128 research outputs found

    Epidemiology of Bladder Cancer in 2023: A Systematic Review of Risk Factors

    Full text link
    CONTEXT Bladder cancer (BC) is common worldwide and poses a significant public health challenge. External risk factors and the wider exposome (totality of exposure from external and internal factors) contribute significantly to the development of BC. Therefore, establishing a clear understanding of these risk factors is the key to prevention. OBJECTIVE To perform an up-to-date systematic review of BC's epidemiology and external risk factors. EVIDENCE ACQUISITION Two reviewers (I.J. and S.O.) performed a systematic review using PubMed and Embase in January 2022 and updated it in September 2022. The search was restricted to 4 yr since our previous review in 2018. EVIDENCE SYNTHESIS Our search identified 5177 articles and a total of 349 full-text manuscripts. GLOBOCAN data from 2020 revealed an incidence of 573 000 new BC cases and 213 000 deaths worldwide in 2020. The 5-yr prevalence worldwide in 2020 was 1 721 000. Tobacco smoking and occupational exposures (aromatic amines and polycyclic aromatic hydrocarbons) are the most substantial risk factors. In addition, correlative evidence exists for several risk factors, including specific dietary factors, imbalanced microbiome, gene-environment risk factor interactions, diesel exhaust emission exposure, and pelvic radiotherapy. CONCLUSIONS We present a contemporary overview of the epidemiology of BC and the current evidence for BC risk factors. Smoking and specific occupational exposures are the most established risk factors. There is emerging evidence for specific dietary factors, imbalanced microbiome, gene-external risk factor interactions, diesel exhaust emission exposure, and pelvic radiotherapy. Further high-quality evidence is required to confirm initial findings and further understand cancer prevention. PATIENT SUMMARY Bladder cancer is common, and the most substantial risk factors are smoking and workplace exposure to suspected carcinogens. On-going research to identify avoidable risk factors could reduce the number of people who get bladder cancer

    Kernel Flow:a high channel count scalable time-domain functional near-infrared spectroscopy system

    Get PDF
    Significance: Time-domain functional near-infrared spectroscopy (TD-fNIRS) has been considered as the gold standard of noninvasive optical brain imaging devices. However, due to the high cost, complexity, and large form factor, it has not been as widely adopted as continuous wave NIRS systems. Aim: Kernel Flow is a TD-fNIRS system that has been designed to break through these limitations by maintaining the performance of a research grade TD-fNIRS system while integrating all of the components into a small modular device. Approach: The Kernel Flow modules are built around miniaturized laser drivers, custom integrated circuits, and specialized detectors. The modules can be assembled into a system with dense channel coverage over the entire head. Results: We show performance similar to benchtop systems with our miniaturized device as characterized by standardized tissue and optical phantom protocols for TD-fNIRS and human neuroscience results. Conclusions: The miniaturized design of the Kernel Flow system allows for broader applications of TD-fNIRS.</p

    Radical, Reformist, and Garden-Variety Neoliberal: Coming to Terms with Urban Agriculture’s Contradictions

    Get PDF
    For many activists and scholars, urban agriculture in the Global North has become synonymous with sustainable food systems, standing in opposition to the dominant industrial agri-food system. At the same time, critical social scientists increasingly argue that urban agriculture programmes, by filling the void left by the rolling back of the social safety net, underwrite neoliberalisation. I argue that such contradictions are central to urban agriculture. Drawing on existing literature and fieldwork in Oakland, CA, I explain how urban agriculture arises from a protective counter-movement, while at the same time entrenching the neoliberal organisation of contemporary urban political economies through its entanglement with multiple processes of neoliberalisation. By focusing on one function or the other, however, rather than understanding such contradictions as internal and inherent, we risk undermining urban agriculture\u27s transformative potential. Coming to terms with its internal contradictions can help activists, policy-makers and practitioners better position urban agriculture within coordinated efforts for structural change, one of many means to an end rather than an end unto itself

    The unfolded protein response in immunity and inflammation.

    Get PDF
    The unfolded protein response (UPR) is a highly conserved pathway that allows the cell to manage endoplasmic reticulum (ER) stress that is imposed by the secretory demands associated with environmental forces. In this role, the UPR has increasingly been shown to have crucial functions in immunity and inflammation. In this Review, we discuss the importance of the UPR in the development, differentiation, function and survival of immune cells in meeting the needs of an immune response. In addition, we review current insights into how the UPR is involved in complex chronic inflammatory diseases and, through its role in immune regulation, antitumour responses.This work was supported by the Netherlands Organization for Scientific Research Rubicon grant 825.13.012 (J.G.); US National Institutes of Health (NIH) grants DK044319, DK051362, DK053056 and DK088199, and the Harvard Digestive Diseases Center (HDDC) grant DK034854 (R.S.B.); National Institutes of Health grants DK042394, DK088227, DK103183 and CA128814 (R.J.K.); and European Research Council (ERC) Starting Grant 260961, ERC Consolidator Grant 648889, and the Wellcome Trust Investigator award 106260/Z/14/Z (A.K.).This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/nri.2016.6

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Multiplatform Analysis of 12 Cancer Types Reveals Molecular Classification within and across Tissues of Origin

    Get PDF
    Recent genomic analyses of pathologically-defined tumor types identify “within-a-tissue” disease subtypes. However, the extent to which genomic signatures are shared across tissues is still unclear. We performed an integrative analysis using five genome-wide platforms and one proteomic platform on 3,527 specimens from 12 cancer types, revealing a unified classification into 11 major subtypes. Five subtypes were nearly identical to their tissue-of-origin counterparts, but several distinct cancer types were found to converge into common subtypes. Lung squamous, head & neck, and a subset of bladder cancers coalesced into one subtype typified by TP53 alterations, TP63 amplifications, and high expression of immune and proliferation pathway genes. Of note, bladder cancers split into three pan-cancer subtypes. The multi-platform classification, while correlated with tissue-of-origin, provides independent information for predicting clinical outcomes. All datasets are available for data-mining from a unified resource to support further biological discoveries and insights into novel therapeutic strategies

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe
    corecore