RR 0.90; 95% CI 0.74, 1.09, p = 0.27) in a sensitivity analysis which excluded 2 trials that combined PVL with open-lung strategies and stopped early for benefit. We found no effect of PVL on barotrauma; however, use of paralytic agents increased significantly with PVL (RR 1.37; 95% CI, 1.04, 1.82; p = 0.03).This systematic review suggests that PVL strategies for mechanical ventilation in ALI and ARDS reduce mortality and are associated with increased use of paralytic agents

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be 24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with δ<+34.5\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie

    Positron emission tomography and magnetic resonance imaging methods and datasets within the Dominantly Inherited Alzheimer Network (DIAN)

    Get PDF
    The Dominantly Inherited Alzheimer Network (DIAN) is an international collaboration studying autosomal dominant Alzheimer disease (ADAD). ADAD arises from mutations occurring in three genes. Offspring from ADAD families have a 50% chance of inheriting their familial mutation, so non-carrier siblings can be recruited for comparisons in case-control studies. The age of onset in ADAD is highly predictable within families, allowing researchers to estimate an individual's point in the disease trajectory. These characteristics allow candidate AD biomarker measurements to be reliably mapped during the preclinical phase. Although ADAD represents a small proportion of AD cases, understanding neuroimaging-based changes that occur during the preclinical period may provide insight into early disease stages of 'sporadic' AD also. Additionally, this study provides rich data for research in healthy aging through inclusion of the non-carrier controls. Here we introduce the neuroimaging dataset collected and describe how this resource can be used by a range of researchers

    Positron emission tomography and magnetic resonance imaging methods and datasets within the dominantly inherited Alzheimer network (DIAN)

    Get PDF
    The Dominantly Inherited Alzheimer Network (DIAN) is an international collaboration studying autosomal dominant Alzheimer disease (ADAD). ADAD arises from mutations occurring in three genes. Offspring from ADAD families have a 50% chance of inheriting their familial mutation, so non-carrier siblings can be recruited for comparisons in case–control studies. The age of onset in ADAD is highly predictable within families, allowing researchers to estimate an individual’s point in the disease trajectory. These characteristics allow candidate AD biomarker measurements to be reliably mapped during the preclinical phase. Although ADAD represents a small proportion of AD cases, understanding neuroimaging-based changes that occur during the preclinical period may provide insight into early disease stages of ‘sporadic’ AD also. Additionally, this study provides rich data for research in healthy aging through inclusion of the non-carrier controls. Here we introduce the neuroimaging dataset collected and describe how this resource can be used by a range of researchers

    Effects of variable magma supply on mid-ocean ridge eruptions : constraints from mapped lava flow fields along the Galápagos Spreading Center

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 13 (2012): Q08014, doi:10.1029/2012GC004163.Mapping and sampling of 18 eruptive units in two study areas along the Galápagos Spreading Center (GSC) provide insight into how magma supply affects mid-ocean ridge (MOR) volcanic eruptions. The two study areas have similar spreading rates (53 versus 55 mm/yr), but differ by 30% in the time-averaged rate of magma supply (0.3 × 106 versus 0.4 × 106 m3/yr/km). Detailed geologic maps of each study area incorporate observations of flow contacts and sediment thickness, in addition to sample petrology, geomagnetic paleointensity, and inferences from high-resolution bathymetry data. At the lower-magma-supply study area, eruptions typically produce irregularly shaped clusters of pillow mounds with total eruptive volumes ranging from 0.09 to 1.3 km3. At the higher-magma-supply study area, lava morphologies characteristic of higher effusion rates are more common, eruptions typically occur along elongated fissures, and eruptive volumes are an order of magnitude smaller (0.002–0.13 km3). At this site, glass MgO contents (2.7–8.4 wt. %) and corresponding liquidus temperatures are lower on average, and more variable, than those at the lower-magma-supply study area (6.2–9.1 wt. % MgO). The differences in eruptive volume, lava temperature, morphology, and inferred eruption rates observed between the two areas along the GSC are similar to those that have previously been related to variable spreading rates on the global MOR system. Importantly, the documentation of multiple sequences of eruptions at each study area, representing hundreds to thousands of years, provides constraints on the variability in eruptive style at a given magma supply and spreading rate.This work was supported by the National Science Foundation grants OCE08–49813, OCE08–50052, and OCE08– 49711.2013-02-2

    CfA3: 185 Type Ia Supernova Light Curves from the CfA

    Get PDF
    We present multi-band photometry of 185 type-Ia supernovae (SN Ia), with over 11500 observations. These were acquired between 2001 and 2008 at the F. L. Whipple Observatory of the Harvard-Smithsonian Center for Astrophysics (CfA). This sample contains the largest number of homogeneously-observed and reduced nearby SN Ia (z < 0.08) published to date. It more than doubles the nearby sample, bringing SN Ia cosmology to the point where systematic uncertainties dominate. Our natural system photometry has a precision of 0.02 mag or better in BVRIr'i' and roughly 0.04 mag in U for points brighter than 17.5 mag. We also estimate a systematic uncertainty of 0.03 mag in our SN Ia standard system BVRIr'i' photometry and 0.07 mag for U. Comparisons of our standard system photometry with published SN Ia light curves and comparison stars, where available for the same SN, reveal agreement at the level of a few hundredths mag in most cases. We find that 1991bg-like SN Ia are sufficiently distinct from other SN Ia in their color and light-curve-shape/luminosity relation that they should be treated separately in light-curve/distance fitter training samples. The CfA3 sample will contribute to the development of better light-curve/distance fitters, particularly in the few dozen cases where near-infrared photometry has been obtained and, together, can help disentangle host-galaxy reddening from intrinsic supernova color, reducing the systematic uncertainty in SN Ia distances due to dust.Comment: Accepted to the Astrophysical Journal. Minor changes from last version. Light curves, comparison star photometry, and passband tables are available at http://www.cfa.harvard.edu/supernova/CfA3

    Haploinsufficiency of SOX5 at 12p12.1 is associated with developmental delays with prominent language delay, behavior problems, and mild dysmorphic features

    Get PDF
    SOX5 encodes a transcription factor involved in the regulation of chondrogenesis and the development of the nervous system. Despite its important developmental roles, SOX5 disruption has yet to be associated with human disease. We report one individual with a reciprocal translocation breakpoint within SOX5, eight individuals with intragenic SOX5 deletions (four are apparently de novo and one inherited from an affected parent), and seven individuals with larger 12p12 deletions encompassing SOX5. Common features in these subjects include prominent speech delay, intellectual disability, behavior abnormalities, and dysmorphic features. The phenotypic impact of the deletions may depend on the location of the deletion and consequently which of the three major SOX5 protein isoforms are affected. One intragenic deletion involving only untranslated exons was present in a more mildly affected subject, was inherited from a healthy parent and grandparent, and is similar to a deletion found in a control cohort. Therefore, some intragenic SOX5 deletions may have minimal phenotypic effect. Based on the location of the deletions in the subjects compared to the controls, the de novo nature of most of these deletions, and the phenotypic similarities among cases, SOX5 appears to be a dosage-sensitive, developmentally important gene

    Author Correction: Native diversity buffers against severity of non-native tree invasions.

    Get PDF

    Native diversity buffers against severity of non-native tree invasions

    Get PDF
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2^{1,2}. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4^{3,4}. Here, leveraging global tree databases5,6,7^{5,6,7}, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions
    corecore